用户名: 密码: 验证码:
超声波—缺氧/好氧污泥减量化机理与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市污水处理量的进一步增加,必将会产生更大量的生活污泥,生活污泥的有效处理与处置已成为城市污水处理厂急需解决的一大难题,研究开发生活污泥处理新技术是目前国内外环保界关注的一个热点。本文针对生活污泥处理中存在的问题,有效利用超声波的特性,将超声波预处理技术与污泥缺氧/好氧消化工艺相结合,通过实验室小试和中试试验研究,考察了超声波预处理对污泥缺氧/好氧消化的影响;在此基础上,研究了超声波-缺氧/好氧消化工艺实现污泥减量化的机理;最后在广州某城市污水处理厂现场,进行了污泥超声波—缺氧/好氧消化工艺示范工程的应用研究。
     本文首先研究了超声波溶胞前后对污泥理化和生化性质的影响。研究结果表明,声能密度对超声波预处理污泥效果影响最显著,最佳的超声预处理参数组合为:超声频率28kHz,声能密度0.15W/mL,超声时间10min。此外,研究还发现不同浓度的污泥,对应的最佳超声组合参数也有所不同。
     其次通过实验室小试和中试试验,研究了超声波预处理对污泥缺氧/好氧消化的影响。小试试验结果表明,超声波-缺氧/好氧消化工艺最佳的停留时间为12d;中试试验结果表明,引入超声处理后,大大缩短了污泥的稳定时间,显著提高了污泥的消化效率,污泥消化12d就已经达到了稳定标准,比对照污泥缩短了8d;经过25d的消化后,TSS、VSS、TN的去除率分别达到38.32%,50.48%和40.5%,比对照污泥分别提高了6.72%,8.52%和4.69%。
     然后通过实验室中试对比试验,研究了污泥超声波-缺氧/好氧消化对传统好氧消化的比较优势。研究结果表明,经过25d的消化后,超声波-缺氧/好氧消化污泥TSS和VSS的去除率分别达到了35.77%和50.02%,比好氧消化污泥分别提高了3.90%和8.99%;超声波-缺氧/好氧消化污泥稳定时间比好氧消化污泥缩短了近6d;超声波-缺氧/好氧消化污泥的TN去除率为40.8%,远高于传统好氧消化,并且超声波-缺氧/好氧消化污泥上清液中氨氮和硝态氮浓度却远低于传统好氧消化,因而降低了上清液回流氨氮和硝态氮对污水处理系统的负荷压力。
     在工艺条件试验研究的基础上,利用生化分析法和分子生物学方法,从物质转化、能量的传递以及反应器内微生物群落结构的演替等方面阐述了超声波-缺氧/好氧消化工艺实现污泥减量化机理。生化分析研究结果表明,超声波加快了EPS和蛋白质溶出,促进了有机物降解,提高了蛋白酶与脱氢酶活性;同时超声污泥ATP的含量比对照污泥要低,能量在超声污泥中耗散的速度比对照污泥快,因此,超声污泥的TSS和VSS降解比对照污泥要快,超声污泥的TSS和VSS去除率大于对照污泥。
     分子生物学的研究结果表明,在污泥超声波-缺氧/好氧消化反应器运行期间,微生物群落结构和氨氧化细菌群落结构均发生动态演替。微生物群落结构DGGE图谱的优势菌种中,发现了4株在活性污泥消化过程中起着重要作用的芽孢杆菌(Bacillus),它们加快了超声污泥的TSS和VSS降解。氨氧化细菌DGGE图谱的优势菌种中,发现了6株反硝化菌,它们对提高反应器脱氮效率具有重要作用,其中3株菌属于假单胞杆菌属(Pseudomonas),1株菌属于德氏食酸菌属(Acidovorax),2株菌属于伯克氏菌属(Burkholderia)。因此,超声波促进了硝化与反硝化作用,超声污泥的TN去除率高。Real-time PCR结果表明,AOB数量先减少后增加,且AOB数量与氨氮的浓度有关,高浓度氨氮有助于AOB数量的增加。此外,AOB数量的增加可促进氮去除率的提高。
     此外,还通过绿色荧光蛋白菌(GFP)表征溶菌特性的手段,从细胞转化的角度阐述了超声波-缺氧/好氧消化的反应机理。研究结果表明,超声波-缺氧/好氧消化过程中的好氧期污泥上清液对荧光菌胞内GFP的释放具有明显的促进作用;该时期的污泥上清液具有显著的溶菌作用,污泥上清液具有的溶菌活性可能主要来自于污泥胞外水解酶。
     在实验室工艺条件和机理研究的基础上,将超声波-缺氧/好氧污泥消化工艺应用于污水处理厂现场,考察了该工艺的污泥减量化实际效果。工程连续运行3个月以上,污泥TSS去除率和VSS去除率分别达到36%和50%,总氮的去除率达40%。污泥上清液中氨氮、硝酸盐、亚硝酸盐和TP的含量较低,相应的氮负荷和磷负荷也较低,回流返回的氮磷量不会影响污水处理厂出水水质。超声波-缺氧/好氧污泥消化费用为0.324-0.389元/m3污水,比传统好氧消化的要高,但其优点在于节省占地面积,停留时间更短,处理效果更好。
     本研究结果为生活污泥超声波-缺氧/好氧消化工艺技术的推广应用提供了重要的理论基础和实践依据。
With the increase of sewage load, a larger number of municipal sewage sludge was produced inevitably. Treatment and disposal of sewage sludge becomes a difficult problem to wastewater treatment plants. At present, studies focus on developing a new technology for treatment of sewage sludge. In view of the problem of treatment and disposal of excess sludge, using characteristics of ultrasond effectivily, ultrasonic pretreatment was combined with sludge anoxic/aerobic digestion process. With small and pilot scale texts in laboratory, the effects of ultrasonic pretreatment on aerobic/anoxic digestion process were investigated and mechanisms of sludge reduction were discussed. Finally, demonstration project using this ultrasonic-aerobic/anoxic digestion process to treat sludge was also carried out in one of wastewater treatment plant in Guangzhou.
