用户名: 密码: 验证码:
小框体复合外墙保温隔热系统的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑节能是当今建筑界共同面对的重要技术领域,改进建筑外围护结构的保温隔热性能、结构性能、耐久性能是外墙外保温技术发展的重要方向。本文针对当前外墙外保温系统存在的质量通病,以满足建筑节能标准,提高使用寿命并降低后期更换和维修成本、以及提高系统的结构性能、耐久性能为目的,研发了小框体复合外墙保温隔热系统。通过理论分析、数值模拟及在试点工程中长时间的跟踪观测,完成了如下几个方面的研究:
     (1)小框体复合外墙保温隔热系统的初步提出
     以国家规范推荐的技术做法为依据,将封闭空气夹层与保温材料优化组合,通过合理利用封闭空气夹层的热惰性来提升外墙外保温的整体保温隔热性能,既降低了对保温材料的需求量,减轻了系统的自重,降低了保温材料生产过程中的能源消耗,又减少了保温系统寿命到期后的垃圾处理;通过设计抗剪键削弱外饰面层的温度应力峰值并降低开裂机率,通过结构受力体系的设置使得保温隔热系统与主体结构的设计使用周期相匹配。从保温隔热分体系、结构分体系、连接构造分体系三个层面研发出小框体复合外墙保温隔热系统。基于以上成果已经获得国家专利2项。
     (2)推导了封闭空气层基于几何尺寸变化的当量导热系数计算方程
     根据空气层热迁移理论,引入当量导热系数,用傅立叶热传导公式的形式计算自然对流的传热量,本文研究了封闭空气层随厚度、高度、温度差等外界条件改变时其当量导热系数的变化规律,并获得了满足工程设计精度的封闭空气层随厚度、高度改变时的当量导热系数曲线方程,为小框体系统的设计应用提供了简便的导热系数计算方法。
     (3)获得了保温隔热分体系中封闭空气层的最优尺寸区间
     在固体保温材料与空气层这种特殊材料进行组合时,其保温隔热性能随空气层的尺寸、比例以及固体保温材料自身性能的不同而变化。通过计算分析,本文获得了空气层与不同保温材料组合时空气层的最优尺寸区间,变化敏感区域以及满足规范对外围护结构保温隔热性能要求时的最佳比例组合。为小框体系统的优化设计提供了理论依据。
     (4)小框体复合保温隔热系统的结构性能分析
     本文在大量调研的基础上建立住宅建筑中常见的带窗洞外墙的尺寸模型,以弹性力学为基础,主要模拟小框体复合外墙保温隔热系统在夏季极端高温、低温温度场作用下的应力变形规律,并与传统的外保温做法进行比较。结果表明窗洞四周的变形和应力值较大,温度应力δx、δy和txy是外饰面层开裂的主要原因。本文提出通过在外饰面层增设抗剪键的做法来降低在极端气候条件下的应力峰值,进而减少或推迟裂缝的产生,从而降低保温系统发生渗漏、开裂的机率,提高了结构性能,延长了使用寿命。
     (5)小框体复合保温隔热系统的热工性能分析
     依据围护结构评价指标,基于墙体非稳态传热的物理模型,以热力学能量理论建立了非稳态传热的导热微分方程,并根据房屋内外壁实测的温度拟合成简谐温度波作为外部扰量,采用第三类边界条件,计算出小框体复合保温隔热分体系的围护结构能耗评价指标:内壁面温度、热流密度、衰减倍数及延迟时间,通过与国家规范推荐做法的计算结果进行对比,证明了小框体自身保温隔热性能同比的优越性。
     (6)小框体复合保温隔热系统的模拟应用及实测验证
     为了更好的检验该系统的性能,本文在研发的基础上对该系统进行优化,并将其运用到郑州市的某试点工程。通过其在冬季和夏季分别基于不同朝向、保温层厚度、室内舒适度指标、区分时段采暖指标等进行能耗模拟,得出适合小框体复合保温隔热系统的工程应用方式。通过对试点工程两个对比房间的外墙热阻、表面温度、墙体热流、房间能耗指标进行240h的跟踪测试并与前文理论分析的结果进行对比,证明了理论分析、能耗模拟方法的正确性及小框体的适用性、优越性。
     (7)小框体复合外墙保温隔热系统的应用方法
     从五个方面给出小框体复合外墙保温隔热系统的应用方法:1研发系统的基本做法;2研发系统的适用范围;3研发系统的主要材料及技术要求;4研发系统的技术设计要点;5研发系统的施工方法。
     (8)小框体复合外墙保温隔热系统构造图集
     为了小框体复合外墙保温隔热系统的推广及应用,作者主编了《小框体复合外墙保温隔热系统构造图集》并收录了本文的部分研究成果,是河南省重大公益科研计划项目(081100910400)的科研成果之一
     (9)获得了小框体复合外墙保温隔热系统18种组合的热工指标
     根据拟合得到的小框体系统封闭空气层当量导热系数曲线方程,对小框体系统的保温隔热分体系进行优化,将封闭空气层与三种不同保温材料组合,并与目前常用的墙体外围护材料复合而成18种小框体复合外墙保温隔热系统,分别计算出上述各种小框体复合外墙保温隔热系统的热工计算指标,为该系统的后续推广及节能设计提供理论参考。
Building energy saving is an important area of today's construction industry, and to improve the insulation properties, structural performance, and durability of building envelope are important direction for the development of exterior insulation technology. Based on the current quality defects, in order to meet the energy efficiency standards, improve the service life, reduce the later replacement and maintenance costs, and improve the performance of the system's structure and durability, this paper studies and develops a new composite external wall insulation system named xiaokuangti. Through theoretical analysis, numerical simulation and tracking test in the pilot project, the paper has completed a study of the following aspects:
     (1) The initial advance of xiaokuangti system
     The system, which optimally combines the closed air layer with insulation materials and enhances the thermal insulation performance of the overall system through the rational use of the closed air layer, can reduce the amount of insulation materials, the weight of the system, the energy consumption of the insulation material in the production process and waste disposal when its service life comes to an end. Through the design of the anti-shear key, the system can weaken the temperature stress of the outer facing layer and reduce the cracking probability. By using the structure system it can make the insulation system's life match the design cycle of the main structure. Based on national standards, the paper invents the xiaokuangti system from three organic components including the thermal insulation, structural system, interconnect structure of sub-system. Two national patents have been granted on the basis of above achievement.
