用户名: 密码: 验证码:
均聚物/表面活性剂或无规共聚物的水相自组装及微反应器应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,胶体与界面化学家对小分子表面活性剂如何自组装成各种尺度和形貌的胶束进行了系统和深入的研究,也关注表面活性剂与水溶性均聚物的复合体系,即它们的共同自组装行为。均聚物与表面活性剂两者间的相互作用,能够改变表面活性剂的自组装行为,产生新的共同自组装体。事实上,这种复合体系已经在生命科学、药品与食品、三次采油、日用化学品、纳米材料制备等领域得到广泛应用。
     研究表面活性剂与水溶性非离子均聚物的共同自组装,目前主要集中在对表面活性剂双临界浓度现象、两者间相互作用部位或其具体应用等方面,却少有对两者间自组装定量规律的研究。因此,本论文关注的第一个问题是:能否从定量层面考察均聚物与表面活性剂共同自组装行为,并探索共同自组装体的微结构和宏结构?
     湿化学法是目前合成无机纳米材料的主要方法之一,其中大量使用表面活性剂或水溶性聚合物作包覆剂,目前也有一些同时使用两者作复合包覆剂的报导。但是,由于对复合包覆剂的功能不甚清楚,因而很难对目标无机纳米材料的尺度和形貌进行有效的调控。因此,本论文关注的第二个问题是:能否在深入了解水溶性非离子均聚物/表面活性剂共同自组装体微结构和宏结构的基础上,以其作为微反应器,调控其中目标金属还原产物的尺度和形貌?
     双亲性无规共聚物廉价易得,较之于两亲嵌段共聚物或接枝共聚物而言更有潜在的应用价值。但双亲性无规共聚物具有“短亲/疏水链段”的链结构特点,使其不能形成类似于两亲嵌段共聚物或接枝共聚物胶束、或非共价键合胶束的明确核壳结构,因而在大分子自组装中少受关注。因此,本论文关注的第三个问题是:双亲性无规共聚物能否在完全水相环境中自组装成新的聚集构造以及用作制备金属微纳结构的微反应器的可能性?
     围绕以上提出的三个问题,本论文的主要工作分为以下三个方面:
     1、定量研究PVP或PEG与SDS的共同自组装
     采用表面张力、电导率、超滤、增溶、荧光分子探针等研究手段,获得聚乙烯毗咯烷酮(PVP)/十二烷基硫酸钠(SDS)和聚乙二醇(PEG)/SDS复合体系水溶液中SDS的第一临界浓度c1、第二临界浓度c2和束缚胶束聚集数N等数据。研究水溶性非离子均聚物/表面活性剂的共同组装过程,得到三个主要特征参数,以其反映两者间共同自组装的边界和定量关系:(1)饱和束缚比[B],反映每个束缚胶束化SDS分子结合均聚物链节的最大能力;(2)临界束缚胶束聚集数[N],反映均聚物上形成SDS束缚胶束的最小聚集数;(3)聚合物分子量阈值[M],反映共同自组装所要求的最小聚合物分子量。实验事实表明,上述三个新特征参数都是只由表面活性剂及均聚物的分子结构确定的不变量,而受聚合物分子量([M]除外)和浓度等的影响很小。综合SDS的临界浓度、三个特征参数与核磁共振、浊点、克拉夫特点以及流变性等实验结果,证明PVP/SDS共同自组装体既具有“拟聚电解质”微结构,又具有项链状宏结构。
     2、PVP/SDS共同自组装体的微反应器应用
     将PVP/SDS共同自组装体作为制备金属微纳结构的微反应器,发现该微反应器的“拟聚电解质”微结构具有富集金属反离子功能,其项链状宏结构可以发挥调控金属还原产物的形貌和尺度的功能。在PVP/SDS微反应器中,借助晶体生长、微反应器调控与环境影响因素等因子之间的竞争和协同作用,合成了金、银、镍、铜等元素的准3-D、2-D、1-D乃至0-D金属微纳结构,从而在同一种微反应器中分别获得了多种成分、多种维度以及多种形貌的金属微纳结构。本研究结果表明,使用水溶性非离子均聚物/表面活性剂自组装体作微反应器,可对生成的金属微纳结构实施更有效的调控,这对推进湿化学方法制备金属微纳结构具有较大实用意义。
     3、HPAM的pH响应性自组装及微反应器应用
     考察部分水解聚丙烯酰胺(HPAM)在水相中的pH响应性自组装行为。在pH诱导下,HPAM在水相中能够独自组装、或经第二种聚合物HEC辅助组装,获得直径约500nm的片状聚集体。为了观察这种大片状聚集体的微结构形貌,我们提出在聚集体表面还原氯金酸并沉积金原子,增强衬度后再用TEM表征的方法。该法利用氯金酸能被具有弱还原性的大分子原位还原的特性,使金原子在聚集体表面及可能存在的多孔微结构处沉积,从而增强聚集体还原处的电镜表征衬度。金原位还原并沉积的TEM表征获得了清晰影像,证实上述pH响应性片状聚集体具有纳米多孔的微结构。采用同样方法还证明,在更低pH 0.9处,上述纳米多孔片状聚集体崩解为粒径约为10 nm的小胶体粒子。本实验证明金原位还原并沉积的TEM表征是一种观察低衬度或小粒度聚集体微结构形貌的有效方法。实验结果还证明,HPAM的“短亲水/疏水链段”的链分布特征,使其聚集体在水环境中具有短程且弥散性分布亲/疏水微区的特性,能够形成表面亲水微区较为富集、内部疏水微区较为富集,且内部还包含弥散性分布亲水微区的大复合聚集结构。以上述双亲性无规共聚物聚集体为微反应器合成金微纳结构,能够获得很有趣的金/聚合物复合微纳结构,具有空心或花状的特殊形貌。
Self-assembly of small-molecular surfactants into micelles with various morphologies and sizes has been one of the core subjects in colloid and interface science. However, in recent years complexation of surfactants and water-soluble homopolymers and their co-self-assembly has drawn much attention of the researchers in the field of colloid as well as polymer sciences. The interaction between homopolymers and surfactants changes the assembly performance of surfactants, and offers some new co-self-assembly architectures. In fact, these co-self-assemblies have been applied in life science, food and medicine, enhanced oil recovery, personal care products and nanomaterials, etc.
     So far. studies on co-self-assemblies of water-soluble nonionic homopolymers and surfactants mainly focus on the discovery and verification of the dual-critical concentrations of surfactants, the sites of the interaction, and their miscellaneous applications. Nevertheless, it lacks of quantitative understanding of the processes of the complexation and co-self-asembly of the homopolymers and surfactant molecules. Therefore, one of the concerns in this dissertation is, can we investigate the co-self-assembly of surfactants and homopolymers leading to some quantitative results and clearly observe the microstructures and macrostructures of the co-self-assemblies?
     It is reported that wet-chemical method is one of the main strategies to synthesize inorganic nanoparticles. Surfactants or water-soluble polymers have been used separately as capping agents in many wet-chemical methods while polymer/surfactant complexes have been tried as well. However, there still remains unclear in the functions of the polymer/surfactant complexes, which makes it difficult to control effectively the sizes and morphologies of the synthesized inorganic nanoparticles. Therefore, another concern in this dissertation is, could we use the homopolymer/surfactant complexes as microreactors to control the sizes and morphologies of the target metal micro/nano-particles based on our understanding of the microstructures and macrostructures of the polymer/surfactant co-self-assemblies?
     Amphiphilic random copolymers demonstrate more potential in applications due to their low-cost and facile preparation. But much less attention has been paid to their self-assembly since their inherent feature of the "short hydrophilic/hydrophobic segment" makes it difficult to form clear core-shell structures as in block/graft copolymer micelles or noncovalently connected micelles. Thus, the third concern in this dissertation is, wether the simple amphiphilic random copolymers could assemble in aqueous solution into new aggregate architectures and if the assemblies have potential to apply as microreactors for metal micro/nano-particles?
     Aiming at the aforementioned three concerns, this dissertation mainly focuses on the following:
     1. The quantitative study on co-self-assembly between PVP or PEG and SDS
     The aqueous solutions of PVP (polyvinylpyrrolidone)/SDS (sodium dodecyl sulfate) complex and PEG (polyethyleneglycol)/SDS complex were investigated with several methods including surface tension, electric conductivity, ultra filtration, solubilization and fluorescence molecular probe. Thus the characteristic parameters of the water-soluble nonionic homopolymer/SDS aggregates were obtained such as the first critical concentration of surfactant (c1), the second critical concentration of surfactant (C2) and N, the bound-micellar aggregation number of SDS. Three other novel characteristic parameters were inferred from the above experimental results, which describe the quantity ratios and the thresholds of the co-self-assemblies. That is. (1) Specific saturated bound capacity [B], the maximum number of homopolymer chain units bounded by each aggregated surfactant. (2) Critical bound-micellar aggregation number [N], the minimum bound-micellar aggregation number of SDS at c1.(3) Threshold molecular weight of polymer [M], the minimum polymer molecular weight required by co-self-assembly. The experimental results showed that the above three characteristic parameters are constants for given molecular structures of both surfactants and polymers, and independent of the molecular weights and concentrations of the homopolymers. The architecture of PVP/SDS co-self-assembly is deduced basically from NMR proofs, the critical concentrations, the above three characteristic parameters and some other supporting information got from cloud point, Krafft point and rheology data. Thus, PVP/SDS co-self-assembly was proposed to have a pseudo-polyelectrolyte microstructure and a necklace-like macro structure.
     2. Application of PVP/SDS co-self-assemblies as microreactors
     PVP/SDS co-self-assemblies could be used as microreactors for metal micro/nano-particles. It was found out that the pseudo-polyelectrolyte microstructure of the assemblies has the function to accumulate the precursor metal counterions, and its necklace-like macrostructure has the function to direct morphologies and sizes of the target metal micro/nano-particles. Various metal micro/nano-particles in quasi-3-D, 2-D,1-D as well as 0-D including gold, silver, nickel and copper were synthesized in PVP/SDS microreactor; and a synergistic morphology control strategy was developed depending on competition among crystal growth, direction by microreactor and infinitesimal disturbance by influence factors. These results make the homopolymer/surfactant microreactors effective and practical in regulating the target metal micro/nano-particles, and thus shade some light on the practicability of wet-chemical methods to synthesize metal micro/nano-particles.
     3. pH responsive self-assembly of HPAM and their application as microreactors
     pH responsive self-assembly of HPAM (partially hydrolyzed polyacrylamide) alone or assisted by HEC (hydroxyethylcellulose) in aqueous solution was investigated, which led to aggregate sheets in a size around 500 nm at pH 1.3. A new contrast enhancing strategy for clear TEM observation of the microstructure of the sheets was established and adopted. In this strategy, the added HAuCl4 was easy to be reduced by weakly reductive polymers in situ and then the resultant metal particles were doped on the external surface as well as the possible porous internal surface of the aggregate sheets leading to apparent increase of the contrast. The in situ reduction gold-doping TEM images announced that the pH responsive HPAM or HPAM/HEC aggregate sheets have nano-porous microstructures. Furthermore, the TEM observation disclosed that at a lower pH 0.9, the HPAM or HPAM/HEC aggregate sheets actually fall apart into nanoparticles about 10 nm. This in situ reduction gold-doping TEM observation strategy provides an efficient technique to directly detect low contrast microstructure or morphology of tiny organic assembly. In addition, the experiment results illustrated that the nature of "short hydrophilic/hydrophobic segment" in amphiphilic random copolymers induces short-range and dispersive hydrophilic/hydrophobic domains in the aggregates. In the resultant large complex aggregates, the hydrophobic and hydrophilic micro-domains enriched inside and on the surface of the aggregates, respectovely. Some interesting morphologies of the composites made of gold particles and the random copolymer such as hollow or flower-like ones, were obtained using the above amphiphilic random copolymer aggregates as microreactors.
