用户名: 密码: 验证码:
随焊锤击应力场数值模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接过程是一个快速、不均匀的热循环过程,焊缝附近的温度梯皮很大。焊接过程温度分布不平衡,接近焊接区域的材料膨胀率和收缩率不同,导致了复杂的三维残余应力状态,伴随产生暂时的或永久的焊接变形,并且不可避免地会在工件内产生复杂的焊接残余应力、裂纹、气孔等缺陷,影响焊接结构的质量和使用性能。
     随焊锤击是近些年发展起来的焊接新技术,具有设备简单、操作灵活、工作效率高的优点。焊件通过锤击处理可以有效降低和消除焊接残余应力,避免焊接裂纹的产生,提高焊缝的疲劳强度,调整焊接残余应力分布状态。在锤击系统中,振动锤的参数选择对焊接残余应力的消除也有很大的影响,必须要根据焊接过程中温度场的变化来确定振动锤形状、锤击的丌始时间、以及锤击力的强度、锤击频率等参数。这样就可以更好地控制锤击的效果,消除焊接应力。通过对各种焊接现象的计算机模拟,可以得到不同时刻焊接温度场和应力场的分布情况,就可以为随焊锤击工艺提供锤击位置、锤击时机等参考依掘。
     通过系统讨论焊接过程的有限元分析方法和理论,对焊接过程中的温度场和应力场的基本理论和数值模拟分析方法进行了研究,利用问接藕合法,首先模拟焊接过程中的温度场分布,然后将温度场模拟结果以载荷的形式添加到应力场的分析过程,即可以得到应力场的分布;然后将模拟温度场和应力场分布规律与传统结果进行比较,并通过实验进行验证。
     本文研究的主要内容有:首先对焊接过程进行合理的假设,建立了焊件的三维模型,适当的简化边界条件,合理的划分网格结构,确定了单元类型;建立了高斯函数分布的面热源模型,利用ANSYS软件的APDL语言编写程序,实现焊接热源的移动,采用生死单元方法,解决了焊接热源在平板多道焊缝焊接过程中的数学模拟问题;通过改变单元属性的方法,解决材料的熔化、凝固等相变问题;采用牛顿一拉普森迭代方法,解决了模拟过程中的不收敛问题;对焊接过程进行了实时动态模拟,得到了焊接温度场的温度分向图和应力场的残余应力分布图和相应的分布规律,与传统焊接理论相比较,为锤击时机的选择提供理论依据:最后采用小孔法对焊件的残余应力进行测量,通过实验对数值模拟过程进行验证,为锤击法消除焊接应力提供理论依据,以便确定最佳锤击参数。
     本文对平板多道焊缝的模拟为复杂焊接结构进行三维焊接温度场、应力场和随焊锤击过程的分析提供了理论依据和指导,促进了有限元分析方法在焊接分析以及工程中的应用。
Welding is a rapid,non-uniformed heat process.there is the great temperature gradient near welding seams.With the different of temperature distribution.inflation and shrinkage in different materials.weding seams have a complex three—dimensional residual stress state,along with produce temporary or permanent welding deformation.and would inevitably produce complex in the welding residual stress.cracks.porosity,defects,influence the quality of welding structure and performance
     Welding with trailing peening is the welding new technology,which developed inrecent years,have some advantages snch as equipment simple.flexible opel‘ation.high working efficiency and so on.Through trailing peening on the workpiece.it canefl?ctively reduce and elimate welding residual stress,avoid welding crack,improvefatigue strength of the welding seams.adjust welding residual stl_eSS distribntion Inthe s),stem ot’welding with trailing peening.it is a significant inflence on l-elif ol’welding residual stress to choice parameters of vibratory hammer.According tovariation of temperature field during welding process.it can@tel mine someparameters such as the shape of vibratory hammer,the time of beginning to peening.the force and frequency of peening.So it call control effect of trailing peening andelimate welding stress.Through simulated welding process with computer.we canknow the distribution of welding temperature field and stress field at difercntial time.and offer reference for the position and beginning time during welding,aith trailingpeening
     Through the discussion of the welding process system finite element analysismethod and theory.the welding process the temperature field and stress field or thebasic theory and numerical simulation analysis method was studied.and use themethod ol、thcrmal—structure couple.first simulation in the process of weldingtemperature distribution,and then put temperature field simulation results to loadform tile analysis of the stress field added to the process that call get tile distributionof stress field:Then the simulation of tile temperature field and stress field distribution rule and compared to the traditional.and througll experiment verified