     (2) Derived the equivalent thermal conductivity calculating equations based on the geometric dimensions change of the closed air layer
     Based on heat transfer theory, by the introduction of the equivalent thermal conductivity and the calculation of the heat transfer amount of the natural convection in the form of Fourier heat conduction formula, the paper studies the equivalent thermal conductivity variation of the Air layer with its thickness, height variation, temperature and poor external conditions changing and has got the thermal conductivity curve equation access to meet the engineering design accuracy of the closed air layer with the changes of these factors, and provides a simple thermal conductivity calculation for the xiaokuangti system design applications.
     (3) Obtained the optimal size range of the air layer thickness in insulation system
     While combing solid insulation materials with the special material-air layer, its thermal insulation properties will inevitably vary with the change of the size and the ratio of the air layer, and the solid insulation material performance. By calculation and analysis, the paper has obtained the optimal size of the air layer and the combination of different insulation materials, sensitive changing areas, and the best ratio combinations in the specification of external building envelope thermal insulation performance requirements. A theoretical basis for the optimization design of the xiaokuangti system is provided.
     (4) Structure performance analysis of the xiaokuangti system
     The paper mainly simulates the stress and deformation law of the system in the temperature field, and compares it with that of the traditional system. The results show that temperature stress is the main reason for cracking of the outer facing layer. In this paper, it proves the anti-shear key can reduce the stress peaks in the extreme weather conditions, or delay the cracks on the outer layer, thereby reducing the probability of the insulation system leakage, cracking, and improving the performance of the structure and extending its service life.
     (5) Thermal performance analysis of the xiaokuangti system
     In accordance with the building envelope evaluation index, based on the physical model of unsteady heat transfer, the unsteady heat-conduction differential equations under the third boundary on the principle of the thermodynamic theory were established. And in accordance with the measured temperature of the housing inside and outside wall fitted in harmonic temperature wave as the amount of external interference, the heat flux density, attenuation coefficient, delay time and other performance indicators of the xiaokuangti system were calculated and the results (compared by recommended practices with the national norms) proved the superiority of xiaokuangti external wall insulation system.