引文
1 Wang L. B., Xu Z., Ding L., Long Y. J., Xu L. G., Xu C. L.. Preparation and evaluation of superparamagnetic surface molecularly imprinted polymer nanoparticles for selective extraction of bisphenol A in packed food[J]. Analytical Methods,2011,3(8):1737-1744.
    2 Asker D., Weiss J., McClements D. J., Formation and stabilization of antimicrobial delivery systems based on electrostatic complexes of cationic-non-ionic mixed micelles and anionic polysaccharides[J]. Journal of Agricultural and Food Chemistry,2011,59(3):1041-1049.
    3 Zhu R. L., Zhu J. X., Wang T., Ge F., Wei J. M., Yuan P.. Novel polymer/surfactant modified montmorillonite hybrids and the implications for the treatment of hydrophobic organic compounds in waste waters[J]. Applied Clay Science,2011,51(3):317-322.
    4 Kralova I., Sjoblom J.. Surfactants used in food industry:a review[J]. Journal of Dispersion Science and Technology,2009,30(9):1363-1383.
    5 Weiss J., Kriegel C., Kit K. M., McClements D. J.. Nanofibers as carrier systems for antimicrobial microemulsions. II. Release characteristics and antimicrobial activity[J]. Journal of Applied Polymer Science,2010,118(5):2859-2868.
    6 Huang Q. R., Yu H. L., Ru Q. M.. Bioavailability and delivery of nutraceuticals using nanotechnology[J]. Journal of Food Science,2010.75(1):R50-R57.
    7 Zhang L. X., Sun Y. X., Jiu H. F., Han X. W., Fan T.. Liu G. D.. Bubble template synthesis of hollow CeO(2) microspheres through a solvothermal approach[J]. Micro & Nano Letters,2011, 6(1):22-25.
    8 Zana R.. Surfactant Solutions:New methods of investigation[M]. New York and Basel:Marcel Dekkerlnc.,1987:Chapter 4.
    9 Putnam F. W.. The interactions of proteins and synthetic detergents [J]. Advances in Protein Chemistry,1948,4:79-122.
    10 Cockbain E. G.. The interfacial activity and composition of bovine serum albumin+sodium dodecyl sulfate complexes[J]. Transactions of the Faraday Society,1953,49:104-111.
    11 Saito S.. Solubilization of polyvinyl acetate[J]. Kolloid-Zeitschrift,1952,128:154-158.
    12 Saito S.. Adsorption complexes of polymers with ions of wetting agents[J]. Kolloid-Zeitschrift, 1957,154:19-29.
    13 Saito S.. Solubilization of polymers by nonionic surface-active agents[J]. Kolloid Zeitschrift & Zeitschrift fuer Polymere,1968,226(1):10-14.
    14 Goddard E. D., Hannan R. B.. Cationic polymer/anionic surfactant interactions[J]. Journal of Colloid and Interface Science,1976,55(1):73-79.
    15 Karlstroem G., Carlsson A., Lindman B.. Phase diagrams of nonionic polymer-water systems: experimental and theoretical studies of the dffects of surfactants and other cosolutes[J]. Journal of Physical Chemistry,1990,94(12):5005-5015.
    16 Macdonald P. M., Staring D., Yue Y.. Polyelectrolyte binding to ionic surfactant micelles observed using deuterium NMR[J]. Langmuir,1993,9(2):381-384.
    17李干佐,隋卫平,徐桂英,郑立强.C14BE与NaCMC之间的相互作用(I)-NaCMC对C14BE表面活性的影响[J].高等学校化学学报,1995,10(16):1618-1621.
    18郝京诚,梁芳珍,刘树海,任建成,鲁绍芬,李干佐,汀汉卿.十二烷基甜菜碱与聚乙烯毗咯烷酮相互作用的研究[J].高等学校化学学报,1998,1(19):111-115.
    19 Zana R., Linaos P., Lang J. Fluorescence probe studies of the interactions between poly(oxyethylene) and surfactant micelles and microemulsion droplets in aqueous solutions[J]. Journal of Physical Chemistry,1985,89(1):41-44.
    20 Kido J., Hiyoshi M., Endo C., Nagai K.. Solvatochromic probes for the investigation of polymer-micelle interactions[J]. Journal of Colloid and Interface Science,1991,142(2): 326-330.
    21 Witte F. M., Buwalda P. L., Engberts J. B. F. N.. Micelle-polymer complexes as studied by the ESR spin probe techinique[J]. Colloid and Polymer Science,1987,265(1):42-44.
    22 Kumar B. V., Priyadharsini S. U., Prameela G. K., Mandal A. B.. NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution[J]. Journal of Colloid and Interface Science,2011,360(1):154-62.
    23 Lima C. F., Nome F., Zanette D.. The absence of conventional polymer-surfactant interaction between sodium monodecyl phosphate and poly(ethylene oxide):conductivity and kinetic evidence[J]. Journal of Colloid and Interface Science,1997,187(2):396-400.
    24 Penfold J., Zhang X. L., Taylor D. J. F., Thomas R. K.. Adsorption of polyelectrolyte/surfactant mixtures at the air-water interface:modified poly(ethyleneimine) and sodium dodecyl sulfate[J]. Langmuir,2011,27(6):2601-2612.
    25 Penfold J., Zhang X. L., Taylor D. J. F., Thomas R. K.. The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air-water interface[J]. Journal of Colloid and Interface Science,2011,356(2):656-664.
    26 Iscan M., Gelgec U.. Interactions of polyglycol ethers with anionic surfactants in water[J]. Journal of Dispersion Science and Technology,2010,31(12):1667-1672.
    27 Hai M. T., Liu H. J.. Investigation on the interaction between sodium dodecyl sulfate and nonionic polymer with electrolytes by viscosity and surface tension[J]. Journal of Chemical & Engineering Data,2010,55(1):354-357.
    28 Panda A. K., Sarkar G., Manna K.. Physicochemical studies on surfactant aggregation 1. Effect of polyethylene glycols on the micellization of SDS[J]. Journal of Dispersion Science and Technology,2009,30(8):1152-1160.
    29 Jones M. N.. The interaction of sodium dodecyl sulfate with poly(ethylene oxide)[J]. Journal of Colloid and Interface Science,1967,23(1):36-42.
    30 Cabane B.. Structure of some polymer-detergent aggregates in waterfJ]. Journal of Physical Chemistry,1977,81(17):1639-1645.
    31 Turro N. J., Baretz B. H., Kuo P.. Photoluminescence probes for the investigation of interactions between sodium dodecylsulfate and water-soluble polymers[J]. Macromolecules,1984,17(7): 1321-1324.
    32 Nagarajan R.. Thermodynamics of nonionic polymer-micelle association[J].Colloids and Surfaces,1985,13(1):1-17.
    33 Lange H.. Interactions of sodium alkyl sulfate and poly(vinylpyrrolidinone) in aqueous solutions[J]. Kolloid Zeitschrift & Zeitschrift fuer Polymere,1971,243(2):101-109.
    34 Schwuger M. J.. Mechanism of interaction between ionic surfactants and polyglycol ethers in water[J]. Journal of Colloid and Interface Science,1973,43(2):491-498.
    35 Goddard E. D.. Polymer-surfactant interaction. Part I. Uncharged water-soluble polymers and charged surfactants[J]. Colloids and Surfaces,1986,19(2-3):255-300.
    36 Dan A., Ghosh S., Moulik S. P.. The solution behavior of poly(vinylpyrrolidone):its clouding in salt solution, salvation by water and isopropanol and interaction with sodium dodecyl sulfate[J]. Journal of Physical Chemistry B,2008,112(12):3617-3624.
    37 Boissier C., Loefroth J., Nyden M.. Interactions between polyvinylpyrrolidone, sodium dodecylsulfate and nonylphenol ethoxylate in solution and on polystyrene particles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,301(1-3):444-452.
    38 Li F., Li G., Xu G., Wang H., Wang M.. Studies on the interactions between anionic surfactants and polyvinylpyrrolidone. Surface tension measurement,13C NMR, and ESR[J]. Colloid and Polymer Science,1998,276(1):1-10.
    39 Chari K.. The structure of the PVP-SDS complex in water[J]. Journal of Colloid and Interface Science,1992,151(1):294-296.
    40 Griffiths P. C., Hirst N., Paul A., King S. M., Heenan R. K., Farley R.. Effect of ethanol on the interaction between poly(vinylpyrrolidone) and sodium dodecyl sulfate[J]. Langmuir,2004, 20(16):6904-6913.
    41 Fishman M. L., Eirich F. R.. Interactions of aqueous poly(N-vinylpyrrolidone) with sodium dodecyl sulfate. I. Equilibrium dialysis measurements[J]. Journal of Physical Chemistry,1971, 75(20):3135-3140.
    42 Arai H., Murata M., Shinoda K.. Interaction between polar and surfactant. Composition of the complex between poly(vinylpyrrolidinone) and sodium alkyl sulfate as revealed by surface tension, dialysis, and solubilization[J]. Journal of Colloid and Interface Science,1971,37(1): 223-227.
    43 Lewis K. E., Robinson C. P.. Interaction of sodium dodecyl sulfate with methyl cellulose and poly(vinyl alcohol)[J]. Journal of Colloid and Interface Science,1970,32(3):539-546.
    44 Francois J., Dayantis J.. Hydrodynamical behavior of the poly(ethylene oxide)-sodium dodecyl sulfate complex[J]. European Polymer Journal,1985,21(2):165-174.
    45 Moroi Y., Akisada H., Saito M., Matuura R.. Interaction between ionic surfactants and polyethylene oxide in relation to mixed micelle formation in aqueous solution[J]. Journal of Colloid and Interface Science,1977,61(2):233-238.
    46 Treiner C., Nauyen D.. Interaction of copper dodecyl sulfate aggerates with poly(ethylene oxide) or poly(vinylpyrrolidone)[J]. Journal of Physical Chemistry,1990,94(5):2021-2026.
    47 Chauhan M. S., Jyoti J., Thakur R. S.. Study of SDS in aqueous solution of PEG(6000)-a physico-chemical approach[J]. Journal of Polymer Materials,2011,28(1):59-73.
    48 Sadeghi R., Shahabi S.. A comparison study between sodium dodecyl sulfate and sodium dodecylsulfonate with respect to the thermodynamic properties, micellization and interaction with poly(ethylene glycol) in aqueous solutions[J]. Journal of Chemical Thermodynamics,2011, 43(9):1361-1370.
    49 Jones M. N.. Dye solubilization by a polymer-surfactant complex[J]. Journal of Colloid and Interface Science,1968,26(4):532-533.