     In this paper, the effects of ultrasonic pretreatment on sludge physical and biological characteristics were firstly studied. The results indicated that the optimal conditions of ultrasonic pretreatment were as follows:ultrasonic frequency of 28 kHz, ultrasonic intensity of 0.15 W/mL, and ultrasonic treatment time of 10 min. In addtion, it was found from our study that different sludge concentrations corresponded to different optimal ultrasonic pretreatment conditions.
     Then the influences of ultrasonic pretreatment on aerobic/anoxic digestion process were investigated with small and pilot scale texts in laboratory. The results of small scale texts indicated that, the optimal sludge retention time is 12 d; the results of pilot scale texts showed that stability time of sludge was shortened greatly and digestion efficiency was markedly improved by ultrasonic pretreatment. The stability time of sludge with ultrasononic pretreatment was 12 d, which was shortened by 8 d compared to that of sludge with control treatment. After digestion time of 25d, TSS, VSS and TN removal efficiency reached to 38.32%,50.48% and 40.5%, respectively, which was increased by 6.72%,8.52% and 4.69%, respectively, compared to the control.
     Contrastive pilot scale experiments of ultrasonic-aerobic/anoxic digestion and conventional aerobic digestion were conducted. The results showed that, TSS and VSS removal efficiency of ultrasonic-aerobic/anoxic digestion achieved to 35.77% and 50.02%. which were increased by 3.90% and 8.99%, respectively, after digestion time of 25d. The digestion time for ultrasonic-aerobic/anoxic digestion was shortened by 6 d compared to conventional aerobic digestion. TN removal efficiency of ultrasonic-aerobic/anoxic digestion was 40.8%, which was much higher than that of aerobic digestion. Furthermore, ammonia and nitrate concentration in sludge supernatant of ultrasonic-aerobic/anoxic digestion were lower than that of aerobic digestion, so that the pressure of circumfluence to wastewater treatment plant was reduced.
     Based on the study of laboratory operation conditions, biochemical analysis and molecular biological research method were adopted to investigate the mechanisms of sludge reduction, from substance transformation, energy transmission and succession of microbial community structure, etc. The results of biochemical analysis revealed that ultrasonic pretreatment accelerated the solubilisation of the EPS and protein and enhanced enzymatic activities. At the same time, the ATP concentration in ultrasonic sludge was lower than that of the control, energy transmission in ultrasonic sludge was faster, resulting in the removal efficiency of TSS and VSS in ultrasonic sludge was markedly improved.