     (6) Simulating applications and experimental verification of xiaokuangti system
     In order to test the applicability of the system, based on the optimization of the xiaokuangti system, the paper produces the kind of insulation system and applied it to a pilot project in Zhengzhou City. Energy simulation based on different directions the thickness of the insulation layer, indoor comfort indicator to distinguish between periods of heating indicators in winter and summer respectively, has been done, so as to obtain the system's engineering application pattern. A tracking test of 240h on the wall surface temperature, heat flow and room energy consumption has been taken. Through the comparison of test data and the theoretical results of the analysis, the superiority and the applicability of xiaokuangti is verified.
     (7) Application methods of xiaokuangti system
     The application methods of the xiaokuangti system composite exterior insulation system are introduced from five aspects:1. basic components; 2. range of applications; 3 main materials and technical requirements; 4. technical points of design; 5. the construction method
     (8) Constructed atlas of xiaokuangti system
     The research results of this paper are part of the xiaokuangti system constructed atlas. As one of the scientific research results of significant public interest research projects in Henan Province (081100910400), it has passed the evaluation of scientific research.
     (9) Obtained 18 composed thermal index of xiaokuangti system
     According to the curved equation of equivalent heating conducting coefficient of closed air layer of xiaokuangti system, the optimization to the insulation has been taken to the system. The paper first combines closed air layer with three different insulation materials, then forms 18 xiaokuangti systems by combining them with the most commonly daily used wall external enclose materials, and separately calculates the thermal calculating index above, which provides a theoretical reference to the follow-up promotion and energy conversion calculation.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):346~359
    [2]Jiang Yi. Chinese Building Energy Consumption Situation and Energy Efficiency Strategy[J].NEW ARCHTECTURE,2008, (2):4~7
    [3]童丽萍.从能源危机看建筑节能的必然趋势[J].郑州大学学报(理学版),2008,40(4):105-109
    [4]中华人民共和国国家发展和改革委员会.中华人民共和国国家节能中长期发展规划[EB].2004-11-25. http://www.sdpc.gov.cn/xwfb/t20050628_27571.htm
    [5]张声远,杨秀,江亿.我国建筑能源消耗现状及其比较[J].研究与探讨,2008,30(7):37-42
    [6]陶有生.墙体保温与建筑节能[M].北京:中国电力出版社,2008.3-100
    [7]吉琳娜.建筑节能技术选择及其政策研究[D].[硕士学位论文].西安建筑科技大学,2008
    [8]倪虹,牟磊.借鉴国外经验促进建筑节能[J].节能,2002,(5):27~29