    50 Horin S., Arai H.. Effect of added salt on the interaction between polymer and detergent in aqueous solution[J]. Journal of Colloid and Interface Science,1970,32(3):547-550.
    51 Tokiwa F., Tsujii K.. Solubilization behavior of the surfactant-polyethylene glycol complex in relation to the degree of polymerization[J]. Bulletin of the Chemical Society of Japan,1973, 46(9):2684-2686.
    52曾利容,张玉军,王果庭.聚丙烯酰胺与十二烷基硫酸钠的相互作用—对二甲基黄的增溶作用[J].高等学校化学学报,1987,4:383-385.
    53 Saito S.. Binding of surfactants by polymers[J]. Journal of Colloid Science,1960,15:283-286.
    54 Tadros T. F.. Interaction of cetyltrimethylammonium bromide and sodium dedocylbenzenesulfonate with poly(vinyl alcohol). Adsorption of the polymer-surfactant complexes on silica[J]. Journal of Colloid Science,1974,46(3):528-540.
    55 Schwuger M. J., Lange H.. Interaction between surfactants and poly(vinyl pyrrolidone) in aqueous solutions[C]. Proc.5th Int. Congr. of Surface Active Agents, Barcelona:Ediociones Unidas SA,1968,2:955-964.
    56 Qiao L., Easteal A. J.. The interaction between triton Xseries surfactants and poly(ethylene glycol) in aqueous solutions[J]. Colloid and Polymer Science,1998,276(4):313-320.
    57 Zana R., Lang J., Lianos P.. Fluorescence probe studies of the aggregation state of sodium dodecylsulfate in aqueous solutions of polyoxyethyleneglycol and poly-N-vinylpyrrolidone[J]. Polymer Preprints,1982,23(1):39-40.
    58 Lissi E. A., Abuin.E.. Aggregation number of sodium dodecyl sulfate micelles formed on poly(ethylene oxide) and poly(vinyl pyrrolidone) chains[J]. Journal of Colloid and Interface Science,1985,105(1):1-6.
    59 Maltesh C., Somasundaran P.. Effect of binding of cations to PEG on its interactions with SDS[J]. Langmuir,1992,8(21):1926-1930.
    60 Winnik F. M., Regismond S. T. A.. Fluorescence methods in the study of the interactions of surfactant with polymers[J]. Colloids and Surfaces, A:Physicochemical and Engineering Aspects,1996,118(1/2):1-39.
    61 Vasilescu M., Angelescu D., Almgren M., Valstar A.. Interactions of globular proteins with surfactant studied with fluorescence probe methods[J]. Langmuir,1999,15(8):2635-2643.
    62 Ridell A., Evertsson H., Nilsson S.. Influence of counterion on the interaction of SDS and cellulose ethers[J]. Journal of Colloid and Interface Science,2002,247(2):381-388.
    63 Panmai S., Prud'home R. K., Peiffer D. G., Jockusch S., Turro N. J.. Interactions between hydrophobically modified polymers and surfactant:A fluorescence study[J]. Langmuir,2002, 18(10):3860-3864.
    64 Chari K., Antalek B., Lin M. Y., Sinha S. K.. The viscosity of polymer-surfactant mixture in water[J]. Journal of Chemical Physics,1994,100(7):5294-5300.
    65 Gao Z., Wasylishen R. E., Kwak J. C. T.. Distribution equilibrium of poly(ethylene oxide) in sodium dodecyl sulfate micellar solution:An NMR paramagnetic relaxation study[J]. Journal of Physical Chemistry,1991,95(1):462-467.
    66 Kumaraswamy G., Sharma K. P., Choudhury C. K., Srivastava S., Davis H., Rajamohanan P. R., et al. Assembly of polyethyleneimine in the hexagonal mesophase of nonionic surfactant:Effect of pH and temperature[J]. The Journal of Physical Chemistry B,2011,115(29):9059-9069.
    67 Gjerde M. I., Nerdal W., Hoiland H.. A noesy NMR study of the interaction between sodium dodecyl sulfate and poly(ethylene oxide)[J]. Journal of Colloid and InterfaceScience,1996, 183(1):285-288.
    68 Gjerde M. I., Nerdal W., Hoiland Harald. Solubilization of 1-butanol in a sodium dodecyl sulfate-poly(ethylene oxide) system by NMR and conductivity at 298.1 and 283.1 K[J]. Colloid and Polymer Science,1998,276(6):503-510.
    69 Xia J., Dubin P. L., Kim Y.. Complex formation between PEO and SDS micelle:light scattering, electrophoresis, and dialysis equilibrium studies[J]. Journal of Physical Chemistry,1992, 96(16):6805-6811.
    70 Baloch M. K., Ahmad F., Rauf A., Durrani G. F.. Effect of polyethylene oxide and sodium chloride over the micellization behavior of sodium dodecyl sulfate[J]. Journal of Applied Polymer Science,2009,114(3):1444-1448.
    71董姝丽,徐桂英.激光光散射和电子自旋共振技术研究十二烷基硫酸钠与聚乙烯吡咯烷酮的相互作用[J].化学学报,2004,62(7):674-679.
    72 Prasad M., Palepu R., Moulik S. P.. Interaction between sodium dodecyl sulfate(SDS) and polyvinylpyrrolidone(PVP) investigated with forward and reverse component addition protocols employing tensiometric, conductometric, microcalorimetric, electrokinetic, and DLS techniques[J]. Colloid and Polymer Science,2006,284(8):871-878.
    73 Bronstein L. M., Platonova O. A., Yakunin A. N., Yanovskaya I. M., Valetsky P. M., Dembo A. T., Makhaeva E. E., Mironov A. V, Khokhlov A. R.. Complexes of polyelectrolyte gels with oppositely charged surfactants:interaction with metal ions and metal nanoparticle formation[J]. Langmuir,1998,14(2):252-259.
    74 Cabane B., Duplessix R.. Organization of surfactant micelles adsorbed on a polymer molecule in water:a neutron scattering study[J]. Journal de Physique,1982,43(10):1529-1542.
    75 Cabane B.. Duplessix R.. Decoration of semidilute polymer solutions with surfactant micelles[J]. Journal de Physique,1987,48(4):651-662.
    76 Rufier C., Collet A., Viguier M., Oberdisse J., Mora S.. SDS interactions with hydrophobically end-capped poly(ethylene oxide) studied by 13C NMR and SANS[J]. Macromolecules,2009, 42(14):5226-5235.
    77 Shirahama K., Tohdo M., Murahashi M.. The interaction between surfactant and polymer as observed by a spin probe method[J]. Journal of Colloid and Interface Science,1982,86(1): 282-283.
    78 Cao M., Hai M.. Investigation on the interaction between sodium dodecyl sulfate and polyethylene glycol by electron spin resonance, ultraviolet spectrum, and viscosity[J]. Journal of Chemical & Engineering Data,2006,51(5):1576-1581.
    79 Wallin T., Linse P.. Monte carlo simulations of polyelectrolytes at charged micelles.2. Effects of linear charge density[J]. Journal of Physical Chemistry,1996,100(45):17873-17880.
    80 Wallin T., Linse P.. Monte carlo simulations of polyelectrolytes at charged micelles.3. Effects of surfactant tail length[J]. Journal of Physical Chemistry B,1997,101(28):5506-5513.
    81苑世领,徐桂英,蔡政亭.表面活性剂与聚合物相互作用的动力学模拟fJ].化学学报,2002,60(4):585-589.
    82纪云,张晓红,郭荣.明胶和阳离子表面活性CTAB的相互作用[J].化学学报,2004,62(4):345-350.
    83 Dai S., Tam K. C..Isothermal titration calorimetry studies of binding interactions between polyethylene glycol and ionic surfactants[J]. The Journal of Physical Chemistry B,2001, 105(44):10759-10763.
    84 Dai S., Tam K. C..Isothermal titration calorimetric studies on the interaction between sodium dodecyl sulfate and polyethylene glycols of different molecular weights and chain architectures[J]. Colloids and Surfaces, A:Physicochemical and Engineering Aspects,2006, 289(1-3):200-206.
    85 Schwuger M. J., Lange H.. Reciprocal action between sodium carboxymethyl cellulose and surfactants[J]. Tenside,1968,5(9-10):257-259.
    86 Inmaculada G.-M., Soraya P., M, Mercedes V.. Interaction between cetyl pyridinium chloride and water-soluble polymers in aqueous solutions[J]. Journal of Colloid and Interface Science, 1997,194(2):356-363.
    87 Arora J. P. S., Arora S. K., Duggal A. K.. Interactions between surfactants and polyvinyl pyrrolidone. An investigation using equilibrium dialysis, viscometric, and pH metric methods[J]. Tenside, Surfactants, Detergents,1998,35(1):24-32.
    88 Esumi K., Masuda A., Otsuka H.. Adsorption of poly(styrenesulfonate) and ionic surfactant from their binary mixtures of alumina[J]. Langmuir,1993,9(1):284-287.
    89 Anghel D. F., Toca-Herrera J. L., Winnik F. M., Rettig W., von Klitzing R.. Steady-state fluorescence investigation of pyrene-labeled PAA in aqueous solution and in the presence of SDS[J]. Langmuir,2002,18(14):5600-5606.
    90 Hansson P.. A fluorescence study of divalent and monovalent cationic surfactants interacting with anionic polyelectrolytes[J]. Langmuir,2001,17(14):4161-4166.
    91 Lee J., Moroi Y.. Investigation of the interaction between SDS and cationic polymers[J]. Langmuir,2004,20(11):4376-4379.
    92 Harada A., Nozakura S.. Formation of organized structures in systems of polyelectrolyte-ionic surfactants[J]. Polymer Bulletin,1984,11(2):175-178.
    93 Saito S.. Adsorption complexes of polymers with wetting agents. II[J]. Kolloid-Zeitschrift,1958, 158:120-130.
    94 Velazquez M. M., Delgado C., Merchan M. D.. Effect of the addition of polyelectrolytes on monolayers of carboxybetaines[J].The Journal of Physical Chemistry B,2008,112(3): 687-693.
    95 Mahajan R. K., Vohra K. K., Shaheen A., Aswal V. K.. Investigations on mixed micelles of binary mixtures of zwitterionic surfactants and triblock polymers:A cyclic voltammetric study[J]. Journal of Colloid and Interface Science,2008,326(1):89-95.
    96 Song S. E., Du N., Hou W. G.. Vesicle stability in aqueous mixtures of zwitterionic/anionic surfactants[J]. Colloid Surface A.2008,312(2-3):104-112.
    97 Nagarajan R.. On the nature of interactions between polymers and surfactants in dilute aqueous solutions[J]. Polymer Preprints,1981,22(2):33-38.
    98 Zhu Q., Qian J. S., Pan H., Tu L., Zhou X. F.. Synergistic manipulation of micro-nanostructures and composition:anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications[J]. Nanotechnology.2011,22(39). Doi 10.1088/0957-4484/22/39/395703.
    99 Yan P., Wang C., Wang S., Bai X., Yuan J., Yan E., et al. Novel preparation of Ag2S nanoparticles embedded in photoluminescent polymer nanofibres[J]. Pigment & Resin Technology,2011,40(1):17-23.
