用户名: 密码: 验证码:
微生物及其表面修饰材料吸附分离金属污染物行为和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业生产过程中产生的金属污染物对人类的健康和生态环境带来严重危害,吸附法在金属污染物治理中有着重要作用。生物材料以其原料来源广、形貌多样、价廉和环境友好等特点在吸附分离、功能材料等领域广为应用。本论文以不同形貌微生物作为生物材料来源,采用不同预处理方式和表面修饰方法制备了不同形貌的吸附材料,并用于几种典型金属污染物的吸附分离,主要研究结果如下:
     (1)培养、收集丝状真菌M7和KC,经低温冷冻干燥,制备M7-1、KC-2两种生物吸附剂。采用多种方法对其理化性能进行表征,结果表明两种真菌生物吸附剂细胞表面富含羟基、羧基等多种有利于金属离子吸附的活性官能团。考察了溶液pH、吸附时间和初始离子浓度等因素对M7-1、KC-2吸附性能的影响。M7-1吸附Cu(Ⅱ)和Pb(Ⅱ)的最佳pH分别为5.0和6.0;而KC-2吸附Pb(Ⅱ)和Ag(Ⅰ)的最佳pH分别为5.0和3.0。两种生物吸附剂的初始吸附速率随金属离子种类和初始浓度改变而发生变化。准二级吸附动力学模型能很好地描述M7-1、KC-2两种生物吸附剂对金属离子的吸附,表明吸附过程以化学吸附作用为主。M7-1、KC-2的吸附量随金属离子的初始浓度增加而增大。Langmuir吸附等温模型对M7-1、KC-2对金属离子的吸附平衡数据具有较好的拟合效果,表明两种生物吸附剂对金属离子的吸附以单分子层吸附为主。所制备的两种真菌生物吸附剂对金属离子有良好的吸附性能。
     (2)培养、收集芽孢杆菌,经低温冷冻干燥制备了生物吸附剂B1,利用溶胶-凝胶技术制备了表面包硅生物吸附剂B1Si,采用牺牲模板法制备了中空硅吸附剂B1SiS,并将B1、B2Si和B1SiS三种材料用于Pb(Ⅱ)的吸附分离研究。理化性能分析表征结果表明:B1和B1Si均保留了菌体的丰富官能团,B1Si机械性能增强;B1Si和B1SiS为无定形非晶体,表面包硅增大了B1Si和B1SiS的比表面积,并产生微孔结构。考察了溶液pH、吸附剂用量、离子浓度和吸附时间等对三种材料吸附性能的影响,以及吸附动力学、吸附等温模型和吸附热力学机理及行为。研究结果表明:在溶液pH分别为5.0、5.5和5.5时,B1、B1Si和B1SiS吸附Pb(Ⅱ)的效果最佳,吸附剂用量达到1.0 g/L后,吸附去除率提高有限,240 min后吸附过程趋于平衡。准二级吸附动力学模型较好地描述了三种吸附材料对Pb(Ⅱ)的吸附动力学行为;Langmuir吸附等温模型能很好地描述三种吸附材料的吸附平衡性能,B1、B1Si和B1SiS在318 K下对Pb(Ⅱ)的最大饱和吸附量分别为67.57、93.46和72.45 mg/g;热力学方程的拟合表明三种吸附材料对Pb(Ⅱ)的吸附是一个吸热和自发的过程。B1Si和B1SiS具有良好的解吸再生性能,共存离子Na(Ⅰ)和Ca(Ⅱ)基本不影响吸附材料对Pb(Ⅱ)的吸附性能。
     (3)采用改进的Stober法制备包硅酵母(SiY),并将其作为表面印迹载体材料,结合溶胶-凝胶技术和表面离子印迹技术制备基于包硅酵母的Pb(Ⅱ)表面离子印迹聚合物(IIP/SiY)。采用不同表征方法对IIP/SiY理化性能进行表征,结果表明:-NH2、-OH等是印迹聚合及离子吸附过程中的重要活性基团;SiY具有微孔结构和较大的比表面积,在SiY表面及微孔内的印迹聚合及模板离子洗脱等使IIP/SiY保持了较大的比表面积和孔体积。IIP/SiY对Pb(Ⅱ)吸附的最佳溶液pH为6.0。准二级吸附动力学模型较好地描述了IIP/SiY和NIP/SiY对Pb(Ⅱ)的吸附动力学行为,吸附速控步同时受粒子内扩散和液膜扩散影响。Langmuir等温模型成功拟合了IIP/SiY和NIP/SiY吸附Pb(Ⅱ)的等温平衡数据,318 K时IIP/SiY的单分子层饱和吸附容量为86.21 mg/g。选择性实验表明IIP/SiY对目标离子Pb(Ⅱ)具有更高的吸附量和选择性,解吸再生实验表明IIP/SiY可定量洗脱,具有良好的解吸再生性能。
Metal pollutants produced from industrial processes have produced severer effects on human health and ecosystem. Adsorption has been one of the important methods applied to metal pollutants treatment. The major advantages of biomaterials include:aboundant source, wide sources, diverse morphologies, low cost and environment friendly, then biomaterials have been intensively investigated and applied to such field as adsorption/separation and functional materials. Different microbial biomass were used as the sources of biomaterials and treated with several pretreatment methods and surface-modified materials. Then different adsorbents were synthesized and applied to adsorb and separate metal pollutants from aqueous solutions. The main conclusions were followed:
     (1) Biomass of filamentous fungus M7 and KC were cultured and collected. The two biosorbents, M7-1 and KC-2, were prepared by freeze-drying of the biomass. Differents methods were applied for the physical and chemical properties' characterization. Results indicated that abundant functional groups such as hydroxyl and carboxyl groups existed on cell surface, which were attributed to metal adsorption. The effects of such factors as solution pH, contact time and initial ion concentration on adsorption performance of M7-1 and KC-2 were investigated. The optimum values of solution pH for Cu(Ⅱ) and Pb(Ⅱ) adsorption onto M7-1 were 5.0 and 6.0, while the values for adsorption of Pb(Ⅱ) and Ag(Ⅰ) onto KC-2 were 5.0 and 3.0 respectively. The nature and initial concentration of metal ions affected the initial adsorption rates of the two fungal adsorbents. The kinetic data of the two biosorbents were better fitted by pseudo-second-order kinetic model, which indicated the chemical adsorption nature. The adsorption capacities of M7-1 and KC-2 increased with the increasing of initial ion concentration. Langmuir isotherm had the better correlation coefficients for M7-1 and KC-2, indicating the monolayer adsorption process. M7-1 and KC-2 were effective to adsorb metal ions.
     (2) Biomass of Bacillus sp. was cultured and collected. Three kinds of adsorbents were prepared with different technologies:B1 by freeze-drying, B1Si by coating silica with sol-gel methods, and hollow silica adsorbent (BISiS) by calcinating the bio-template, and were applied to Pb(Ⅱ) adsorption. Different methods were applied for physical and chemical performance characterization. The results indicated that B1 and B1Si maintained the abundant functional groups, and silica coating improved the mechanical strength of B1Si; B1Si and B1SiS were amorphous; and the silica particles on B1Si and B1SiS enlarged the specific surface and produced micropores. The effects of solution pH, sorbent dosage, ion concentration and contact time on adsorption capacity were investigated. The adsorption kinetic, isotherm, and thermodynamic mechanisms of the three adsorbents were determined. Results indicated that optimum values of solution pH for Pb(Ⅱ) adsorption on B1, B1Si and B1SiS were 5.0,5.5 and 5.5, respectively; after the mass of adsorbent reached 1.0 g/L the adsorption ratio obtained limited improvement; and after 240 min Pb(Ⅱ) adsorption on the three kinds of sorbents reached balance. Pseudo-second-order kinetic model better fitted the kinetic data and Langmuir isotherm could describe the adsorption process better. The maximum adsorption capacities of B1, B1Si and B1SiS at 318 K were 67.57,93.46 and 72.45 mg/g, respectively. Thermodynamics parameters confirmed the spontaneous and endothermic nature of adsorption process. B1Si and B1SiS were recyclable adsorbents. The coexisting ions, Na(Ⅰ) and Ca(Ⅱ), had little effects on the adsorption of Pb(Ⅱ) onto the three sorbents.