    [9]Fong K F,Hanby V I, Chow T T. HVAC System Optimization for Energy Management by Evolutionary Programming [J]. Energy and Buildings,2006,38(3):219~232
    [10]雷红鹏.民用建筑结构节能原理研究.[硕士学位论文].天津大学,2003
    [11]Lin, Zhang. A case study of the energy saving potential of stratum ventilation [J]. International Journal of Ventilation.2011(9),329~336
    [12]Alajmi, Ali. Saving energy by using underfloor-air-distribution (UFAD) system in commercial buildings[J]. Energy Conversion and Management,2010,51(8),1637~1642
    [13]The Architecture Institute of Japan (All). Architecture for a Sustainable uture[M]. Japan: The Institute for Building Environment and Energy Conservation (IBEC),2005
    [14]Marcelo Izquierdo, Maria Venegas, Jose Daniel Marcos, et al. Life Cycle and Optimum Thickness of Thermal Insulator for Housing in Madrid[A]. The 2005 World Sustainable Building Conference [C]. Tokyo,2005, September:416~426
    [15]Diaconu, Bogdan M. Novel concept of composite phase change material wall system for year-round thermal energy savings[J]. Energy and Buildings,2010,42(10),1759~1772
    [16]Cha, Junghoon. ding materials thermal conductivity measurement and correlation with heat flow meter, laser flash analysis and TCi[J]. Journal of Thermal Analysis and Calorimetry, 2011,1~6
    [17]Bajpai, V.K. Energy saving through passive cooling measures using bags with sawdust[J]. Journal of Energy in Southern Africa,2006,17(2),43-46
    [18]Krarti, M. Effect of air flow on heat transfer in walls[J]. Journal of Solar Energy Engineering, Transactions of the ASME,1994,116(1),35~42
    [19]Zhang, Wei-Jie. Research on the effect of planting roof to the thermal load of residential building[J]. Journal of Harbin Institute of Technology (New Series),2007,14,46~50
    [20]Ouyang, Chenbing. Causes of cracks of external wall insulation[J]. Advanced Materials Research,2011,328-330,721~725
    [21]郭永彦.外墙外保温工程震害调查及抗震性能初步分析[D].[博士学位论文].重庆:重庆交通大学,2009
    [22]中华人民共和国建设部.GB50176-93民用建筑热工设计规范[S].北京:中国计划出版社,1993
    [23]杨西伟,郑瑞澄,郝斌.现阶段我国主要建筑节能技术及存在的问题[J].建设科技.2007(14):20~27
    [24]王俊岭.关于郑州市外墙外保温体系几个问题的研究[D].[博士学位论文].天津:天津大学,2009
    [25]陶有生.建筑节能与墙体材料[C].墙体保温与建筑节能.北京:中国电力出版社,2008.3-11
    [26]马保国.外墙外保温技术[M].北京:化学工业出版社,2008.17~100
    [27]郑文亨.国内外建筑节能现状及对比[J].制冷与空调.2008,22(4):134-137
    [28]Aslihan Tavil. Window System Design and Seleetion for Energy Conservationin Turkey[J]. The 2005 Wbrld Sustainable Building Conference.Tokyo,2005,(27~29):265~273
    [29]Kwong Fai FONG Application of Evolution Strategies for HVAC Operation Problem[J]. The 2005 World Sustainable Building Conference.Tokyo,2005, (27~29)202~209
    [30]陈晓旭.我国建筑节能的现状分析与对策研究[J].中国建设信息.2010,(21):70-71