     The research works of the paper are as following:fil‘stly,through reasonable assumpting of welding process.using the finitc element method and theory.it make a 3-D models of workpiece which wled multi—seams in fiat.simplify boundary,'conditions and loads.divide grid structure and confirm node and element type;fhe second,establish the gaussian flmction of the distribution of the surface heat source nlodel.make program with APDI.of ANSYS software,rcalize the nlove of heat source.use the dead—live method,slove the simulation problem of heat source inmulti—seams flat during the welding process.Thirdly,it can slove the phase transitionproblem of melting and solidification and slove the problem of the convergencedifficulty or the un—convergence with Newton—Raphson method,and then have areal-time dynatic simulation tO welding process,get the distribution graph and law oftemperature field in welding workpiece;then using the temperature result as load withcOuDle method,it can receive the distribution graph and law of stress field,comparewith the traditional theory of welding,provide the theory basis for the opportunity tobegin tO peen,and SO confirm the parameters about welding trailing peening;Lastly.itcan dO some experiments to measure the temperature field and stress field in theworkpiece during welding process,compare the measure result with simulated resultwhich received on the computer,then verify simulated result and offer more be~erparameters to peen the workpiece during welding process.
     It Drovides theoretical basis and guidance tO have a ansyis for 3-D temperature field and stress field in the simulation process of multi—seams welding flat,and Dromote the finite element analysis method in welding analysis and application in engineering
引文
[1]邹茉莲编.焊接理论及工艺基础[M].北京:北京航空航天大学出版社,1994 .1.
    [2]吕德林,李砚珠编.焊接金相分析[M].北京:机械工业出版社,1986. 4.
    [3] D.拉伊达著[德].焊接热效应[M].北京:机械工业出版社,1997. 1.
    [4]薛忠明,曲文卿,等.焊接变形预测技术研究进展[J].焊接学报,2003, 24( 3):87~90.
    [5]陈楚,张月嫦编.焊接热模拟技术[M].北京:机械工业出版社, 1985.1.
    [6]李冬林.基于ANSYS软件焊接温度场应力场模拟研究[J].湖北工业大学学报,2005,20(5):81~83.
    [7]张建峰,王翠玲,吴玉萍,等.ANSYS有限元分析软件在热分析中的应用[J].冶金能源,2004,23(5):9~12.
    [8] A.P.Amosov,A.F.Fedotov. Finite-Element Plane Model of Thermal Conditions in Self-Progragating High Temperature Synthesis of Blanks in a Friable Shell[J].Journal of Engineering Physics and Thermophysics,2001,74(5) : 101~104.
    [9]潘韧坚,张清辉,李柯,等.基于ANSYS的有限元方法在焊接热效应分析中的应用[J].焊接技术,2004,33(1):6~9.
    [10]李午申.计算机在焊接中的应用及发展(三)[J].机械工人(热加工),1999,10:42~43.
    [11]X. Xiao shu. Empirical Modeling for Real Time Weld Process Control and Generator Monitoring. WRC Bulletin[C],1994,94~101.
    [12]拉达尹,熊第京,等.接热效应温度场残余应力变形[M].北京:机械工业出版社,1997.3.
    [13] H.H.雷卡林,庄鸿寿,等.焊接热过程计算[M].北京:中国工业出版社,1958,2.
    [14]武传松.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990,11.
    [15]陈楚.数值分析在焊接中的应用[M].上海:上海交通人学出版社,1985,80-82.
    [16]薛勇,张建勋.基于ANSYS软件的焊接变形工程预测[J].焊接技术,2002,30(增刊):25~27.
    [17]董志波,魏艳红,刘仁培,等.不锈钢焊接温度场的三维数值模拟[J].焊接学报,2004,25(2):9~14.