     The study of molecular biology showed that microbial and ammonia-oxidizing bacterial community structure changed in different operation process, which could reflect the dynamic succession of microbial and ammonia-oxidizing bacterial community. The sequencing indicated that 4 of predominant species in DGGE profiles of microbial communities are belonged to Bacillus, which playing an important role in sludge digestion. TSS and VSS of ultrasonic sludge were degradated faster. Among the predominant species of ammonia-oxidizing bacterial communities throught the operation,6 are denitrifiers, which playing an important role in improving the efficiency of nitrogen removal.3 of them are belonged to Pseudomonas,1 is belonged to Acidovorax,2 are belonged to Burkholderia. Pseudomonas, Acidovorax and Burkholderia. Nitrification and denitrification were improved by ultrasonic pretreatment, resulting in TN removal efficiency of ultrasonic-aerobic/anoxic digestion was higher. Real-time PCR revealed that the copy number of AOB decreased at the beginning, and then increased, which were associated with concentration of ammonia, higher ammonia content favors the growth of ammonia oxidizers in the reactor. In addition, high quantity of AOB populations can improve the efficiency of nitrogen removal.
     Furthermore, the mechanisms of sludge reduction were described through characterizing the process of cell lysis during ultrasonic- aerobic/anoxic digestion using green fluorescent protein.The results indicated that the sludge supernatants from aerobic phase promoted the releasing of the intracelluar GFP and the cell lysis capability of the sludge supernatant in ultrasonic-aerobic/anoxic digestion might be related to the hydrolytic enzymes secreted from the sludge.
     On the basis of study of laboratory operation conditions and mechanisms of sludge reduction, this ultrasonic-aerobic/anoxic digestion process was applied to treat the sludge in wastewater treatment plant, investigated the the effects of this technology on sludge reduction. The operation was carried out for 3 months, TSS, VSS and TN removal efficiency achieved to 36%,50% and 40%. Ammonia, nitrate, nitrite and TP content in sludge supernatant are very low, the corresponding loads of nitrogen and phosphorus pressure to wastewater treatment plant are reduced, so that nitrogen and phosphorus can't influence the effluent quality. The cost of ultrasonic-aerobic/anoxic digestion is 0.324-0.389 yuan/m3 wastewater, which is higher than that of aerobic digestion. However, the novel process established in this study has the features of less site area, shorter sludge retention time, more effective treatment efficiency, and so on.
     This research provided theoretical and practical basis for the popularization and application of the ultrasonic-aerobic/anoxic digestion technology.
引文
[1]Wei Y, Van Houten R T, Borger A R, Eikelboom D H,Fan Y. Minimization of excess sludge production for biological wastewater treatment [J].Water Research,2003,37(18):4453-4467.
    [2]胡和平,刘军,罗刚,张文辉,刘斌.活性污泥工艺中污泥减量化技术研究进展[J].水资源保护,2007,23(6):32-39.
    [2]于洪涛.污泥的处置与资源化技术[J].硅谷,2010(1):142.
    [3]袁毅.污泥处理处置的认识误区与控制对策[J].环境科学与技术,2006,29:114-116.
    [4]蒋成爱.我国城市污水污泥处理现状[J].北方环境,2010,22(1):79-80.
    [5]陈蓉蓉,李庆新.剩余污泥处理存在问题及发展趋势[J].科技创新月刊,2010,6:142-143.
    [6]曹秀芹,陈裙.污水处理厂污泥处理存在问题分析[J].北京建筑工程学院学报,2002,18(1):1-4.
    [7]冯生华.浅谈建设污水处理厂的五大问题[J].沪国功攻工窟,2002,97(2):42-44.
    [8]张自杰.排水工程(第四版)[M].北京:中国建筑出版社,2000.
    [9]唐建国.《城镇污水处理厂污泥处理处置及污染防治技术政策》解读[C].全国城镇污水处理及污泥处理处置技术高级研讨会,2009,667-671.
    [10]梁鹏,黄霞,钱易.污泥减量化技术的研究进展[J].环境污染治理技术与设备,2003,4(1):44-51.
    [11]B.D.黑姆斯等著,王镜岩等译[M].生物化学.北京:科学出版社,2000.
    [12]Ye F X, Shen D S, Li Y. Reduction in excess sludge production by addition of chemical uncouplers in activated sludge batch cultures [J]. Journal of Applied Microbiology,2003,95(4):781-786.
    [13]Yang X F, Xie M L and Liu Y. Metabolic uncouplers reduce excess sludge production in an activated sludge process [J]. Progress Biochemistry,2003,38(9):1373-1377.