    [31]王红霞.德国的建筑节能措施及对我国的启示[J].科技情报开发与经济.2010,1(9)124-126
    [32]张声远,杨秀,江亿.我国建筑能源消耗现状及其比较[J].研究与探讨,2008,(7):37-42
    [33]中国能源发展战略与政策研究课题组.中国能源发展战略与政策研究[M].北京:经济 科学出版社,2004.14-27
    [34]江亿[等]著.住宅节能[M].北京:中国建筑工业出版社,2006.33-41
    [35]清华大学建筑节能研究中心著.中国建筑节能年度发展研究报告2007[M].北京:中国建筑工业出版社,2007.33-37
    [36]徐艳.外墙外保温材料的选用及施工技术的研究[D].[硕士学位论文].西安:西安建筑科技大学,2011
    [37]王耀威.保温复合墙体热致裂缝分析[D].[硕士学位论文].大庆:大庆石油学院,2009
    [38]关淑君,马捷,张乐群等.外墙外保温裂缝产生原因分析[J].工程质量.2011,(2):74-77
    [39]邱玉深,邱静.外墙外保温系统的裂缝控制[J].建筑技术,2009,40(4):10~20
    [40]任玲玲.EPS板保温系统裂缝问题的数值分析[D].[硕士学位论文].郑州:郑州大学,2010
    [41]钱选青.如何提高外保温墙体贴饰面砖的安全性[N].中华建筑报,2006-06-17(007)
    [42]方登林.墙外保温面层裂缝产生的原因与控制[J].低温建筑技术,2006,(2):132~133
    [43]林燕成.外墙外保温系统技术标准现状分析[J].施工技术,2007,(6):103~105
    [44]马立新.外墙外保温裂缝、渗水的防治[J].科技创新导报,2011,(14):39~50
    [45]陈伟.外墙外保温工程质量问题的分析与防治措施[J].铁道标准设计,2008,(1):88~91
    [46]章熙民.传热学[M].北京:中国建筑工业出版社,1993.7-16
    [47]高振鹏.黄河淤泥模数多孔砖及其墙体节能性能研究[D].[硕士学位论文].郑州:郑州大学,2009
    [48]田利辉.聚氨酯小框体外墙外保温体系研究[D].[硕士学位论文].郑州:郑州大学,2010
    [49]涂逢祥,王美君.建筑节能技术的跨越式发展[J].建筑技术,2002,33(10):728-731
    [50]江亿.我国建筑能耗状况及有效的节能途径[J].暖通空调,2005,35(5):30-40
    [51]中华人民共和国住房和城乡建设部.JGJ26-2010严寒和寒冷地区居住建筑节能设计标准[S].北京:中国建筑工业出版社出版,2010
    [52]河南省建筑科学研究院.DBJ41/062-2005河南省居住建筑节能设计标准(寒冷地区)[S].北京:中国广播电视出版社,2005
    [53]河南省建设厅DBJ41/071-2006.河南省居住建筑节能设计标准(夏热冬冷地区)[S].北京:中国建材工业出版社出版,2006
    [54]邹学红.建筑保温隔材料热性能研究[D].[博士学位论文].上海:东华大学,2008
    [55]周英才.建筑外墙节能新体系研究[D].[硕士学位论文].西安:西安建筑科技大学,2008
    [56]李正琪.顶空腹夹层结构的隔热性能及施工工艺改进研究[D].[博士学位论文].杭州:浙江大学,2008
    [57]白义奎,王铁良,李天来.缀铝箔聚苯板空心墙体保温性能理论研究[J].农业工程学报,2003,(3):190~195
    [58]白义奎,王铁良,刘文合.缀铝箔聚苯板空心墙体热绝缘系数分析[J].保温材料与建筑节能,2003,(1):1-3
    [59]童丽萍,李建光,曹源等.一种空腔式小框体保温隔热复合板[P]:中国专利,ZL200820220705.2010-02-03
    [60]鲍宇清,周宁,钱选青等.外保温系统粘贴饰面砖安全性研究[J].建设科技,2008,121(8):23-28
    [61]Nelson. Joint movement of a panelized EIFS wall system[M]. ASTM Special Technical Publication,1995:294~360
    [62]Williams. Monitoring joint movement in a panelized EIFS building[M].ASTM.Special Technical Publication,1995:307~3206
    [63]龙恩深.建筑能耗基因理论与建筑节能实践[M].北京:科学出版社,2009.56~88
    [64]吴美升,王微微,孙洪明.外墙外保温系统开裂问题分析[J].新型建筑材料,2007,(5):67-68
    [65]马保国,郝先成,赛守卫等.外墙外保温抗裂砂浆抗裂性能研究[J].新型建筑材料.2006,(03):61-64
    [66]李伟,赵宏旭.外墙外保温存在的质量问题及防治[J].低温建筑技术,2007,(02):1-40
    [67]李为一,郭晔华.EPS板薄抹灰外墙外保温系统质量病害及防治[J].平顶山工学院学报.2007,(01):70~72
    [68]薄海涛.建筑外墙外保温系统耐久性及评价研究[D].[博士学位论文].武汉:华中科技大学,2009
    [69]A. Imad, A. Ouakka, K. Dang Van, G.Mesmacque.Analysis of the Viscoelastoplastic Behavior of Expanded Polystyrene under Compressive Loading:Experiments and Modeling[J],2001, (2):140-149
    [70]Pa Pado Poulos AM. State of the art in thermal in sulation materials and aims for future developments[J].Energy and Buildings,2005,37(1):77~82