     (3) SiY was synthesized with yeast cells as bio-template by modified Stober method and applied as the supporter of surface-imprinting(SIP) technology. Pb(Ⅱ) surface-imprinting polymers(IIP/SiY) were prepared with sol-gel and SIP technologies. Physical and chemical characterization of IIP/SiY with several methods indicated that amino and hydroxyl groups played important roles during the processes of imprinting polymerization and adsorption; SiY obtained micropore structure and a large specific surface area; and IIP/SiY maintained the large specific surface area and pore volume because of the surface-imprinting polymerization on SiY and elution of objective ion. The optimum solution pH was 6.0 for Pb(Ⅱ) adsorption on IIP/SiY. Pb(Ⅱ) adsorption onto IIP/SiY followed well with pseudo-second-order kinetic and rate controlling step was affected both by intraparticle diffusion and film diffusion. The isothermal equilibrium data of Pb(Ⅱ) adsorption on IIP/SiY and NIP/SiY were well fitted by Langmuir isotherm model. The monolayer maximum capacity of IIP/SiY was 86.21 mg/g. Results of selective experiments indicated that IIP/SiY had better adsorption ability and selectivity for Pb(Ⅱ) ion. Pb(Ⅱ) adsorbed onto IIP/SiY could be eluted quantitatively and IIP/SiY was reusable.
引文
[1]曲荣君编.金属离子吸附材料制备.结构.性能[M].北京:化学工业出版社,2009:1-4.
    [2]Atia A A. Adsorption of silver(Ⅰ) and gold(Ⅲ) on resins derived from bisthiourea and application to retrieval of silver ions from processed photo films[J]. Hydrometallurgy,2005,80(1-2):98-106.
    [3]Lesmana S O, Febriana N, Soetaredjo F E, et al. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater[J]. Biochemical Engineering Journal,2009,44(1):19-41.
    [4]韩玲玲,曹慧昌,代淑娟,等.重金属污染现状及治理技术研究进展[J].有色矿冶,2011,27(3):94-97.
    [5]周洪英,王学松,李娜,等.3种大型海藻对含铅废水的生物吸附研究[J].环境工程学报,2010,4(2):331-336.
    [6]Coral M N U, Korkmaz H, Arikan B, et al. Plasmid mediated heavy metal resistance in Enterobacter spp. Isolated from Sofulu landfill, in Adana, Turkey[J]. Ann. Microbiol,2005,55(3):175-179.
    [7]Sadin O, Ersin K, Annarita P, et al. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis:Equilibrium, kinetic and thermodynamic studies[J]. Chem. Eng. J.,2009,152(1):195-206.
    [8]Fu F L, Wang Q. Removal of heavy metal ions from wastewaters:A review[J]. J. Environ. Manage.,2011,92(3):407-418.
    [9]Barakat M A. New trends in removing heavy metals from industrial wastewater[J]. Arabian J. Chem.,2011,4(4):361-377.
    [10]Chen Q Y, Luo Z, Hills C, et al. Precipitation of heavy metals from wastewater using simulated flue gas:sequent additions of fly ash, lime and carbon dioxide[J]. Water Res.,2009,43(10):2605-2614.
    [11]Huisman J L, Schouten G, Schultz C. Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry[J]. Hydrometallurgy,2006,83(1-4):106-113.
    [12]Matlock M M, Henke K R, Atwood D A. Effectiveness of commercial reagents for heavy metal removal from water with new insights for future chelate designs[J]. J. Hazard. Mater.,2002,92(2):129-142.
    [13]Ghosh P, Samanta A N, Ray S. Reduction of COD and removal of Zn2+from rayon industry wastewater by combined electro-Fenton treatment and chemical precipitation[J]. Desalination,2011,266(1-3):213-217.
    [14]Kongsricharoern N, Polprasert C. Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater[J]. Wat. Sci. Technol.,1995,31(9): 109-117.
    [15]Gray N F. Water Technology[M]. New York:John Wiley & Sons,1999,473-474.
    [16]Alvarez M T, Crespo C, Mattiasson B. Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids[J]. Chemosphere,2007,66(9):1677-1683.
    [17]Ozverdi A, Erdem M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide[J]. J. Hazard. Mater.,2006,137(1):626-632.
    [18]Alyuz B, Veli S. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins[J]. J. Hazard. Mater.,2009, 167(1-3):482-488.
    [19]Kang S Y, Lee J U, Moon S H, et al. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater [J]. Chemosphere,2004,56(2):141-147.