    [14]Wang J F, Jin W B, Zhao Q L, Liu Z G, Lin J K. Performance of treating wastewater and anti-shockloading in oxic-settling-anaerobic (OSA) process for minimization of excess sludge [J]. Huan Jing Ke Xue,2007 28(11):2488-93.
    [15]Guang H, Kyoung-Jin A, Sebastien S, Etienne B, Malik D. Possible cause of excess sludge reduction in an oxic-settling-anaerobic activated sludge process[J]. Water Research,2003, (37):3855-3866.
    [16]Na S H, Shon H K, Kim J H. Minimization of excess sludge and cryptic growth of microorganisms by alkaline treatment of activated sludge [J]. Journal of Chemical Engineering,2011,28(1):164-169.
    [17]Chu L B, Yan S T, Xing H, Yu A F, Sun X L, Jurcik B. Enhanced sludge solubilization by microbubble ozonation [J]. Chemosphere,2008,72 (2): 205-212.
    [18]黄勇,杨铨大,王宝贞,聂梅生.活性污泥生物反应动力学模型研究[J].环境科学研究,1995,8(4):23-28.
    [19]蔡晓明.生态系统生态学[M].北京:科学出版社,2000.
    [20]白春节.城市剩余活性污泥直接饲养蚯蚓可行性研究[J].微生物学通报,2007,34(1):116-118.
    [21]Huang X, Liang P and Qian Y. Excess sludge reduction induced by Tubifex tubifex in a recycled sludge reactor [J]. Journal of Biotechnology, 2007,127 (3):443-451.
    [22]许国强,曾光明,殷志伟.氨氮废水处理技术现状及发展[J].湖南有色金属,2002,18(2):29-33.
    [23]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [24]Al-Ghusain I, Hamoda M F, El-Ghany M A. Performance characteristics of aerobic/anoxic sludge digestion at elevated temperatures [J]. Environmental Technology,2004,25(5):501-11.
    [25]Al-Ghusain I A, Hao O J. Using pH as a real-time control parameter for wastewater reatment and sludge digestion processes [J]. American Society of Civil Engineers,1995,121:225-235.
    [26]Al-Ghusain 1, Hamoda F M, El-Ghany M A. Nitrogen Transformations during aerobic/anoxic sludge digestion [J].Bioresource Technology,2002. 85(2):147~154.
    [27]牛奕娜,彭永臻.污泥缺氧好氧消化的减量研究[J].环境工程,2006,24(3):62-64.
    [28]张艳萍,彭永臻.好氧/缺氧消化降解污泥特征分析[J].环境工程学报,2009,3(4):673-676.
    [29]应崇福.超声学[M].北京:科技出版社,1990.
    [30]朱昌平,何世传,单鸣雷,冯若,许坚毅.水处理用声化学反应器研究进展[J].应用声学,2005,24(3):197-200.
    [31]Tiehm A, Nickel K, Zellhorn M, Neis U. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization [J]. Water research,2001,35(8):2003-2009.
    [32]张光明,吴敏生,张维昊,张锡辉.城市污泥超声波处理技术[J].城市环境与城市生态,2003,16(6):258-259.
    [33]薛向东,金奇庭,朱文芳.污泥超声破解效应及厌氧消化性能研究[J].生态环境,2006,15(1):40-44.
    [34]Salsabil M R, Prorot A, Casellasa M, Dagot C. Pre-treatment of activated sludge:Effect of sonication on aerobic and anaerobic digestibility [J]. Chemical Engineering Journal,2009,148:327-335.
    [35]Feng X, Deng J C,Lei H Y, Bai T, Fan Q J, Li Z X. Dewaterability of waste activated sludge with ultrasound conditioning [J]. Bioresource Technology,2009,100(3):1074—1081.
    [36]Gonze E, Pillot S, Valette E, Gonthier Y, Bernis A. Ultrasonic treatment of an aerobic activated sludge in a batch reactor [J]. Chemical Engineering and Processing,2003,42 (12):965-975.
    [37]王晓霞,邱兆富,范吉,应维琪,吕树光.超声波处理剩余污泥有 机物、氮和磷的释放特性研究[J].环境污染与防治,2009,31(3):66-69.
    [38]Wang F, Lu S, Ji M. Components of released liquid from ultrasonic waste activated sludge disintegration [J]. Ultrasonics Sonochemistry,2006, 13(4):334-338.