    [18]陈翠欣,李午申,王庆鹏,等.焊接温度场的三维动态有限元模拟[J].天津大学学报,2005,38(5):466~470.
    [19]Murakawa H. Theoretical Prediction of Residual Stress in Welded Structures [J].Welding Research Abroad, 1998, 44(6) : 2~7
    [20]陈星明,钱翰城.焊补过程温度场的有限元计算机模拟[J].重庆邮电学院学报,2002,12(2):27~30.
    [21]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算[J].焊接学报,1983,3:139~148.
    [22]陈楚,汪建华,杨洪庆.水下焊接冷却特性的有限元分析[J].海洋工程,1983, 4:34~38.
    [23]蔡洪能,唐慕尧.TIG焊接温度场的有限元分析[J].机械工程学报,1996,(2)34-39.
    [24]段权,张新国,李志军,等.焊接热循环非线性温度场分析及热模拟研究[J].西安交通大学学报,2001,35(4):411~415.
    [25]谢元峰.基于ANSYS的焊接温度场和应力的数值模拟研究[D].武汉:武汉理工大学,2006.
    [26]梁晓燕.中厚板多道焊接过程中温度场和应力场的三维数值模拟[D].武汉:华中科技大学,2004.
    [27]李凌.中厚板焊接温度场及应力场数值计算[D].天津:天津大学学报,2006.
    [28]顾立志.铝合金筒体焊接温度场和应力应变场的三维数值模拟[D].天津:天津大学,2005.
    [29]ShimY.Determinationof residual stresses in thick-section weldments[J].Welding Journa1,1992,(9).
    [30]Tso-Liang Teng.Effect of welding conditions on residual stresses due to butt welds [J].International Journal of Pressure Vessels and Piping,1998,(75).
    [31]陈丙森.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [32]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社,2005,1.
    [33]王者昌.关于焊接残余应力消除原理的探讨[J].焊接学报,2002,2:55~58.
    [34] L. Lindgren, L. Karlsson. Deformations and stresses in welding of shell structures[J]. Int. J. Num .Meth. Engng, 1988, 25.
    [35] K.Masubuchi.Prediction and control of residual stresses and distortion in welded structures. Proceedings of the international symposium on theoretical prediction in joining and welding[M]. Osaka, Japan,1996.
    [36] Wang J, et al. Improvement in numerical accuracy and stability of 3-DFEM analysis in welding [J].Welding Journal, 1996, 75(4): 129~134
    [37]芦凤桂,姚舜,钱伟方.基于TIG焊电弧—熔池统一模型分析焊接电弧[J].机械工程学报,2004,40(5):145~149.
    [38]唐慕尧.单面焊时终端裂纹的研究[J].焊接学报,1987, 7 (3) :123~132.
    [39]陈楚.轴对称热弹塑性应力有限元分析在焊接中的应用[J].焊接学报,1987,8 (4):196~203.
    [40]汪建华.考虑相变的焊接动态和残余应力的研究.第六届全国焊接学术会议论文论文集[C].西安:1990,5:209~212.
    [41]汪建华.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994, 28 (6):59~65.
    [42] J.Wang,etal.Improvement in Numerical Accuracy and Stability of 3一FEM Analysis in Welding[J].Welding Journal.1996,75(4):129 ~134.
    [43].汪建华.管板接头三维焊接变形的数值模拟[J].焊接学报,1995,16 (3):140~145.
    [44].汪建华.压缩机焊接变形的三维数值模拟[J].机械工程学报,1996, 32 (1): 85~91.
    [45].汪建华.薄板焊接失稳变形的热弹塑性有限元分析.计算机在焊接中应用的学术与论文交流论文集[C].太原:1996. 190-193.
    [46].汪建华等.预测焊接变形的残余塑变有限元方法.计算机在焊接中应用的学术与论文交流论文集[C].太原.1996. 94-97.
    [47]蔡志鹏,赵海燕,鹿安理,等.串热源模型及其在焊接数值模拟中的应用[J].中国机械工程,2001, 37 (4):25~28.