    [20]Motsi T, Rowson N A, Simmons M J H. Adsorption of heavy metals from acid mine drainage by natural zeolite[J]. Int. J. Miner. Process,2009,92(1-2):42-48.
    [21]雷兆武,孙颖.离子交换技术在重金属废水处理中的应用[J].环境科学与管理,2008,33(10):82-84.
    [22]Gode F, Pehlivan E. Removal of chromium (Ⅲ) from aqueous solutions using Lewatit S 100:the effect of pH, time, metal concentration and temperature[J]. J. Hazard. Mater.,2006,136(2):330-337.
    [23]Abo-Farha S A, Abdel-Aal A Y, Ashourb I A, et al. Removal of some heavy metal cations by synthetic resin purolite C100[J]. J. Hazard. Mater.,2009, 169(1-3):190-194.
    [24]Shahalam A M, Al-Harthy A, Al-Zawhry A. Feed water pretreatment in RO systems in the Middle East[J]. Desalination,2002,150(3):235-245.
    [25]Nataraj S K, Hosamani K M, Aminabhavi T M. Potential application of an electrodialysis pilot plant containing ion-exchange membranes in chromium removal[J]. Desalination,2007,217(1-3):181-190.
    [26]Murthy Z V P, Chaudhari L B. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters[J]. J. Hazard. Mater.,2008,160(1):70-77.
    [27]Danisa U, Aydiner C. Investigation of process performance and fouling mechanisms in micellar-enhanced ultrafiltration of nickel-contaminated waters[J]. J. Hazard. Mater.,2009,162(2-3):577-587.
    [28]Huang J H, Zeng G M, Zhou C F, et al. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration[J]. J. Hazard. Mater.,2010,183(1-3): 287-293.
    [29]Aroua M K, Zuki F M, Sulaiman N M. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration[J]. J. Hazard. Mater.,2007,147(3): 752-758.
    [30]Molinari R, Poerio T, Argurio P. Selective separation of copper(Ⅱ) and nickel(Ⅱ) from aqueous media using the complexationeultrafiltration process[J]. Chemosphere,2008,70(3):341-348.
    [31]崔志新,任庆凯,艾胜书,等.重金属废水处理及回收的研究进展[J].环境科学与技术,2010,33(12):375-377.
    [32]近藤精一,石川达雄,安部郁夫.吸附科学(李国希)[M].北京:化学工业出版社,2006:6-8.
    [33]Yang R T.吸附剂原理与应用(马丽萍,宁平,田森林)[M].北京:高等教育出版社,2010:11-12.
    [34]Aditya D, Rohan P, Suresh G. Nono-adsorbents for wastewater treatment:A review[J]. Res. J. Chem. Environ.,2011,15(2):1033-1044.
    [35]Barakat M A. New trends in removing heavy metals from industrial wastewater [J]. Arabian J. Chem.,2011,4(4):361-377.
    [36]Kurniawan T A, Chan G Y S, Lo W H, et al. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chem. Eng. J.,2006, 118(1-2):83-98.
    [37]Kurniawan T A, Chan G Y S, Lo W H, et al. Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals[J]. Sci. Total Environ.,2005, 366(2-3):409-426.
    [38]Leung W C, Wong M F, Chua H, et al. Removal and recovery of heavy metals by bacteria isolated from activated sludge treating industrial effluents and municipal wastewater[J]. Water Sci. Technol.,2000,41(12):233-240.
    [39]Jiang M Q, Jin X Y, Lu X Q, et al. Adsorption of Pb(Ⅱ), Cd(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) onto natural kaolinite clay[J]. Desalination,2010,252(1-3):33-39.
    [40]Apiratikul R, Pavasant P. Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash[J]. Chem. Eng. J.,2008,144(2):245-258.
    [41]Kuo C Y, Lin H Y. Adsorption of aqueous cadmium(II) onto modified multiwalled carbon nanotubes following microwave/chemical treatment[J]. Desalination,2009,249(2):792-796.
    [42]Wang H J, Zhou A L, Peng F, et al. Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II) [J]. J. Colloid Interface Sci.,2007,316(2): 277-283.
    [43]Dias J M, Alvim-Ferraz M C M, Almeida M F, et al. Waste materials for activated carbon preparation and its use in aqueousphase treatment:a review[J]. J. Environ. Manage.,2007,85(4):833-846.