    [39]Schlafer O, Sievers M, Klotzbucher H, Onyeche T I. Improvement of biological activity by low energy ultrasound assisted bioreactor [J]. Ultrasonics,2000,38:711-716.
    [40]Zhang P, Zhang G, Wang W. Ultrasonic treatment of biological sludge: Floc disintegration, cell lysis and inactivation [J]. Bioresource Technology,2007,98(1):207-210.
    [41]Li H, Jin Y Y, Rasool B M, Wang Z Y, NieY F. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability [J]. Journal of Hazardous Materials,2009,161(2-3):1421-1426.
    [42]Liu C, Xiao B, Dauta A, Peng G F, Liu S M, Hu Z Q. Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge [J]. Bioresource Technology,2009,100(24):6217-6222.
    [43]Feng X, Deng J C, Lei H Y, Bai T, Fan Q, Li Z X. Dewaterability of waste activated sludge with ultrasound conditioning [J]. Bioresource Technology.2009,100(3):1074-1081.
    [44]Farooq R, Rehman, Baig S, Sadique M, Khan S, Farooq U, Rehman A, Farooq A, Pervez A, Hassan M and Shaukat. The effect of ultrasonic irradiation on the anaerobic digestion of activated Sludge [J]. World Applied Sciences Journal,2009,6(2):234-237.
    [45]Harrison S L. Bacterial cell disrruption:a key unit operation in the recovery of intracellular products [J].Biotechnology Advance,1991,9: 217-240.
    [46]Onyeche T I, Schlafer O, Bormann H, Schroder C, Sievers M. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion [J]. Ultrasonics,2002,40:31-35.
    [47]Schlafer O. Sievers M. Klotzbucher H, Onyeche T I. Improvement of biological activity by low energy ultrasound assisted bioreactor [J]. Ultrasonics,2000,38(128):711-716.
    [48]Klaus N, Uwe N.Ultrasonic disintegration of biosolids for improved biodegradation [J]. Ultrasonics Sonochemistry,2007,14:450-455.
    [49]Wu J Y, Lin L D. Ultrasound induced stress responses of Panax ginseng cells:enzymatic browning and phenolic production [J]. Biotechnology Progress,2002,18(4):862-866.
    [50]蒋建国,张妍,张群芳,陈懋喆,杜雪娟.超声波对污泥破解及改善其厌氧消化效果的研究[J].环境科学,2008,29(10):2815-2819.
    [51]Zawieja I, Wolny L. and Wolski P. Influence of excessive sludge conditioning on the efficiency of anaerobic stabilization process and biogas generation [J]. Desalination,2008,22(1-3):374-381.
    [52]诸一殊,余光辉,何品晶,邵立明.超声波预处理提高污泥好氧消化性能研究[J].环境工程学报,2008,2(5):690-693.
    [53]Jin Y Y, Li H, Mahar R B, Wang Z Y, Nie Y F. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion [J]. Journal of Environmental Sciences,2009,21:279-284.
    [54]Chang T C, You S J, Damodar R A, Chen Y Y. Ultrasound pre-treatment step for performance enhancement in an aerobic sludge digestion process [J]. Journal of the Taiwan Institute of Chemical Engineers,2011,42(5): 801-808.
    [55]Kabir M, Suzuki M, Yoshimura N. Reduction of Excess Sludge by Magneto-Ferrite Treatment:Observation on Lab Scale WWTPs [J]. IEEJ Transactions on Electrical and elactronic engineering,2009,4(4): 584-586.
    [56]Salsabil M R, Laurent J, Casellas M, Dagot C. Techno-economic evaluation of thermal treatment, ozonation and sonication for the reduction of wastewater biomass volume before aerobic or anaerobic digestion [J]. Journal of Hazardous Materials,2010,174(1-3):323-333.
    [57]Muller J A. Prospects and problems of sludge pretreatment processes [J]. Water Science and Technology,2001,44(10):121-128.
    [58]曾晓岚,龙腾锐,丁文川,许龙,邹璐.低能量超声波辐射提高好氧污泥活性研究[J].中国给水排水,2006,22(5):88-91.
    [59]Mohammed R S, Audrey P, Magali C, Christophe D. Pre-treatment of activated sludge:Effect of sonication on aerobic and anaerobic digestibility [J]. Chemical Engineering Journal,2009,148 (2-3):334-338.