    [48]蔡志鹏,鹿安理,赵海燕,等.串热源模型及1200t桥式起重机主梁腹板装焊过程的数值模拟[J].中国机械工程,2002, 13 (9): 802~806.
    [49]黎江.三维焊接热应力和残余应力演化虚拟分析技术研究[D].南宁:广西大学,2002.
    [50]李冬林.焊接应力和变形的数值模拟研究[D].武汉:武汉理工大学,2003.
    [51]王长利.焊接温度场和应力场的数值模拟[D].沈阳:沈阳工业大学,2005.
    [52]Sauer W.Thermal camber modelfor hot and coldrolling[J].Steel Research, 1996, 7(1): 18~21.
    [53]任登义,邹增大,张元彬.钢轧辊局部冷焊实用工艺设计与分析[J].焊接技术,1998,3:13~14.
    [54]任登义,张元彬,邹增大.局部冷焊锤击力的测定及锤击效果探讨[J].机械工程学报,1999,6:66~69.
    [55] Garmo E P,Jonassen F,Meriarn J L. The effect of peening upon residual welding stress[J]. Welding Journal,1976,25(10):616~623.
    [56]Headquarters US Army Corps of Engineers Engineering and Construction Division Directorate of Military Programs Washington, DC. US army corps of engineers’Technical instructions welding design procedures and inspections, TI809-26.1 March, 2000.
    [57]Borland J C. Fundamental solidification cracking in welds (part 2) [J].Welding and Metal Fabrication, 1979,3:100~107.
    [58]田锡唐,郭绍庆,徐文立.随焊激冷对LY12CZ铝合金焊接热裂纹倾向研究的影响[J].宇航材料工艺,1998,28(5):48~52.
    [59]张建华,郝建军,马跃进.铸铁焊补工艺[J].工程机械与维修,2001,7:96~97.
    [60]王严岩.锤击处理消除焊接接头残余应力的研究[C].第七届全国焊接学术会议论文集,1993,5:50~54.
    [61]任登义,魏星.铸铁冷焊锤击力的测定及锤击效果的分析[J].焊接,1998,l:12~15.
    [62]王新洪.白口铸铁焊补应力场的数值模拟[D].济南:山东工业大学,1997.
    [63]张伏.随焊锤击设备及工艺研究[D].保定:河北农业大学,2004.
    [64]颜海涛.电磁随焊锤击对焊接应力及显微组织的影响[D].保定:河北农业大学,2006.
    [65]刘兴龙.锤击消除残余应力的数值模拟[D].济南:山东大学,2005.
    [66]刘雪松,徐文立,方洪渊.钛合金薄板焊接应力的随焊锤击控制[J].焊接学报,2004,25(2):84~86.
    [67]吴言高,李午申,邹宏军,冯灵芝。焊接数值模拟技术发展现状[J].焊接学报,2002,23(3):89~92
    [68]康瑜.基于有限元的随焊锤击温度场及应力场数值模拟[D].保定:河北农业大学,2008.
    [69]王彦博.斜拉桥锚拉板区域焊接残余应力试验研究分析[D].重庆:重庆交通大学,2008.
    [70]方总涛. 5000吨吊机底座环箱形体焊接应力变形的数值模拟[D].天津:天津大学,2009.
    [71]徐涛.基于FEA的五通连接器变形预测和焊接工装设计[D].上海:上海交通大学,2007.
    [72]周春亮.P92钢焊接温度场及应力场的数值模拟[D].天津:天津大学,2008.
    [73]Reumont,G.Av.:Einflu? des Warmehammerns auf die mechanischen Eigenschaften der Schwei?verbindung[J].schwei?.u.Schneid.1967,19(12):575~577.
    [74]吕德林.焊接金相分析[M].北京:机械工业出版社,1987.
    [75]徐文立,田锡唐,刘雪松.随焊锤击对LY12CZ焊接接头显微组织的影响[J].哈尔滨工业大学学报,2001,33(4):442~446.
    [76]赵振东.焊后热处理对2.25Cr-1Mo钢堆焊处显微组织及剥离开裂的影响[J].国外金属热处理,1999,1:20~24.