    100 Kim D. H., Li D., Lee J. Y.. Responsive polymer/gold nanoparticle composite thin films fabricated by solvent-induced self-assembly and spin-coating[J]. Journal of Colloid and Interface Science,2011,354(2):585-591.
    101 Zhao F., Xia H. Y., He J. L. Surfactant/polymer complex templated construction of gold nanowires[J]. Journal of Dispersion Science and Technology,2011,32(3):305-309.
    102 Wang C. Y., Wang D. Y., Hu X. Y., Wang G. X.. Interface interaction within nanopores in thin films of an amphiphilic block copolymer and CTAB[J]. Journal of Colloid and Interface Science,2011,354(1):219-225.
    103 Tao C., Zheng S. P., Mohwald H., Li J. B.. CdS crystal growth of lamellar morphology with templates of polyelectrolyte/surfactant complex[J]. Langmuir,2003,19(21):9039-9042.
    104 Liu X., Fu S., Xiao H., Huang C. Preparation and characterization of shuttle-Like a-Fe2O3 nanoparticles by supermolecular template[J]. Journal of Solid State Chemistry,2005,178(9): 2798-2803.
    105 Cao X., Yu F., Li L., Yao Z., Xie Y. Copper nanorod junctions templated by a novel polymer-surfactant aggregate[J]. Journal of Crystal Growth,2003,254(1-2):164-168.
    106 Shi H., Wang X., Zhao N., Qi L., Ma J.. Growth mechanism of penniform BaWO4 nanostructures in catanionic reverse micelles involving polymers[J]. Journal of Physical Chemistry B,2006,110(2):748-753.
    107 Huo L., Chu Y.. Controlled synthesis of PbWO4 crystals via microemulsion-based solvothermal method[J]. Materials Letters,2006,60(21-22):2675-2681.
    108 Huang T., Meng F., Qi L.. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin[J]. Langmuir,2010,26(10): 7582-7589.
    109 Torigoe K., Esumi K.. Formation of nonspherical palladium nanocrystals in SDS/Poly(acrylamide) Gel[J]. Langmuir,1995,11(11):4199-4201.
    110 Leontidis E., Kyprianidou-Leodidou T., Caseri W., Kyriacou K. C..From beads-on-a-string to colloidal aggregation:Novel crystallization phenomena in the PEO-SDS system [J]. Langmuir, 1999,15(10):3381-3385.
    111 Leontidis E., Orphanou M., Kyprianidou-Leodidou T., Krumeich F., Caseri W.. Composite nanotubes formed by self-assembly of PbS nanoparticles[J]. Nano Letters,2003,3(4):569-572.
    112 Zhang D., Qi L., Ma J., Cheng H.. Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions[J]. Advanced Materials,2002,14(20):1499-1502.
    113 Orphanou M., Leontidis E., Kyprianidou-Leodidou T., Koutsoukos P., Kyriacou K. C.. Study of copper sulfide crystallization in PEO-SDS solutions[J]. Langmuir,2004,20(13):5605-5612.
    114 Wei H., Shen Q., Zhao Y., Wang D., Xu D.. Crystallization habit of calcium carbonate in the presence of sodium dodecyl sulfate and/or polypyrrolidone[J]. Journal of Crystal Growth,2004, 260(3-4):511-516.
    115夏咏梅,方云,刘雪锋等.阴离子表面活性剂与非离子水溶性大分子二元体系的临界类胶束聚集数[J].高等学校化学学报,2002,23(10):1911-1914.
    116方云,蔡琨,宗李燕等.水溶性非离子大分子与烷基硫酸钠同系物团簇化的比饱和簇集量[J].高等学校化学学报,2004,25(5):888-891.
    117江明,A.艾森伯格,刘国军等.大分子自组装[M].北京:科学出版社,2006,9.
    118 del Barrio J., Oriol L., Sanchez C., Serrano J. L., Di C. A., Keller P., Li M.. Self-assembly of linear-dendritic diblock copolymers:From nanofibers to polymersomes[J]. Journal of the American Chemical Society,2010,132(11),3762-3769.
    119 Ma L., Eisenberg A.. Relationship between wall thickness and size in block copolymer vesicles[J]. Langmuir,2009,25(24):13730-13736.
    120 Zhang L., Eisenberg A.. Multiple morphologies of "crew-cut" aggregates of polystyrene-b-poly (Acrylic Acid) block copolymers[J]. Science.1995,268 (5218):1728-1731.
    121 Dou H., Jiang M., Peng H., Chen D., Hong Y.. pH-Dependent self-assembly:micellization and micelle-hollow-sphere transition of cellulose-based copolymers[J]. Angewandte Chemie,2003, 42(13):1516-1519.
    122 Shen H., Zhang L., Eisenberg A.. Multiple pH-induced morphological changes in aggregates of polystrene-block-poly (4-vinlpyridine) in DMF/H2O Mixtures[J]. Journal of the American Chemical Society,1999,121(12):2728-2740.
    123 Yu S., Azzam T., Rouiller I., Eisenberg A.. "Breathing" vesicles [J]. Journal of the American Chemical Society,2009,131(30):10557-10566.
    124 Chen D., Jiang M.. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions[J]. Accounts of Chemical Research,2005, 38(6):494-502.
    125 Guo M. Y., Jiang M.. Non-covalently Connected Micelles (NCCMs):the Origins and Development of a New Concept[J]. Soft Matter,2009,5(3):495-500.
    126 Liu S., Zhang G., Jiang M.. Soluble graft-like complexes based on poly (4-vinyl pyridine) and carboxy-terminated polystyrene oligomers due to hydrogen bonding[J]. Polymer,1999,40(19): 5449-5453.
    127 Liu S., Zhu H., Zhao H., Jiang M.. Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-b-poly (methyl methacrylate) and PS (OH) in toluene[J]. Langmuir,2000,16(8):3712-3717.
    128 Wang M., Jiang M., Ning F., Chen D., Liu S., Duan H.. Block-copolymer-free strategy for preparing micelles and hollow spheres:Self-assembly of poly(4vinylpyridine) and modified polystyrene[J]. Macromolecules.2002,35(15),5980-5989.
    129 Zhang Y., Jiang M., Zhao J., Ren X., Chen D., Zhang G. A novel route to thermosensitive polymeric core-shell aggregates and hollow spheres in aqueous media[J]. Advanced Function Materials,2005,15 (4):695-699.
    130 Zhang Y., Jiang M., Zhao J., Wang Z., Dou H., Chen D.. PH-Responsive core-shell particles and hollow spheres attained by macromolecular self-assembly[J]. Langmuir,2005,21(4): 1531-1538.
    131 Xie D., Jiang M., Zhang G., Chen D.. Hydrogen-bonded dendronized polymers and their self-assembly in solution[J]. Chemistry-A European Journal,2007,13(12):3346-3353.
    132 Wang J., Jiang M.. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation[J]. Journal of the American Chemical Society,2006, 128(11):3703-3708.
    133 Zou J., Tao F., Jiang M.. Optical switching of self-assembly and disassembly of noncovalently connected amphiphiles[J]. Langmuir,2007,23(26):12791-12794.
    134 Sun G., Zhang M., He J., Ni P.. Synthesis of amphiphilic cationic copolymers poly[2-(methacryloyloxy)ethyl trimethylammonium chloride-co-stearyl methacrylate] and their self-assembly behavior in water and water-ethanol mixtures[J]. Journal of Polymer Science. Part A:Polymer Chemistry,2009,47(18):4670-4684.
    135 Wu X., Qiao Y., Yang H., Wang J.. Self-assembly of a series of random copolymers bearing amphiphilic side chains[J]. Journal of Colloid and Interface Science,2010,349(2):560-564.
    136 Liu X., Wu J., Kim J.-S., Eisenberg A.. Self-assembly of mixtures of block copolymers of poly(styrene-b-acrylic acid) with random copolymers of poly(styrene-co-methacrylic acid)[J]. Langmuir,2006,22(1):419-424.
    137 Maeda Y., Yamabe M.. A unique phase behavior of random copolymer of N-isopropylacrylamide and N, N-diethylacrylamide in water[J]. Polymer,2009,50(2):519-523.
    138 Ilhan F., Galow T. H., Gray M., Clavier G., Rotello V. M.. Giant vesicle formation through self-assembly of complementary random copolymers[J]. Journal of the American Chemical Society,2000,122(24):5895-5896.
    139 Lutz J.-F., Pfeifer S., Chanana M., Thunemann A. F., Bienert R.. H-bonding-directed self-assembly of synthetic copolymers containing nucleobases:organization and colloidal fusion in a noncompetitive solvent[J]. Langmuir,2006,22(17):7411-7415.
    140 Wang Y., Wang Y., Wu G., Fan Y., Ma J.. pH-Responsive self-assembly and conformational transition of partially propyl-esterified poly(a, (3-L-aspartic acid) as amphiphilic biodegradable polyanion[J]. Colloids and Surfaces B:Biointerfaces,2009,68 (1):13-19.
    141 Lutz J.-F., Pfeifer S., Chanana M., Thunemann A. F., Bienert R.. H-Bonding-Directed Self-Assembly of Synthetic Copolymers Containing Nucleobases:Organization and Colloidal Fusion in a Noncompetitive Solvent. Langmuir 2006,22,7411-7415.
    142 Li Y., Deng Y., Tong X., Wang X.. Formation of photoresponsive uniform colloidal spheres from an amphiphilic azobenzene-containing random copolymer[J]. Macromolecules,2006, 39(3):1108-1115.
    143 Veronica S. M., Fernando C., Carmen P. Self-assembly of physically crosslinked micelles of poly(2-acrylamido-2-methyl-l-propane sulphonicacid-co-isodecyl methacrylate)-copper(Ⅱ) complexes[J]. European Polymer Journal,2008,44(5):1368-1377.
    144 Meristoudi, A., Pispas, S., Vainos N.. Self-assembly in solutions of block and random copolymers during metal manoparticle formation[J]. Journal of Polymer Science:Part B: Polymer Physics,2008,46(14),1515-1524.
    145 Zhang G., Winnik F. M., Wu C.. Structure of a collapsed polymer chain with stickers:A single or multiflower[J]. Physical Review Letters,2003,90(3):035506/1-035506/4.
    146 Zhang G., Li X., Jiang M., Wu C.. Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution[J]. Langmuir, 2000,16(24):9205-9207.
    147 Zhang G., Liu L., Zhao Y., Ning F., Jiang M., Wu C..Self-assembly of carboxylated poly(styrene-b-ethylene-co-butylene-b-styrene) triblock copolymer chains in water via a microphase inversion[J]. Macromolecules,2000,33(17):6340-6343.
    148 Tian F., Yu Y. Y., Wang C. C., Yang S.. Consecutive morphological transitions in nanoaggregates assembled from amphiphilic random copolymer via water-driven micellization and light-triggered dissociation[J]. Macromolecules,2008,41(10):3385-3388.
    149 Yuan X., Jiang M., Zhao H., Wang M., Zhao Y., Wu C..Noncovalently connected polymeric micelles in aqueous medium[J]. Langmuir,2001,17(20):6122-6126.
    150 Guo P., Guan W., Liang L., Yao P.. Self-assembly of pH-sensitive random copolymers: Poly(styrene-co-4-vinylpyridine)[J]. Journal of Colloid and Interface Science,2008,323(2): 229-234.