    [60]Pilli S, Bhunia P, Yan S, Leblanc R J, Tyagi R D, Surampalli R Y. Ultrasonic pretreatment of sludge:a review [J]. Ultrasonics Sonochemistry,2011,18(1):1-18.
    [61]Xie B Z, Liu H, Yan Y X. Improvement of the activity of anaerobic sludge by low-intensity ultrasound [J]. Journal of Environmental Management,2009,90(1):260-264.
    [62]国家环境保护总局.《水和废水监测分析方法》(第四版)[M].北京:中国环境科学出版社,2002.
    [63]曹亚莉,郝晓地,王啟林,张向萍.一种测定活性污泥中高等微生物活性的方法[J].环境科学学报,2009,29(7):35-39.
    [64]李伶俐.超声波污泥减量化技术的研究[D].长沙:湖南大学,2007.
    [65]Young S J, Patrick R. An LCA of alternative wastewater sludge treatment Scenarios [J]. Resource Conservation and Recycling,2002,35:191—200.
    [66]Sanchez-Monedero, Mondini M A, Nobili C, Leita M D, Roig L A. Soil response to different stabilization degree of the treated organic matter [J].Waste Management,2004,24:325-332.
    [67]Singh R P, Agrawa M. Potential benefits and risks of land application of sewage sludge [J].Waste Management,2008,28:347-358.
    [68]Mohammed R S, Audrey P, Magali C, Christophe D. Pre-treatment of activated sludge:Effect of sonication on aerobic and anaerobic digestibility [J].Chemical Engineering Journal,2009,148:327-335.
    [69]Camacho P, Deleris S, Geaugey V, Ginestet P, Paul E. A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge [J]. Water Science and Techology. 2002,46 (10):79-87.
    [70]Eskicioglu C, Terzian N, Kennedy K J, Droste R L, Hamoda M. Athermal microwave effects for enhancing digestibility of waste activated slugde [J]. Water Research,2007,41(11):2457-2466.
    [71]Rai C L, Struenkmann G J, Rao P G. Influence of ultrasonic disintegration on sludge growth reduction and its estimation by respirometry [J]. Environmental Science Technology,2004,38 (21): 5779-5785.
    [72]Yan Y Y, Feng L Y, Zhang C J, Zhu H G, Qi Z. Effect of ultrasonic specific energy on waste activated sludge solubilization and enzyme activity [J]. African Journal of Biotechnology,2010,9 (12):1776-1782.
    [73]喻艳菁,丁国际,邱慧琴,王涌,焦正.超声处理对剩余污泥的粒径和溶出物的影响[J].环境科学学报,2009,29(4):703-708.
    [74]Wu J Y, Lin L D. Ultrasound induced stress responses of Panax ginseng cells:enzymatic browning and phenolic production [J]. Biotechnology progress,2002,18 (4):862-866.
    [75]Liu S, Zhu N, Li L Y. The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment:stabilization process and mechanism [J]. Bioresource Technology.2012,104:266-73.
    [76]张锡辉,刘勇弟.废水生物处理(第2版)[M].北京:化学工业出版社2003.
    [77]Daigger G T, Bailey E. Imporving aerobic digestion prethickening, and aerobic-anoxic operation:Four full-scale demonstrations [J].Water Enviornmental Research,2000,72(3):260-270.
    [78]Kim D J, Lee J. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion:effects of sludge hydrolysis efficiency and hydraulic retention time [J]. Bioprocess and Biosystems Engineering, 2012,35(1-2):289-96.
    [79]Neis U. Ultrasound in water, wastewater and sludge treatment [J].Water 21,2000, 11(6):36-39.
    [80]曹秀芹,陈珺,唐臣,欧阳利.超声处理后剩余污泥性质变化及分析[J].环境工程,2005,10(23):84-86
    [81]GB 18918-2002,城镇污水处理厂污染物排放标准.
    [82]陈岩,韩洪军.污泥好氧厌氧交替消化的实验研究[J].哈尔滨商业大学学报(自然科学版),2007,23(4):405-414.
    [83]张艳萍,彭永臻.好氧/缺氧消化降解污泥特征分析[J].环境工程学报,2009,3(4):673-676.
    [84]Yu G H, He P J, Shao L M, Zhu Y S. Enzyme extraction by ultrasound from sludge flocs [J]. Journal Environmental Science,2008,21:204-210.