    [77]吴会强,冯吉才,何景山,等.焊接工艺对高铌Ti3Al合金电子束焊接接头显微组织和显微硬度的影响[J].中国有色金属学报,2004,14(8):1313~1317.
    [78]黄开志.显微硬度工作基准装置测量不确定度评定[J].宇航计测技术,2004,4(4):28~32.
    [79]束倩茜,戴嘉维.硬质薄膜显微硬度测量中的载荷选择[J].电子显微学报,2002,21(5):635~636.
    [80]郭士文,D.O.Northwood.纳米级超显微硬度法对镉变形行为的研究[J].东北大学学报,1999,20(2):169~172.
    [81] S.S.Campos,E.V.Moralesl,H.-J.Kestenbach. Detection of interphase precipitation in microalloyed steels by microhardness measurements [J]. Materials Characterization,2004, 52(4):379~384.
    [82]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000.
    [83] Maddox S J. Improving the fatigue strength of welded Joints by Peening[J].Metal- construction.1985.6.
    [84]王东坡.改善悍接接头的疲劳强度超声冲击方法的研究[D].天津:天津大学,2001.
    [85]苏彦江,林德深,余传禧.锤击处理延长焊接接头疲劳寿命的研究[J].兰州交通大学学报,2000,19(3):28~30.
    [86]范成磊,方洪渊,田应涛,等.随焊冲击碾压对LY12CZ铝合金接头组织和性能的影响[J].材料工程,2004,10: 24~28.
    [87] LIU W P, TIAN X T, ZHANG X Z. Preventing weld hotcracking by synchronous rolling during welding[J].We1ding Journal, 1996,75(9): 297~304.
    [88]任登义,魏星.铸铁冷焊锤击力的测定及锤击效果的分析[J].焊接,1998,l:12~15.
    [89]王新洪.白口铸铁焊补应力场的数值模拟[D].济南:山东工业大学,1997.
    [90]徐文立,黎明,刘雪松,等.动态低应力小变形无热裂随焊锤击焊接技术研究[J].材料科学与工艺,2001,9(1):6~10.
    [91]程久欢,陈利,于有生.焊接热源模型的研究进展[J].焊接技术,2004,33(1):13~15.
    [92]王勤,朱援祥,王莉莉.焊接接头残余应力的计算机模拟[J].机械,2004,31(10):27-29.
    [93]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,1999,10.
    [94]林得超.焊接过程应力应变特征及其控制的数值模拟[D].西安:西安交通大学,1997.
    [95]梁晓燕,罗金华.基于ANSYS平台焊接模拟中不同焊接热源的比较[J].电焊机,2003,3,30-32
    [96]王东坡,霍立兴,张玉凤,等.提高焊接接头疲劳强度的超声波冲击法[J].焊接学报,1997,20(3):158-163.
    [97]王勖成.有限单元法[M].北京:清华大学出版社,2003,547-553.
    [98]龚曙光主编.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003, 312~327.
    [99]张朝晖主编.ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005,74~90.
    [100]尚晓江,苏建宇,王化峰,等.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社,2006,16-18
    [101]武传松.焊接过程的计算机模拟[A].焊接与IT专题论文集[C].天津,2001:23-32.
    [102]李毅磊.基于ANSYS的随焊锤击后焊道应力场数值模拟[D].保定:河北农业大学,2010.
    [103]李景涌.有限元法[M].北京:北京邮电大学出版社,1999,3-6.
    [104]张文钱.焊接传热学[M].北京:机械工业出版社,1989 :11~42.
    [105]莫春立,钱百年,国旭明,等.焊接热源计算模式的研究进展[J].焊接学报,2001.22(3):93~96.
    [106]赵锐.焊接残余应力的数值模拟及控制消除研究[D].大连:大连理工大学,2006,12.
    [107]刘高腆.温度场的数值模拟[M].重庆:重庆大学出版社,1990,1.
    [108]夏首秦.锤击强化对焊缝焊趾疲劳强度的影响[J].材料与工艺.1996, (2):40~45.
    [109]陈海洋,俞建荣,赵增慧,等.薄形焊件变形数值模拟的研究现状[J].焊接技

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700