    151 Liu X. Y., Kim J., Wu J., Eisenberg A.. Bowl-shaped aggregates from the self-assembly of an amphiphilic random copolymer of poly(styrene-co-methacrylic acid)[J]. Macromolecules,2005, 38(16):6749-6751.
    152 Liu X., Jiang M., Yang S., Chen M., Yang C., Wu K.. Micelles and hollow nanospheres based on ε-caprolactone-contaning polymers in aqueous media[J]. Angewandte Chemie,2002, 114(16):2950-2953.
    153 Yan L., Zhang G., Liu G., Ji J., Li W.. Emulsifier-free synthesis and self-assembly of an amphiphilic poly(styrene-co-acrylic acid) copolymer[J]. Journal of Applied Polymer Science, 2006,100(5):3718-3726.
    154 Taillefer J., Jones M. C., Brasseur N., Van Lier J. E., Leroux J. C..Preparation and characterization of pH-responsive polymeric micelles for the delivery of photosensitizing anticancer drugs[J]. Journal of Pharmaceutical Sciences,2000,89(1):52-62.
    155 Yoshida E., Nagakubo A.. Convenient synthesis of microspheres by self-assembly of random copolymers in supercritical carbon dioxide[J]. Colloid and Polymer Science,2007,285(4): 441-447.
    156 Chen Q., Liu X., Xu K., Song C., Zhang W., Wang P.. Phase behavior and self-assembly of poly [N-vinylformamide-co-(acrylic acid)] copolymers under highly acidic conditions[J]. Journal of Applied Polymer Science,2008,109(5):2802-2807.
    157 Hsu C.-H., Kuo S.-W., Chen J.-K., Ko F.-H., Liao C.-S., Chang F.-C.. Self-assembly behavior of A-B diblock and C-D random copolymer mixtures in the solution state through mediated hydrogen bonding[J]. Langmuir,2008,24(15),7727-7734.
    158 Burke S. E., Eisenberg A.. Effect of sodium dodecly sulfate on the morphology of polystyrene-b-poly(acrylic acid) aggregates in dioxane-water mixture[J]. Langmuir,2001. 17(26):8341-8347.
    159 Ganguly R., Aswal V. K., Hassan P. A., Gopalakrishnan I. K., Kulshreshtha S. K.. Effect of SDS on the self-assembly behavior of the PEO-PPO-PEO triblock copolymer (EO)2o(PO)7o(EO)2o[J]. Journal of Physical Chemistry B,2006,110(20):9843-9849.
    160 Grant J., Lee H., Liu R. C. W., Alien C. Intermolecular interactions and morphology of aqueous polymer/Surfactant mixtures containing cationic chitosan and nonionic sorbitan esters[J]. Biomacromolecules,2008,9(8):2146-2152.
    161 Nisha C. K., Basak P., Manorama S. V., Maiti S., Jayachandran K. N.. Water-soluble complexes from random copolymer and oppositely charged surfactant.1. Complexes of poly(ethylene glycol)-based cationic random copolymer and sodium dodecyl sulfate[J]. Langmuir,2003,19(7):2947-2955.
    162 Yoshida E.. Self-assembly of poly(allylamine hydrochloride) through electrostatic interaction with sodium dodecyl sulfate[J]. Colloid and Polymer Science,2010,288(12-13):1321-1325.
    163 Kabanov A.V., Bronich T. K., Yu K., Eisenberg A.. Spontaneous formation of vesicles from complexes of block ionomers and surfactants[J]. Journal of the American Chemical Society, 1998,120(38):9941-9942.
    164 Bronich T. K., Ouyang M., Kabanov A., Eisenberg A.. Synthesis of vesicles on polymer template[J]. Journal of the American Chemical Society,2002,124(40):11872-11873.
    165 Sun Z. W., Chen X., Wang L. Y., Zhang G. D., Jing B.. Synthesis of gold nanoplates in lamellar liquid crystal[J]. Colloids and Surfaces, A:Physicochemical and Engineering Aspects,2008, 326(1-2):23-28.
    1 Jones M. N.. The interaction of sodium dodecyl sulfate with poly(ethylene oxide)[J]. Journal of Colloid and Interface Science,1967,23(1):36-42.
    2 Li F., Li G., Xu G., Wang H., Wang M.. Studies on the interactions between anionic surfactants and polyvinylpyrrolidone. Surface tension measurement, 13C NMR, and ESR[J]. Colloid and Polymer Science,1998,276(1):1-10.
    3 Chari K.. The structure of the PVP-SDS complex in water[J]. Journal of Colloid and Interface Science,1992,151(1):294-296.
    4钟雷,丁悠丹.表面活性剂及其助剂分析[M].杭州:浙江科学技术出版社,1986.
    5 方云,刘雪锋,夏咏梅,杨扬,蔡琨,徐廷穆,赵宪英.稳态荧光探针法测定临界胶束聚集数[J].物理化学学报,2001,17(09):828-831.
    6 Vijayendran B. R.. Purity of commercial sodium lauryl sulfate[J]. Journal of Colloid and Interface Science,1977,60(2):418-419.
    7 Goddard E. D.. Polymer-surfactant interaction. Part Ⅰ. Uncharged water-soluble polymers and charged surfactants[J]. Colloids Surf.,1986,19(2-3):255-300.
    8 Chari K., Lenhart W. C Effect of polyvinylpyrrolidone on the self-assembly of model hydrocarbon amphiphiles[J]. Journal of Colloid and Interface Science,1990,137(1):204-216.
    9 Murata M., Arai H.. The interaction between polymer and surfactant:The effect of temperature and added salt on the interaction between polyvinylpyrrolidone and sodium dodecyl sulfate[J]. Journal of Colloid and Interface Science,1973,44(3):475-480.
    10 Lange H.. Interactions of sodium alkyl sulfate and poly(vinylpyrrolidinone) in aqueous solutions[J]. Kolloid-Z. Z. Polym.,1971,243(2):101-109.
    11方云,吴云兰,丁远飞,杨扬.AS-PEG及AS-PVP的γ-lgc曲线的双拐点特征[J].精细化工,2000,(12):693-695,703.
    12夏咏梅,方云,杨扬,吴云兰AS-PEG及AS-PVP体系的聚合物相对分子质量闽值及表面活性剂临界浓度[J].精细化工,2001,(10):572-575.
    13宗李燕,方云,夏咏梅,刘雪锋,陶可鑫.十二烷基聚氧乙烯(n)醚与牛血清白蛋白的团簇化热力学模型[J].化学学报,2004,(23):2292-2296.
    14任月萍,徐程程,方云.十二烷基硫酸钠与羟乙基纤维素的相互作用[J].化学研究与应用,2011,23(05):587-591.
    15 Ren Y., Liu J., Feng F., Chen T., Fang Y.. Room Temperature Synthesis of Gold Nanokites in Polyvinyl Alcohol-Sodium Dodecyl Sulfate Aggregations Aqueous Solution[J]. Chinese Journal of Chemistry,2011,29(9):1955-1960.
    16 Cabane B., Duplessix R.. Organization of surfactant micelles adsorbed on a polymer molecule in water:a neutron scattering study[J]. Journal de Physique,1982,43(10):1529-1542.
    17 Cabane B.. Duplessix R.. Decoration of semidilute polymer solutions with surfactant micelles[J]. Journal de Physique,1987,48(4):651-662.
    18 Dhara D., Shah D. O.. Effect of poly(ethylene glycol)s on micellar stability of sodium dodecyl sulfate[J]. Langmuir,2001,17(23):7233-7236.
    19 Smitter L. M., Guedez J. F., Muller A. J., Saez A. E.. Interactions between poly(ethylene oxide) and Sodium dodecyl sulfate in elongational flows[J]. Journal of Colloid and Interface Science,2001, 236(2):343-353.
    20 Minatti E., Zanette D.. Salt effects on the interaction of poly(ethylene oxide) and sodium dodecyl sulfate measured by conductivity[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,113(3):237-246.
    21 Zanette D., Lima C. F., Ruzza A. A., Belarmino A. T. N., de F. Santos S., Frescura V. L. A., Marconi D. M. O., Froehner S. J.. Interactions of anionic surfactants with poly(ethylene oxide) and bovine serum albumin polymers:effect of the counterion hydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1999,147(1-2):89-105.
    22 Zanette D., Ruzza A. A., Froehner S. J., Minatti E.. Polymer-surfactant interactions demonstrated by a kinetic probe:degree of ionization[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,108(1):91-100.
    23郝京诚,梁芳珍,刘树海,任建成,鲁绍芬,李干佐,汪汉卿.十二烷基甜菜碱与聚乙烯吡咯烷酮相互作用的研究[J].高等学校化学学报,1998,19(01):111-115.
    24 Schwuger M. J.. Mechanism of interaction between ionic surfactants and polyglycol ethers in water[J]. Journal of Colloid and Interface Science,1973,43(2):491-498.
    25 Arai H., Murata M., Shinoda K.. Interaction between polar polymer and surfactant. Composition of the complex between poly(vinylpyrrolidinone) and sodium alkyl sulfate as revealed by surface tension, dialysis, and solubilization[J]. Journal of Colloid and Interface Science,1971,37(1): 223-227.
    26 Zana R., Lang J., Lianos P.. Fluorescence probe studies of the aggregation state of sodium dodecylsulfate in aqueous solutions of polyoxyethyleneglycol and poly-N-vinylpyrrolidone[J]. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.),1982,23(1):39-40.
    27 Zana R., Lianos P., Lang J.. Fluorescence probe studies of the interactions between poly(oxyethylene) and surfactant micelles and microemulsion droplets in aqueous solutions[J]. The Journal of Physical Chemistry,1985,89(1):41-44.
    28 Fishman M. L., Eirich F. R.. Interactions of aqueous poly(N-vinylpyrrolidone) with sodium dodecyl sulfate. I. Equilibrium dialysis measurements[J]. The Journal of Physical Chemistry,1971,75(20): 3135-3140.
    29 Jones M. N.. Dye solubilization by a polymer-surfactant complex[J]. Journal of Colloid and Interface Science,1968,26(4):532-533.
    30 Zana R., Lianos P., Lang J.. Fluorescence probe studies of the interactions between poly(oxyethylene) and surfactant micelles and microemulsion droplets in aqueous solutions[J]. The Journal of Physical Chemistry,1985,89(1):41-44.
    31 Turro N. J., Baretz B. H., Kuo P. L.. Photoluminescence probes for the investigation of interactions between sodium dodecylsulfate and water-soluble polymers[J]. Macromolecules,1984,17(7): 1321-1324.
    32方云,黄盛友,陈方博,付珊珊,何沫沙,任国强.碱金属硫酸盐-SDS-PEG三维浓度变化对SDS的束缚胶束聚集数的影响[J].化学学报,2006,64:1587-1592.
    33赵国玺,朱步瑶.表面活性剂作用原理[M].北京:中国轻工业出版社,2003:263-270.
    34 Robert C. W.. CRC Handbook of Chemistry and Physics[M]. Ohio:CRC Press Inc,1978:F-11.
    35 Ross Philip D., Sabramanian S.. Thermodynamics of protein association reactions:forces contributiong to stability[J]. Biochemistry,1981,20(11):3096-3102.