    [85]Yu G H, He P J, Shao L M, Lee D J. Enzyme activities in activated sludge flocs [J]. Applied Microbiology and Biotechnology,2007,77(3): 605-12.
    [86]Kim Y K, Bae J H, Oh B K, Lee E H, Choi J W. Enhancement of proteolytic enzyme activity excreted from Bacillus strearothermophilus for a thermophilic aerobic digestion process [J].Bioresource Technology, 2002,82:157-164.
    [87]Xie B Z, Wang L, Liu H.. Using low intensity ultrasound to improve the efficiency of biological phosphorus removal [J]. Ultrasonics Sonochemitry,2008,15:775-781.
    [88]Xie B Z, Wang L, Liu H. Using low intensity ultrasound to improve the efficiency of biological phosphorus removal [J]. Ultrasonics Sonochemitry,2008,15:775-781.
    [89]Zhang B, Sun B S, Ji M, Liu H N, Liu X H. Qualitfication and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater [J]. Bioresource Technology,2010,101:3054-3059.
    [90]Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie van Leeuwenhoek,1998, 73(1):127-141.
    [91]Xia S Q, Li J X, Wang R C. Li J Y, Zhang Z Q.Tracking composition and dynamics of nitrification and denitrification microbial community in a biofilm reactor by PCR-DGGE and combining FISH with flow cytometry [J]. Biochemical Engineering Journal,2010,49 (3):370-378.
    [92]Yan S T, Miyanag K, Xing X H, Tan J Y.Succession of bacterial community and enzymatic activities of activated sludge by heat-treatment for reduction of excess sludge [J]. Biochemical Engineering Journal,2008,39:598-603.
    [93]Liu X C, Zhang Y, Yang M, Wang Z Y, Lv W Z. Analysis of bacterial community structures in two sewage treatment plants with different sludge properties and treatment performance by nested PCR-DGGE method [J]. Journal of Environmental Sciences,2007,19:60-66.
    [94]Nakasaki K, Tran L T H, Idemoto Y, Abe M, Rollon A P. Comparison of organic matter degradation and microbial community during thermophilic composting of two different types of anaerobic sludge [J]. Bioresource Technology,2009,100:676-682.
    [95]Liu H, Fang H P. Extraction of extracellular polymeric substances (EPS) of sludge [J]. Journal of Biotechnology,2002,95:249-256.
    [96]Lowry O H, Rosebrough N J, Farn A, Randall R. Protein measurement with the folin phenol reagent [J]. Journal of Biology Chemistry,1951, 193:265-275.
    [97]尹军,桑磊,李琳.ATP检测在活性污泥工艺中的应用进展[J].《吉林建筑工程学院学报》,2007,24(3):7-11.
    [98]苏俊峰,马放,侯宁,施波,赵立军,王弘宇.活性污泥总DNA不同提取方法的比较[J].生态环境,2007,16(1):47-49.
    [99]Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley T M, Woldendorp J W. Analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments [J]. Applied and Environmental Microbiology, 1997,63:1489-1497.
    [100]Muyzer G, Waalec D E, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology,1993,59:695-700.
    [101]Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations [J]. Applied and Environmental Microbiology,1997,63:4704-4712.
    [102]黄兴.MBR中EPS、 SMP和生物多样性的研究[D].天津大学,2008.
    [103]崔静,董岸杰,张卫江,苗凤海.热碱水解提取污泥蛋白质的实验研究[J].环境工程学报,2009,3(10):1889-1892.
    [104]韩萍芳,殷绚,吕效平.超声处理石化厂污水剩余污泥[J].化工环保,2003,23(6):133-137.
    [105]于安峰.好氧-厌氧耦合体系污泥减量化的机理研究及工程应用[D].北京:清华大学,2007.
    [106]刘志恒.现代微生物学[M].北京:科学出版社,2002.
    [107]Atkinson B W, Mudaly D D, Bux F. Contribution of Pseudomonas spp to phosphorus uptake in the anoxic zone of an anaerobic-anoxic-aerobic continuous activated sludge system[J].Water Science and Technology, 2001,43(1):139-146.
    [108]Xiao H F, Griffiths B, Chen X Y, Liu M Q, Jiao J G, Hu F, Li H X. Influence of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition [J]. Applied Soil Ecology,2010,45:131-137.
    [109]Li X R, Du B, Fu H X, Wang R F, Shi J H, Wang Y, Jetten M S M, Quan Z X. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community [J]. Systematic and Applied Microbiology, 2009,32:278-289.