    [71]Papadopoulos A.M, Giama E. Environmental Performance evaluation of thermal insulation materials and its impact on the building[J].Building and Environment,2007, 42(5):2178~2187
    [72]童丽萍,李建光.小框体复合保温隔热分体系防水构造[P].中国专利,201010284343.2011-12-07
    [73]李建光,童丽萍.小框体复合保温墙体热工性能分析[J].郑州大学学报(理学版),2011,43(4):116-120
    [74]季广其.外墙外保温防火技术途径分析[J].墙材革新与建筑节能,2008,(11):41-45
    [75]高群,孙生根,高建洪.一种防火阻燃的聚氨酯外墙保温系统材料[P].中国专利,CN101851993A.2010-10-06
    [76]杨熙.新型防火保温板[P].中国专利,CN201933631U.2011-08-17
    [77]梅蒎.热挤压式木塑节能防火装饰一体板[P].中国专利,CN201554181U.2010-08-18
    [78]徐芝纶.弹性力学简明教程(第三版)[M].北京:高等教育出版社,2002.144-152
    [79]徐芝纶.弹性力学(下册)(第二版)[M].北京:人民教育出版社,1982.9-100
    [80]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999.10~73
    [81]杜平安,甘娥忠,于亚婷.有限元法原理、建模及应用[M].北京:国防工业出版社,2004.8-40
    [82]李松年.航天结构热力学的任务及应用[J].力学进展,1994,24(1):121~122
    [83]Kumar, Vinod, Renjith, Rajeev, Jana, Harikrishnan. Thermo-structural analysis of composite structures[J]. Materials Science and Engineering,2005,412 (1):66~70
    [84]Mehta, Suresh, Narayana Lyer. Thermal stress analysis of a solid rocket motor nozzle throat inserts using finite element method[J]. India Journal of Engineering & Materials Sciences,1998,5 (5):271~277
    [85]Morozov, Beaujardiere. Numerical simulation of the dynamic thermo-structural response of a composite rocket nozzle throat[J]. Composite Structures,2009,91 (4):412~420
    [86]中华人民共和国建设部.JGJ 144-2004外墙外保温工程技术规程[S].北京:中国建筑工业出版社,2005
    [87]任玲玲,童丽萍.夏季极端环境下住宅墙体EPS保温体系热结构耦合分析[J].郑州大学学报(工学版),2010,31(4):15~18
    [88]李建光,童丽萍.黄河淤泥多孔砖在居住建筑节能设计中的应用[J].施工技术,2008,37(10):47~49
    [89]LI Jianguang. Thermal Stress Performance Analysis for a New External Wall Insulation System[C], Applied Mechanics and Materials,2011, (71-78):1929~1932
    [90]张建峰,王翠玲,吴玉萍等ANSYS有限元分析软件在热分析中的应用[J].冶金能源,2004,23(5):9-12
    [91]袁艳平,程宝义,茅靳丰ANSYS在浅埋工程围护结构传热模拟中的运用[J].解放军理工大学学报(自然科学版),2004,5(2):52-56
    [92]Z. yaou and G. zhifei and S. yong. ANSYS 7.0 finite element analysis of practical course[M]. Beijing:Tsinghua University Press,2004.88~101
    [93]王满生,杨威,黄振利.外墙外保温体系自重应力和温度应力分析[J].施工技术,2010,39(3):82~83
    [94]郝先成.节能型外墙保温隔热材料系统研制与应用[D].[硕士学位论文].武汉:武汉理工大学,2006
    [95]邵红艳.结构温度场和温度应力场分析[D].[硕士学位论文].西安:西北工业大学,2001
    [96]SuranaK5 and PIiliPsR. Three Dimensional Currel Shell Finite Element for HeatConduetion[J].1987, (25) 775~785
    [97]张继良.传统民居建筑热过程研究[D].[博士学位论文].西安:西安建筑科技大学,2006
    [98]王惟钊.多层建筑围护结构墙体的保温节能分析[D].[硕士学位论文].哈尔滨:哈尔滨工程大学,2007
    [99]王海燕.复合墙体热工特性与能耗分析[D].[博士学位论文].哈尔滨:哈尔滨工业大学,2007