    36 Rosen M. J.. Surfactants and Interfacial Phenomena(3rd ed) [M]. New York:John Wiley & Sons, 2004:122-137.
    37方云,刘雪锋,夏咏梅,宗李燕.十二烷基硫酸钠-水溶性非离子大分子间团簇化作用部位的1H和13C及2D NMR表征[J].高等学校化学学报,2006,27:731-734.
    38 Xia J., Dubin P. L., Kim Y.. Complex formation between poly(oxyethylene) and sodium dodecyl sulfate micelles:light scattering, electrophoresis, and dialysis equilibrium studies[J]. The Journal of Physical Chemistry,1992,96(16):6805-6811.
    39 Stoll S., Buffle J.. Computer Simulation of Bridging Flocculation Processes:The Role of Colloid to Polymer Concentration Ratio on Aggregation Kinetics[J]. Journal of Colloid and Interface Science, 1996,180(2):548-563.
    1 Sun X. P., Dong S. J., Wang E.. Large-scale synthesis of micrometer-scale single-crystalline Au plates of nanometer thickness by a wet-chemical route[J]. Angewandte Chemie, International Edition, 2004,43(46):6360-6363.
    2 Hua X. G., Dong S. J.. Metal nanomaterials and carbon nanotubes—synthesis, functionalization and potential applications towards electrochemistry[J]. Journal of Materials Chemistry,2008,18(12): 1279-1295.
    3 Huang Y. Z., Wang W. Z., Liang H. Y., Xu H. X.. Surfactant-promoted reductive synthesis of shape-controlled gold nanostructures[J]. Crystal Growth & Design,2009,9(2):858-862.
    4 Chen C. C., Hsu C. H., Kuo P. L.. Effects of alkylated polyethylenimines on the formation of gold nanoplates[J]. Langmuir,2007,23(2):6801-6806.
    5 Pardinas B. I., Hoppe C. E., Pineiro R. Y., Lopez Q., Arturo M.. Formation of gold branched plates in diluted solutions of poly(vinylpyrrolidone) and their use for the fabrication of near-infrared-absorbing films and coatings[J]. Langmuir,2008,24(3):983-990.
    6 Tan Y. N., Lee J. Y., Wang D. I.. Aspartic acid synthesis of crystalline gold nanoplates, nanoribbons, and nanowires in aqueous solutions[J]. Journal of Physical Chemistry C,2008,112(14):5463-5470.
    7 Lim B., Camargo P. H. C., Xia Y. N.. Mechanistic study of the synthesis of Au nanotadpoles, nanokites, and microplates by reducing aqueous HAuCl4 with poly(vinyl pyrrolidone)[J]. Langmuir, 2008,24(18):10437-10442.
    8 Leontidis E., Kyprianidoum L. T., Caseri W., Kyriacou K. C. From beads-on-a-string to colloidal aggregation:novel crystallization phenomena in the PEO-SDS system[J]. Langmuir,1999,15(10): 3381-3385.
    9 Leontidis E., Orphanou M., Kyprianidou L. T., Frank K., Walter C..Composite nanotubes formed by self-assembly of PbS nanoparticles[J]. Nano Letters,2003,3(4):569-572.
    10 Orphanou M., Leontidis E., Kyprianidou L. T., Koutsoukos P., Kyriacou K. C..Study of copper sulfide crystallization in PEO-SDS solutions[J]. Langmuir,2004,20(13):5605-5612.
    11 Huang T., Meng F., Qi L. M.. Controlled synthesis of dendritic gold nanostructures assisted by supramolecular complexes of surfactant with cyclodextrin[J]. Langmuir,2010,26(10):7582-7589.
    12 Shen Q., Wei H., Wang L. C., Zhou Y., Zhao Y., Zhang Z. Q., Wang D. J., Xu G. Y, Xu D. F.. Crystallization and aggregation behaviors of calcium carbonate in the presence of poly(vinylpyrrolidone) and sodium dodecyl sulfate[J]. Journal of Physical Chemistry B,2005, 109(39):18342-18347.
    13 Esumi K., litaka M., Torigoe K.. Kinetics of simultaneous adsorption of poly(vinylpyrrolidone) and sodium dodecyl sulfate on alumina particles[J]. Journal of Colloid and Interface Science,2000, 232(1):71-75.
    14 Cao X. B., Yu F., Li L. Y., Yao Z. Y., Xie Y. Copper nanorod junctions templated by a novel polymer-surfactant aggregate[J]. Journal of Crystal Growth,2003,254(1-2):164-168.
    15 Ren Y. P., Xu C. C, Wu M. J., Niu M. Y., Fang Y. Controlled synthesis of gold nanoflowers assisted by poly(vinyl pyrrolidone)-sodium dodecyl sulfate aggregations[J]. Colloids and Surfaces, A:Physicochemical and Engineering Aspects,2011,380(1-3):222-228.
    16 Bakshi M. S., Possmayer F., Petersen N. O.. Aqueous-phase room-temperature synthesis of gold nanoribbons:soft template effect of a gemini surfactant[J]. Journal of Physical Chemistry C,2008. 112(22):8259-8265.
    17 Kuo C. H., Chiang T. F., Chen L. J., Huang M. H.. Synthesis of highly faceted pentagonal- and hexagonal-shaped gold nanoparticles with controlled sizes by sodium dodecyl sulfate[J]. Langmuir. 2004,20(18):7820-7824.
    18 Zhou M., Chen S. H., Zhao S. Y. Synthesis of icosahedra gold nanocrystals:a thermal process strategy[J]. Journal of Physical Chemistry B,2006,110(10):4510-4513.
    19 Cosgrove T., Mears S. J., Obey T., Thompson L., Wesley R. D.. Polymer, particle, surfactant interactions[J]. Colloids Surf, A:Physicochemical and Engineering Aspects,1999, 149(1-3):329-338.
    20阮小云,方云,樊晔.SDS-PVP水溶液中超细镍粉的制备[J].物理化学学报,2008,24(8):1513-1518.
    21 Mafune F, Kohno J., Takeda Y., Kondow T., Sawabe H.. Formation and size control of silver nanoparticles by laser ablation in aqueous solution[J]. Journal of Physical Chemistry B,2000, 104(39):9111-9117.
    22 Soejima T., Kimizuka N.. One-pot room-temperature synthesis of single-crystalline gold nanocorolla in water[J]. Journal of the American Chemical Society,2009,131(40):14407-14412.
    23 Jiang W. H., Han S. J.. Viscosity of nonionic polymer/anionic surfactant complexes in water[J]. Journal of Colloid and Interface Science,2000,229(1):1-5.
    24 Golan Y, Margulis L., Rubinstein I., Hodes G. Epitaxial electrodeposition of cadmium selenide nanocrystals on gold[J]. Langmuir,1992,8(3):749-752.
    25 Leng M., Liu M. Z., Zhang Y.B., Wang Z. Q., Yu C., Yang X. G., Zhang H.J., Wang C.. Polyhedral 50-facet Cu2O microcrystals partially enclosed by{311} high-index planes:synthesis and enhanced catalytic CO oxidation activity [J]. Journal of the American Chemical Society,2010,132(48): 17084-17087.
    26 Hung L. I., Tsung C. K., Huang W. Y. and Yang P. D.. Room-temperature formation of hollow Cu2O nanoparticles[J]. Advanced Materials,2010,22(17):1910-1914.
    27 Zhang H. G., Zhu Q. S., Zhang Y., Wang Y., Zhao L. and Yu B.. One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties[J]. Advanced Functional Materials,2007,17(15):2766-2771.
    28 Zhang J. T., Liu J. F., Peng Q., Wang X., and Li Y. D.. Nearly monodisperse Cu2O and CuO nanospheres:preparation and applications for sensitive gas sensors[J]. Chemistry of Materials,2006, 18(4):867-871.
    29 Li X. D., Gao H. S., Murphy C. J., Gou L.F., Nanoindentation of Cu2O nanocubes[J]. Nano Letter, 2004,4(10):1903-1907.
    30 Yu H. G., Yu J. G., Liu S. W., Mann S.. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres[J]. Chemistry of Materials,2007,19(17):4327-4334.
    31 Poizot P., Laruelle S., Grugeon S., Dupont L., Tarasoon. J. M.. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature,2000,407(6803):496-499.
    32 Liu W. J., Chen G. H., He G. H., Zhang W.. Synthesis of starfish-like Cu2O nanocrystals through y-irradiation and their application in lithium-ion batteries[J]. Journal of Nanoparticle Research,2011, 13(7):2705-2713.
    33孙都,殷鹏刚,郭林.纳米多级结构枣核型多孔氧化亚铜的合成及拉曼性质[J].物理化学学报,2011,27(6):1543-1550.
    34 Shi J., Li J., Huang X. J. and Tan Y. W.. Synthesis and enhanced photocatalytic activity of regularly shaped Cu2O nanowire polyhedra[J]. Nano Research,2011,4(5):448-459.
    35 Singh D. P., Neti N. R., Sinha A. S. K., Srivastava O. N.. Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper[J]. Journal of Physical Chemistry C,2007,111(4):1638-1645.
    36 Gou L. F., Murphy C. J.. Solution-phase synthesis of Cu2O nanocubes[J]. Nano Letter,2003,3(2): 231-234.
    37 Luo Y. S., Li S. Q., Ren Q. F., Liu J. P., Xing L. L., Wang Y., Yu Y., Jia Z. J., and Li J. L.. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route[J]. Crystal Growth & Design,2007,7(1):87-92.
    38 Choon H. B., Fan W. Y. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth[J]. Journal of Physical Chemistry B,2006,110(42):20801-20807.
    39 Chang Y., Teo J. J., Zeng H. C. Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres [J]. Langmuir,2005,21(3): 1074-1079.
    40 Liu H. R., Miao W. F., Yang S., Zhang Z. M. and Chen J. F.. Controlled synthesis of different shapes of Cu2O via γ-irradiation[J]. Crystal Growth & Design,2009,9(4):1733-1740.
    41 Xu H. L., Wang W. Z.. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall[J], Angewandte Chemie International Edition,2007,46(9):1489-1492.
    42 Hai Z. B., Zhu C. H., Huang J. L., Liu H. R., Chen J. F.. Controllable synthesis of CuO nanowires and CU2O crystal with shape evolution via y-irradiation[J]. Inorganic Chemistry,2010,49(16): 7217-7219.
    43 Kuo C. H., Huang M. H.. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching[J]. Journal of the American Chemical Society, 2008,130(38):12815-12820.
    44 Li J., Shi Y., Cai Q., Sun Q. Y., Li H. D., Chen X. H., Wang X, P., Yan Y. J., Vrieling E. G.. Patterning of nanostructured cuprous oxide by surfactant-assisted electrochemical deposition[J]. Crystal Growth & Design,2008,8(8):2652-2659.
    45 Sui Y. M., Fu W. Y., Zeng Y., Yang H. B., Zhang Y. Y, Chen H., Li Y. X., Li M. H., Zou G. T.. Synthesis of Cu2O nanoframes and nanocages by selective oxidative etching at room temperature[J]. Angewandte Chemie, International Edition,2010,49(25):4282-4285.