    [110]Anceno A J. Rouseau P. Beline F. Shipin OV, Dabert P. Evolution of N-converting bacteria during the start-up of anaerobic digestion coupled biological nitrogen removal pilot-scale bioreactors treating high-strength animal waste slurry [J]. Bioresource Technology,2009,100:3678-3687.
    [111]毛菁菁.蔬菜废物中温单相厌氧消化性能研究[D].北京:北京化工大学,2010.
    [112]Cheneby D, Philippot L, Hartmann A, Henault C, Germon J.16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils [J]. FEMS Microbiology Ecology,2000,34 (2): 121-128.
    [113]Purkhold U, Pommerening-Roser A, Juretschko S, Schmid M C, Koops H P, Wagner M. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys [J]. Applied and Environmental Microbiology,2000,66:5368-5382.
    [114]Harms G, Layton A C, Dionisi H M, Gregory I R, Garrett V M, Hawkins S A, Robinson K G, Sayler G S. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant [J]. Environmental Science and Technology,2003,37:343-351.
    [115]Klappenbach J A, Saxman P R, Cole J R. rmdb:The ribosomal RNA operon copy number database [J]. Nucleic Acids Research,2001,29(1): 181-184.
    [116]Aakra A, Utaker J B, Nes I F. RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria:a phylogenetic approach [J]. International Journal of Systematic Bacteriology,1999,49:123-130.
    [117]Mctavish H, Fuchs J A, Hooper A B. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea [J]. Journal of Bacteriology,1993,175(8):2436-2444.
    [118]Zhang B, Sun B S, Ji M, Liu H N, Liu X H. Quantification and comparison of ammonia-oxidizing bacterial communities in MBRs treating various types of wastewater [J]. Bioresource Technology,2010,101: 3054-3059.
    [119]Stefano B, Elisa P, Graziano L, et al. Structure and single crystal spectroscopy of Green Fluorescent Proteins [J]. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics,2011,14 (6):824-833
    [120]吴沛桥,巴晓革,胡海,赵静.绿色荧光蛋白GFP的研究进展及应用[J].生物医学工程研究,2009,28(1):83-86.
    [121]Stewart C. Monitoring the presence and expression of transgenes in living plants [J]. Trends Plant Science,2005,10:390-396.
    [122]Roy J M, Isabelle H, Julie M, Hinton J C D. Green fluorescent protein as a marker for conditional gene expression in bacterial cells [J]. Methods in Enzymology,2002,358:43-66.
    [123]Tak Y K, Naoghare P K, Lee K H, Park S S, Song J M. Green fluorescent protein (GFP) as a direct biosensor for mutation detection:Elimination of false-negative errors in target gene expression [J]. Analytical Biochemistry,2008,380 (1):91-98.
    [124]Morales-Belpaire I and Gerin PA. Factors affecting the fate of active proteins introduced in wastewater sludges:Investigation with green fluorescent protein [J].Water Research,2007,41(8):1723-1733.
    [125]Morales-Belpaire I, Bindels F. Corvini P. Method for monitoring the fate of green fluorescent protein added to aerobic and anaerobic waste water sludge [J]. Water Research,2005,39:4933-4940.
    [126]Yu G H, He P J, Shao L M,Zhu Y S. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment [J]. Water Research,2008,42:1925-1934.
    [127]Li H, Jin Y Y, Rasool B M,Wang Z Y, Nie Y F. Effects of ultrasonic disintegration on sludge microbial activity and dewaterability[J]. Journal of Hazardous Materials,2009,161:1421-1426.
    [128]Onyeche T I, Schlafer O, Bormann H, Schroder C. Sievers M. Ultrasonic cell disruption of stabilised sludge with subsequent anaerobic digestion [J]. Ultrasonics,2002,40:31-35.
    [129]Chu C P, Lee D J, Chang B, You C S, Tay J H. "Weak'" ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids [J]. Water Research,2002,36:2681-2688.
    [130]Chu C P, Chang B V, Liao G S, Jean D S, Lee D J. Observations on changes in ultrasonically treated waste-activated sludge [J].Water Research,2001,35(4):1038-1046.
    [131]冯运玲,方先金,段素娟.城市污水处理厂优化污泥处理系统的研究[R].北京:北京市市政工程科学技术研究所,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700