    [100]G.E.Courrille, J.P.Ssnders, P.W.Childs. Dynamic Thermal Peformance of Insulated Metal Deck Roof Systems[C]. In:Proceedings of the ASHRAE/DOE/BTECC Conference.Thermal Performance of the Exterior Envelops of Buildings.1985.53~63
    [101]阮晶洁.钢筋混凝土外墙外保温研究[D].[硕士学位论文].大庆:大庆石油学院,2009
    [102]Mo Chuang, Pyung_Suk Tung, Roger H.Rangel.Semi-analytical Solution for Heat Transfer from a Buried Pipe with Convection on the Exposed Surface[J]. International Journal of Heat and Mass Transfer,1999, (42):3771~3786
    [103]清华大学开发组著.建筑环境系统模拟分析方法-DesT[M].北京:中国建筑工业出版社,2006,105-153
    [104]陆煜,程林.传热原理与分析[M].北京:科学出版社,1997,312~340
    [105]LI Jianguang. Tong Liping. Study on the thermal property of a new external wall insulation system[C].2011 International Conference on Electric Technology and Civil Engineering, ICETCE 2011-Proceedings:6920~6923
    [106]汤莉,汤广发.三种墙体保温隔热性能的数值分析[J].湖南大学学报(自然科学版),2008,35(2):31-34
    [107]吴国忠,崔晓龙,李光荣.非稳态环境对大地温度场影响研究[J].油气田地面工程,2003,(3):9-10
    [108]D.A.Pabst, S.A.Rommel, W.A.McLellan, T.M.Williams, T.K.Rowles. Thermoregulation of the Intra-abdominal Testes of the bottlenose Dolphin during Exercise[J]. J. Exp. Biol. 1995, (198):221~226
    [109]J.Gerhold. Properties of Cryogenic Insulants.Cryogenics[J].1998, (38):1063~1081
    [110]Bonn,John. Vacuum Insulated Pipe Seeks Increased Use with LNGPipeline and Gas[J]. Journal,2004,231(10):78~80
    [111]W.Na, P.Zou. An Experimental Study on Thermal Properties of Vacuum Insulation for Steel[J]. Jacketed Heating Pipeline.Journal of Harbin Institute of Technology,2007,14 (1): 375-377
    [112]韦延年,王远谋.计算内表面温度振幅的综合热稳定性系数法[J].四川建筑科学研究,1983,(4):42~45
    [113]俞力航,杨星虎.对居住建筑围护结构隔热指标的探讨[J].保温材料与建筑节能,2001,(11):29~31
    [114]徐斌.隔热涂层热物性的确定及其在建筑应用中的参数分析与仿真[D].[硕士学位论文].合肥:中国科学技术大学,2006
    [115]刘伟.湖南中北部村镇住宅低技术生态设计研究[D].[硕士学位论文].长沙:湖南大学,2009
    [116]张杰.建筑节能设计中外墙平均传热系数Km值影响因素分析[D].[硕士学位论文].西安:西安建筑科技大学,2005
    [117]龙恩深.建筑能耗基因理论研究[D].[博士学位论文].重庆:重庆大学,2005
    [118]谢晓娜.建筑能耗模拟用楼地和热桥传热计算方法研究[D].[博士学位论文].北京:清华大学,2006
    [119]张泠.建筑墙体表面换热过程辨识方法与数值预测方法研究[D].[博士学位论文].长沙:湖南大学,2001
    [120]贾永英.建筑墙体热质耦合传递数值模拟[D].[硕士学位论文].大庆:大庆石油学院,2002
    [121]江亿,洪天真.建筑热过程的随机分析[J].清华大学学报,1994,34(5),93-98
    [122]徐晓丽.建筑外围护结构热分析及人工冷源智能控制系统研究[D].[博士学位论文].天津:天津大学,2007
    [123]陈良美.建筑新技术评价模式及指标体系设计研究[D].[硕士学位论文].重庆:重庆大学,2005
    [124]邵红艳.结构温度场和温度应力场分析[D].[硕士学位论文].西安:西北工业大学,2001
    [125]倪振伟,焦芝林,罗棣巷等.评价换热器热性能的三项指标[J].工程热物理学报,1984(4):387-389
    [126]王沛.夏热冬冷地区围护结构双面保温体系研究与设计[D].[硕士学位论文].重庆:重庆大学,2008
    [127]贾永英,刘晓燕,刘艳坡等.墙体热质耦合传递模型的块追赶法求解[J].大庆石油学院学报,2005,29(6):67~70
    [128]肖凤,余庄.数值模拟气象资料在建筑能耗计算中的应用[J].华中建筑,2003,21(2):69-71
    [129]朗四维.建筑能耗分析逐时气象资料的开发研究[J].暖通空调,2002,32(4):1-5
    [130]燕达,谢晓娜,宋芳婷.建筑环境设计模拟分析软件DeST第一讲建筑模拟技术与DeST发展简介[J].暖通空调,2004,(7):48~56
    [131]江亿.建筑环境系统模拟分析方法-DeST[M].北京:中国建筑工业出版社,2006.4-54