    46 Sui Y. M., Fu W. Y., Yang H. B., Zeng Y., Zhang Y. Y., Zhao Q., Li Y. G., Zhou X. M., Leng Y., Li M. H., Zou G. T.. Low temperature synthesisi of Cu2O crystals:shape evolution and growth mechanism[J]. Crystal Growth & Design,2010,10(1):99-108.
    47 Park J., Kim J., Kwon H., Song H.. Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials[J]. Advanced Materials,2009,21(7):803-807.
    48 Zhu H. T., Wang J. X., Xu G. Y. Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus[J]. Crystal Growth & Design,2009,9(1):633-638.
    49 Xu Y. Y, Chen D. R., Jiao X. L., Xue K. Y. Nanosized Cu2O/PEG400 composite hollow spheres with mesoporous shells[J]. Journal of Physical Chemistry C,2007,111(44):16284-16289.
    50 Xu Y. Y, Jiao X. L., Chen D. R.. PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes[J]. Journal of Physical Chemistry C,2008,112(43):16769-16773.
    51 Gao J. N., Li Q. S., Zhao H. B., Li L. S., Liu C. L., Gong Q. H., Qi L. M.. One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties[J]. Chemistry of Materials,2008,20(19):6263-6269.
    52胡瑾,方云,王婷,任月萍,陈方博,石茵.以SDS-PVP项链状软团簇为模板简易一锅法合成Cu20中空亚微球[J].化学学报,2009,67(14):1591-1596.
    53 Hao E., Bailey R. C., Schatz G. C., Hupp J. T., Li S. Y. Synthesis and optical properties of "branched" gold nanocrystals[J]. Nano Letters,2004,4(2):327-330.
    54 Wang C., Hu Y. J., Lieber C. M., Sun S. H.. Ultrathin Au nanowires and their transport properties[J]. Journal of the American Chemical Society,2008,130(28):8902-8903.
    55 Cobley C. M., Campbell D. J., Xia Y. N.. Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium[J]. Advanced Materials,2008,20(4):748-752.
    56 Zhao W.. Chiuman W. L., Jeffrey C. F., McManus S. A., Chen W., Cui Y. G., Pelton R., Brook M. A., Li Y. F.. DNA aptamer folding on gold nanoparticles:from colloid chemistry to biosensors[J]. Journal of the American Chemical Society,2008,130(11):3610-3618.
    57 Kim H. S., Lee S. J., Kim N. H., Yoon J. K., Park H. K., Kim K.. Adsorption characteristics of 1,4-phenylene diisocyanide on gold nanoparticles:infrared and raman spectroscopy study[J]. Langmuir,2003,19(17):6701-6710.
    58 Daniel M. C., Astruc D.. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews,2004,104(1):293-346.
    59 Jain P. K., Lee K. S., ElSayed I. H., ElSayed M. A.. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition:applications in biological imaging and biomedicine[J]. Journal of Physical Chemistry B,2006,110(14):7238-7248.
    60 Wang L. Y., Chen X,, Chai Y. C., Hao J. C..Controlled formation of gold nanoplates and nanobelts in lyotropic liquid crystal phases with imidazolium cations[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects,2007,293(1-3):95-100.
    61 Wu H., Chu H., Kuo T. J., Kuo C. L., Huang M. H.. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid[J]. Chemistry of Materials,2005,17(25):6447-6451.
    62 Kim F., Sohn K., Wu J. S., Huang J. X.. Chemical synthesis of gold nanowires in acidic solutions[J]. Journal of the American Chemical Society,2008,130(44):14442-14443.
    63 Ren J. T., Tilley R. D.. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes[J]. Journal of the American Chemical Society,2007,129(11):3287-3291.
    64 Li C. C, Shuford K. L., Chen M. H., Lee E. J., Cho S. O.. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties[J]. ACS Nano,2008,2(9):1760-1769.
    65 Stoll S., Buffle J.. Computer simulation of bridging flocculation processes:the role of colloid to polymer concentration ratio on aggregation kinetics[J]. Journal of Colloid and Interface Science, 1996,180(2):548-563.
    66 Bakshi M. S., Sachar S., Kaur G., Bhandari P., Kaur G., Biesinger M. C., Possmayer F., Petersen N. O.. Dependence of crystal growth of gold nanoparticles on the capping behavior of surfactant at ambient conditions[J]. Crystal Growth & Design,2008,8(5):1713-1719.
    67 Kan C. X., Zhu X. G., Wang G. H.. Single-crystalline gold microplates:synthesis, characterization, and thermal stability[J]. Journal of Physical Chemistry B,2006,110(10):4651-4656.
    68 Li C. C., Cai W. P., Cao B. Q., Sun F. Q., Li Y., Kan C. X., Zhang L. D.. Mass synthesis of large, single-crystal Au nanosheets based on a polyol process[J]. Advanced Functional Materials,2006, 16(1):83-90.
    69 Kuo C. H., Huang M. H.. Synthesis of branched gold nanocrystals by a seeding growth approach[J]. Langmuir,2005,21(5):2012-2016.
    70 Biggs S., Mulvaney P., Zukoski C. F., Grieser F. J.. Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy[J]. Journal of the American Chemical Society,1994, 116(20):9150-9157.
    71王纯荣,方云,冯杰文.以SDS-PEG团簇为软模板在温和条件下合成金纳米环[J].化学学报,2007,65(12):1177-1180.
    72 Kvitek L., Panacek A., Soukupova J., Kolar, M., Vecerova R., Prucek R., Holecova M., Zboril R.. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs)[J]. Journal of Physical Chemistry C,2008,112(15):5825-5834.
    73 Sun Z. W., Chen X., Wang L. Y., Zhang G. D., Jing B.. Synthesis of gold nanoplates in lamellar liquid crystal[J]. Colloids and Surfaces, A:Physicochemical and Engineering Aspects,2008, 326(1-2):23-28.
    74 Jin R., Cao Y., Mirkin C. A., Kelly K. L., Schatz G. C., Zheng J. G.. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science,2001,294(5548):1901-1903.
    75 Maier S. A., Brongersma M. L., Kik P. G., Meltzer S., Requicha A. G., Atwater H. A.. Plasmonics-a route to nanoscale optical devices[J]. Advanced Materials,2001,13(19):1501-1505.
    76 Ganeev R. A., Baba M., Ryasnyansky A. I., Suzuki M., Kuroda H.. Characterization of optical and nonlinear optical properties of silver nanoparticles prepared by laser ablation in various liquids[J]. Optics Communications,2004,240, (15):437-448
    77 Andreasen A., Lynggaard H., Stegelmann C., Stoltze P. A.. Microkinetic model of the methanol oxidation over silver[J]. Surface Science,2003,544(1):5-23.
    78 Wang X. W., Yuan Z. H.. Electronic transport behavior of diameter-graded Ag nanowires[J]. Physics Letters A,2010,374(22):2267-2269.
    79 Miyatake T., Shiraishi T.. Optical waveguide device, manufacturing method therefor, optical modulator, polarization mode dispersion compensator, and optical switch[P]. US:2010195953(A1), 2010.
    80 Bryce M. R., Johnston B., Kataky R., Toth K.. Ionophores based on 1,3-dithiole-2-thione-4,5-dithiolate (DMIT) as potentiometric silver sensors[J]. Analyst,2000,125(5):861-866.
    81 Xin R. L., Ren F. Z., Leng Y..Synthesis and characterization of nano-crystalline calcium phosphates with EDTA-assisted hydrothermal method[J]. Materials & Design,2010,31(4):1691-1694.
    82 Sun Y. G., Gates B., Mayers B., Xia Y. N.. Crystalline silver nanowires by soft solution processing^]. Nano Letters,2002,2(2):165-168.
    83 Gao F., Lu Q. Y., Komarneni S.. Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions[J]. Chemistry of Materials,2005,17(4):856-860.
    84 Yin H. B., Yamamoto T., Wada Y. Y, Yanagida S.. Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation[J]. Materials Chemistry and Physics,2004,83(1): 66-70.
    85 Cherneva S., Iankov R., Stoychev D.. Characterisation of mechanical properties of electrochemically deposited thin silver layers[J]. Transactions of the Institute of Metal Finishing,2010,88(4): 209-214.
    86 Salabat A.. Prediction of silver nanoparticles size synthesized in microemulsion system[J]. Russian Journal of Physical Chemistry A,2010,84(7):1255-1256.
    87 Boies A. M., Lei P. Y., Calder S., Girshick S. L. Gas-phase production of gold-decorated silica nanoparticles[J]. Nanotechnology,2011,22(31):315603/1-315603/8.
    88 Chen S. H., Fan Z. Y., Carroll D. L.. Silver nanodisks:synthesis, characterization, and self-assembly[J]. Journal of Physical Chemistry B,2002,106(42):10777-10781.
    89 Chen S. H., Carroll D. L.. Synthesis and characterization of truncated triangular silver nanoplates[J]. Nano Letters,2002,2(9):1003-1007.
    90 Chen S. H., Carroll D. L.. Silver nanoplates:size control in two dimensions and formation mechanisms[J]. J. Phys. Chem. B,2004,108(18):5500-5506.
    91 Jiang L. P., Xu S., Zhu J. M., Zhang J. R., Zhu J. J., Chen H. Y. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings[J]. Inorganic Chemistry,2004, 43(19):5877-5883.
    92 Jiang X. C., Zeng Q. H., Yu A. B.. A self-seeding coreduction method for shape control of silver nanoplates[J]. Nanotechnology,2006,17(19):4929-4935
    93 Murphy C. J., Jana N. R.. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Advanced Materials,2002,14(1):80-82.
    94 Slawinski G. W., Zamborini F. P.. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and Core/Shell structures by galvanic exchange directly on surfaces[J]. Langmuir,2007,23(20):10357-10365.
    95 Sun Y. G., Mayers B., Herricks T., Xia Y. N.. Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence[J]. Nano Letters,2003,3(7):955-960.
    96易早,李恺,牛高,罗江山,陈善俊,易有根,唐永建.聚乙烯吡咯烷酮相对分子质量对银纳米 结构的影响[J].强激光与粒子束,2010,10:2317-2423.
    97 Chen Z. T., Ga L.. A facile and novel way for the synthesis of nearly monodisperse silver nanoparticles[J]. Materials Research Bulletin,2007,42(9):1657-1661.
    98 Xu D., Gu J. J., Wang W. N., Yu X. H., Xi K., Jia X. D.. Development of chitosan-coated gold nanoflowers as SERS-active probes[J]. Nanotechnology,2010,21(37):375101/1-375101/8.
    99 Yuan H., Ma Wanhong, Chen Chuncheng, Zhao Jincai, Liu Jiangwen, Zhu Huaiyong, Gao Xueping. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions[J]. Chemistry of Materials,2007,19(7):1592-1600.
    100 Liu M. Z., Guyot S. P.. Mechanism of silver (I)-assisted growth of gold nanorods and bipyramidfJ]. Journal of Physical Chemistry B,2005,109(47):22192-22200.
    101 Kou X. S., Zhang S. Z., Tsung C., Yeung M., Shi Q., Stucky G. D., Sun L. D., Wang J. F., Yan C. H.. Growth of gold nanorods and bipyramids using CTEAB surfactant[J]. Journal of Physical Chemistry B,2006,110(33):16377-16383.
    102 Khoury C. G., VoDinh T.. Gold nanostars for surface-enhanced Raman scattering:synthesis, characterization and optimization[J]. Journal of Physical Chemistry C,2008,112(48):18849-18859.
    103 Wu H., Chen C., Huang M. H.. Seed-mediated synthesis of branched gold nanocrystals derived from the side growth of pentagonal bipyramids and the formation of gold nanostars[J]. Chemistry of Materials,2009,21(1):110-114.
    104 Liu F. K., Chang Y. C., Ko F. H., Chu T. C..Microwave rapid heating for the synthesis of gold nanorods[J]. Materials Letters,2004,58(3-4):373-377.
    105 Hu X. L., Yu J. C. High-yield synthesis of nickel and nickel phosphide nanowires via microwave-assisted processes[J]. Chemistry of Materials,2008,20(21):6743-6749.
    106 Sun X. P., Dong S. J., Wang E.. High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process[J]. Langmuir,2005,21(10):4710-4712.
    107 Chen H. J., Kou X. S., Yang Z., Ni W. H., Wang J. F.. Shape- and size-dependent refractive index sensitivity of gold nanoparticles[J]. Langmuir,2008,24(10):5233-5237.
    108 Fang Y, Ren Y. P., Jiang M.. Co-effect of soft template and microwawe irradiation on morphological control of gold nanobranches[J]. Colloid and Polymer Science,2011:DOI: 10.1007/s00396-011-2493-x.
    109王纯荣,方云,李波.在SDS/PVP团簇软模板中自组装多脚状金纳米粒子[J].物理化学学报,2008,24(1):183-186.
    110 Krishnakumar T., Jayaprakash R., Parthibavarman M., Phani A. R., Singh V. N, Mehta B. R.. Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures[J]. Materials Letters,2009,63(11):242-245.
    111 Mohanty A., Garg N., Jin R. C. A universal approach to the synthesis of noble metal nanodendrites and their catalytic properties[J]. Angewandte Chemie, International Edition,2010,49(29): 4962-4966.
    112 Kou X. S., Sun Z. H., Yang Z., Chen H. J., Wang J. F.. Curvature-directed assembly of gold nanocubes, nanobranches, and nanospheres[J]. Langmuir,2009,25(3):1692-1698.
    113 Joseph D., Geckeler K. E.. Surfactant-directed multiple anisotropic gold nanostructures:synthesis and surface-enhanced Raman scattering[J]. Langmuir,2009,25(22):13224-13231.
    114 Zhao L. L., Ji X. H., Sun X. J., Li J., Yang W. S., Peng X. G. Formation and stability of gold nanoflowers by the seeding approach:the effect of intraparticle ripening[J]. Journal of Physical Chemistry C,2009,113(38):16645-16651.
    115 Jena B. K., Raj C. R.. Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity[J]. Chemistry of Materials,2008,20(11):3546-3548.
    116 Jena B. K., Raj C. R.. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen[J]. Langmuir,2007,23(7): 4064-4070.
    117 Xie J. P., Zhang Q. B., Lee J. Y., Wang D. I. C..The synthesis of SERS-active gold nanoflower tags for in vivo applications[J]. ACS Nano,2008,2(12):2473-2480.
    118 Narayanaswamy A., Xu H. F., Pradhan N., Peng X. G. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection[J]. Angewandte Chemie, International Edition,2006,45 (32):5361-5364.
    119 Chen S. H., Wang Z. L., Ballato J., Foulger S. H, Carroll D. L. Monopod, bipod, tripod, and tetrapod gold nanocrystals[J]. Journal of the American Chemical Society,2003,125(52): 16186-16187.
    120 Wu H. Y., Liu M., Huang M. H.. Direct synthesis of branched gold nanocrystals and their transformation into spherical nanoparticles[J]. Physical Chemistry B,2006,110(39):19291-19294.
    121 Lee S., Mayer K. M., Hafner J. H.. Improved localized surface plasmon resonance immunoassay with gold bipyramid substrates[J], Analytical Chemistry,2009,81(11):4450-4455.
    122 Sherry L. J., Chang S. H., Schatz G. C., Van D. R. P., Wiley B. J., Xia Y. N.. Localized surface plasmon resonance spectroscopy of single silver nanocubes[J]. Nano Letters,2005,5(10): 2034-2038.
    123 Ghosh S. K., Nath S., Kundu S., Esumi K., Pal T.. Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids[J]. Journal of Physical Chemistry B,2004, 108(37):13963-13971.
    124 Bakr O. M., Wunsch B. H., Stellacci F.. High-yield synthesis of multi-branched urchin-like gold nanoparticles[J]. Chemistry of Materials,2006,18(14):3297-3301.
    125 Li L. M., Weng J.. Enzymatic synthesis of gold nanoflowers with trypsin[J]. Nanotechnology,2010, 21(30):305603/1-305603/10.
    126 Peck J. A., Tait C. D., Swanson B. L., Brown G. E.. Speciation of aqueous gold(Ⅲ) chlorides from ultravioletisible absorption and Raman/resonance Raman spectroscopies. Geochimica et Cosmochimica Acta.1991,55(3):671-676.
    127 Goia D. V., Matijevic E.. Tailoring the particle size of monodispersed colloidal gold[J]. Colloids and Surfaces A:Physicochemical and Engineering. Aspects,1999,146(1-3):139-152.
    1 Sun G. X., Zhang M. Z., He J. L., Ni P. H.. Synthesis of amphiphilic cationic copolymers poly[2-(methacryloyloxy)ethyl trimethylammonium chloride-co-stearyl methacrylate] and their self-assembly behavior in water and water-ethanol mixtures[J]. Journal of Polymer Science, Part A: Polymer Chemistry,2009,47(18):4670-4684.
    2 Wu X., Qiao Y. J., Yang H., Wang J. B.. Self-assembly of a series of random copolymers bearing amphiphilic side chains[J]. Journal of Colloid and Interface Science,2010,349(2):560-564.
    3 Liu X. Y., Wu J., Kim J. S., Eisenberg A.. Self-Assembly of Mixtures of Block Copolymers of Poly(styrene-b-acrylic acid) with Random Copolymers of Poly(styrene-co-methacrylic acid) [J]. Langmuir,2006,22(1):419-424.
    4 Maeda Y.. Yamabe M. A unique phase behavior of random copolymer of N-isopropylacrylamide and N,N-diethylacrylamide in water[J]. Polymer,2009,50(2):519-523.
    5 Ilhan F., Galow T. H., Gray M., Clavier G., Rotello V. M.. Giant Vesicle Formation through Self-Assembly of Complementary Random Copolymers[J]. Journal of the American Chemical Society,2000,122(24):5895-5896.
    6 Lutz J.F., Pfeifer S., Chanana M., Thunemann A.F., Bienert R.. H-Bonding-Directed Self-Assembly of Synthetic Copolymers Containing Nucleobases:Organization and Colloidal Fusion in a Noncompetitive Solvent[J]. Langmuir,2006,22(17):7411-7415.
    7 Wang Y., Wang Y. N., Wu G. L., Fan Y. G., Ma J. B.. pH-Responsive Self-Assembly and conformational transition of partially propyl-esterified poly(a, (3-L-aspartic acid) as amphiphilic biodegradable polyanion[J]. Colloids and Surfaces B:Biointerfaces,2009,68 (1):13-19.
    8 Li X., Guo H., Wang J. L., Wu Q., Lin X. F.. Fabrication of novel hepatoma-targeting microdisks by hydrogen bond-assisted self-assembly of an azacitidine-conjugating amphiphilic random copolymer[J]. Acta Biomaterialia.2010,6(2):511-518.
    9 Naik S. S., Ray J. G., Savin D. A.. Temperature- and pH-Responsive Self-assembly of Poly(propylene oxide)-b-Poly(lysine) Block Copolymers in Aqueous Solution[J]. Langmuir,2011,27(11): 7231-7240.
    10 Karanikolopoulos N., Zamurovic M., Pitsikalis M., Hadjichristidis N.. Poly(DL-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate):Synthesis, Characterization, Micellization Behavior in Aqueous Solutions, and Encapsulation of the Hydrophobic Drug Dipyridamole[J]. Biomacromolecules,2010,11(2):430-438.
    11 Chang G. T., Yu L., Yang Z. G., Ding J. D.. A delicate ionizable-group effect on self-assembly and thermogelling of amphiphilic block copolymers in water[J]. Polymer,2009,50(25):6111-6120.
    12 Uchman M., Prochazka K.. Stepanek M., Mountrichas G., Pispas S., Spirkova M., Walther A. pH-dependent self-assembly of polystyrene-block-poly-sulfamate-carboxylate isoprene copolymer in aqueous media[J]. Langmuir,2008,24(20):12017-12025.
    13 Burkhardt M., Martinez-Castro N., Tea S., Drechsler M., Babin I.,Grishagin I., Schweins R., Pergushov D. V., Gradzielski M., Zezin A. B., Mueller A. H. E.. Polyisobutylene-block-poly(methacrylic acid) Diblock Copolymers:Self-Assembly in Aqueous Media[J]. Langmuir,2007, 23(26):12864-12874.
    14 Chen Q., Liu X. G., Xu K., Song C. L., Zhang W. D., Wang P. X.. Phase Behavior and Self-Assembly of Poly [N-vinylformamide-co-(acrylic acid)] Copolymers Under Highly Acidic Conditions[J]. Journal of Applied Polymer Science,2008,109(5):2802-2807.
    15 Guo P. D., Guan W. Y., Liang L., Yao P.. Self-assembly of pH-sensitive random copolymers: Poly(styrene-co-4-vinylpyridine)[J]. Journal of Colloid and Interface Science.2008,323(2):229-234.
    16严瑞瑄.水溶性高分子[M].北京:北京工业出版社,1998.
    17 Dou H. J., Jiang M., Peng H. S.. pH-Dependent Self-Assembly:Micellization and Micelle-Hollow-Sphere Transition of Cellulose-Based Copolymers[J]. Angewandte Chemie, International Edition,2003,42(13):1516-1519.
    18 Fang Y., Pang P. P., Lai Z. Y. pH-Responsive self-assembly of partially hydrolyzed polyacrylamide in aqueous solution[J]. Chemistry Letters,2011,40(10):1074.
    19方云,赖中宇,庞萍萍,江明.部分水解聚丙烯酰胺-羟乙基纤维素的水相pH响应性自组装[J].物理化学学报2011,27(7):1712-1718.
    20全国塑料标准化技术委员会.GB 12005.6-89部分水解聚丙烯酰胺水解度测定方法[S].北京:中国标准出版社,1990.
    21章晓中.电子显微分析[M].北京:清华大学出版社,2006.
    22 Petar P., Yuan J. Y., Yoncheva K., Muller A. H. E., Tavetanov C. B.. Wormlike Morphology Formation and Stabilization of "Pluronic P123" Micelles by Solubilization of Pentaerythritol Tetraacrylate[J]. Journal of Physical Chemistey B.2008,112(30):8879-8883
    23 Liu L. B., Gao X., Cong Y., Li B. Y., Han Y. C..Multiple Morphologies and Their Transformation of a Polystyrene-block-poly (4-vinylpyridine) Block Copolymer[J]. Macromolecular Rapid Communication.2006,27(4):260-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700