    [132]B.H.巴格斯罗夫斯基[苏]著.建筑热物理学[M].北京:中国建筑工业出版社,1982,4-100
    [133]顾骏强,杨军,陈海燕等.建筑能耗动态模拟气象资料的开发与应用[J].太阳能学报,2008,29(1):119~124
    [134]孔凡红.新建建筑围护结构干燥特性及其影响研究[D].[博士学位论文].哈尔滨:哈尔滨工业,大学,2008
    [135]曾铁梅.纸基空腔材料——混凝土复合砌块砌体力学与热工性能研究[D].[硕士学位论文].武汉:武汉理工大学,2002
    [136]白义奎,王铁良,姜传军等.外墙聚苯板复合墙体在日光温室中的应用[J].建筑技术,2002,30(1):27~29
    [137]任俊,刘加平.广州居住建筑空调能耗实测研究[J].暖通空调,2004(5):18~22
    [138]易桦.新型PV-Trombe墙系统的理论与实验研究[D].[博士学位论文].合肥:中国科学技 术大学,2007
    [139]周孝清,毛洪伟.某办公楼外围护结构节能设计分析[J].暖通空调,2004,34(8):66-69
    [140]蔡龙俊,姚灵峰.上海地区住宅围护结构性能对全年空调采暖能耗的分析[J].住宅经济,2006,292(11):40~43
    [141]尾岛俊雄,许雷,王健等.2010年上海世博园能源系统规划的研究—能源基础设施的基本规划理念[J].暖通空调,2005,35(5):107-111
    [142]胡达明,叶青,卜增文,刘俊跃等.深圳地区外保温复合墙体基于能耗的经济性研究[J].建筑节能,2005,35(10):298~302
    [143]赵蓓.武汉地区中庭建筑的通风和热舒适度模拟研究[D].[硕士学位论文].武汉:华中科技大学,2004
    [144]Tetsuya Hiramatsu, Takeshi Harada, Shinsuke kato,etal.Study of thermal environment in experimental real-scale atrium[C]. In:5th international conference on air distribution in room room vent.1996.17~19
    [145]日本建筑学会编.中庭环境设计[M].彭国社译.北京:中国建筑工业出版社,1993.23~25
    [146]西安建筑科技大学绿色建筑研究中心编著.绿色建筑[M].北京:中国计划出版社,1999.36~48
    [147]刘盛璜.人体工程学与室内设计[M].北京:中国建筑工业出版社,2001.3-24
    [148]赵彬,林波荣,李先庭,彦启森.室内空气分布的预测方法及比较[J].清华大学学报,2001,31(4):18-22
    [149]王珍吾,孟庆林,张百庆.双面热流计法现场测墙体构造热阻[J].建筑节能,2004,(9):38-40
    [150]阮俊玲.建筑外墙热工性能现场动态检测方法分析[D].[硕士学位论文].西安:长安大学,2011
    [151]王沣浩,姚建波,王东洋,王新轲,孟祥兆.既有建筑围护结构传热系数现场检测方法研究[J].建筑热能通风空调,2008,(5):60~63
    [152]王晶晶.环境条件引起的热流计法测试误差研究[D].[硕士学位论文].上海:同济大学,2007
    [153]禹贵香,倪修全.控温箱-热流计法测定保温材料导热系数的实验方法[J].四川建筑,2010,(5):222~224
    [154]郭聪睿.建筑节能现场传热系数间接检测法及其影响因素分析[J].内蒙古大学学报(自 然科学版),2010,(2):235~238
    [155]刘加平.非稳态环境中的热流计特性[J].西安建筑科技大学学报(自然科学版),1990,(1):57~61
    [156]王补宣,韩礼钟,方肇洪.热流计快速标定装置的传热分析[J].计量学报,1984,(3):171~178
    [157]刘志雄等.影响建筑幕墙抗震性的因素分析及其构造措施[J].建筑门窗与金属建材,2002,1(1):41-42
    [158]胡晓等.装饰石材及其支撑结构抗震性能试验研究[J].工程抗震,1999,1(4):134-37
    [159]王宏.玻化微珠保温砂浆系统的耐久性研究[D].[硕士学位论文].太原:太原理工大学,2010
    [160]顾同曾.高层住宅现浇混凝土外墙外保温体系研究[J].施工技术,1999,28(7):6-7
    [161]王喜勤.外墙外保温的连接安全和饰面砖做法的可行性分析[J].甘肃科技,2010,26(9):112-115
    [162]郭永彦.外墙外保温工程震害调查及抗震性能初步分析[D].[硕士学位论文].重庆:重庆交通大学,2009
    [163]姚谦峰,张旭峰,魏晓.新型节能复合墙体保温性能及连接构造研究[J].工业建筑,2007,37(9):69~72
    [164]杨惠忠.建筑节能技术集成及工程应用[M].北京:中国电力出版社,2008.227~248
    [165]陈衍庆,王玉容,邹越.建筑新技术[M].北京:中国建筑工业出版社,2006.191-192
    [166]宋长友,黄振利,季广其等.外墙外保温防火技术现状及其问题探讨[J].建筑科学,2008,(2):1-7
    [167]朱春玲,季广其.外墙外保温系统防火试验研究[J].施工技术,2011,(10):55~59
    [168]住房和城乡建设部,建科[2012]16号《关于贯彻落实国务院关于加强和改进消防工作的意见的通知》http://www.law-lib.com/law/law_view.asp?id=374883
    [169]王宝臣.墙材革新与建筑节能2012,,(2):18
    [170]黄新杰.不同外界环境下典型保温材料PS火蔓延特性规律研究[D].[博士学位论文].安徽:中国科学技术大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700