    [44]Jusoh A, Shiung L S, Ali N, et al. A simulation study of the removal efficiency of granular activated carbon on cadmium and lead[J]. Desalination,2007,206(1-3): 9-16.
    [45]Park H G, Kim T W, Chae M Y, et al. Activated carbon-containing alginate adsorbent for the simultaneous removal of heavy metals and toxic organics[J]. Process Biochem.,2007,42(10):1371-1377.
    [46]Pillay K, Cukrowska E M, Coville N J. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution[J]. J. Hazard. Mater.,2009,166(2-3):1067-1075.
    [47]Guo M X, Qiu G N, Song W P. Poultry litter-based activated carbon for removing heavy metal ions in water[J]. Waste Manage.,2010,30(2):308-315.
    [48]Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water:a review[J]. J. Hazard. Mater.,2003,97(1-3):219-243.
    [49]Bose P, Bose M A, Kumar S. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide[J]. Adv. Environ. Res.,2002,7(1):179-195.
    [50]Nah I W, Hwang K Y, Jeon C, et al. Removal of Pb ion from water by magnetically modified zeolite[J]. Miner. Eng.,2006,19(14):1452-1455.
    [51]Pan B C, Zhang Q R, Zhang W M, et al. Highly effective removal of heavy metals by polymer-based zirconium phosphate:a case study of lead ion[J]. J. Colloid Interface Sci.,2007,310(1):99-105.
    [52]Abdel-Fattah T M, Haggag S M S, Mahmoud M E. Heavy metal ions extraction from aqueous media using nanoporous silica[J]. Chem. Eng. J.,2011,175: 117-223
    [53]Waseem M, Mustafa S, Naeem A, et al. Cd2+ sorption characteristics of iron coated silica[J]. Desalination,2011,277(1-3):221-226.
    [54]Repo E, Petrus R, Sillanpaa M, et al. Equilibrium studies on the adsorption of Co(Ⅱ) and Ni(Ⅱ) by modified silica gels:One-component and binary systems[J]. Chem. Eng. J.,2011,172(1):37-385.
    [55]Ciriminna R, Cara P D, Sciortino M, et al. Catalysis with Doped Sol-Gel Silicates[J]. Adv. Syn. Catal.,2011,353(5):677-687.
    [56]Vallet-Regi M, Izquierdo-Barba I, Colilla M. Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery [J]. Phil. Trans. R. S. A-Mathemat. Eng. Sci.,2012,370(1963):1400-1421.
    [57]Lenoble V, Chabroullet C, Shukry R, et al. Dynamic arsenic removal on a MnO2-loaded resin[J]. J. Colloid Interface Sci.,2004,280(1):62-67.
    [58]Shao W, Li X, Cao Q, et al. Adsorption ofarsenate and arsenite anions from aqueousmedium by usingmetal(Ⅲ)-loaded amberlite resins[J]. Hydrometallurgy, 2008,91(1-4):138-143
    [59]罗凡,董滨,毕研斌,等.螯合树脂吸附金属阳离子的应用及其研究进展[J].水处理技术,2011,37(1):23-27.
    [60]Roy P K, Rawat A S, Rai P K. Synthesis characterisation and evaluation of polydithiocarbamate resin supported on macroreticular styrene-divinylbenzene copolymer for the removal of trace and heavy metal ions[J]. Talanta,2003,59(2): 239-246.
    [61]陈盈,颜丽,关连珠,等.不同来源腐殖酸对铜吸附量和吸附机制的研究[J].土壤通报,2006,37(3):479-481.
    [62]张真怡,李广贺.腐殖酸负载载体对菲的吸附能效[J].化工学报,2010,61(4):875-878.
    [63]李鸿江,温致平,赵由才.大孔吸附树脂处理工业废水研究进展[J].安全与环境工程,2010,17(3):21-24,35.
    [64]计建洪.离子交换树脂处理重金属污染的水[J].天津化工,2011,25(2): 60-62.
    [65]李兆星,蔡振国,郭汉法.高强度凝胶树脂的合成及其在电厂凝结水精处理系统中的应用[J],离子交换与吸附,2006,22(4):369-374
    [66]贺婧,颜丽,等.不同来源腐殖酸的组成和性质的研究[J].土壤通报,2003,34(4):343-345.
    [67]Gadd G M. Interactions of fungi with toxic metals[J]. Phytologist,1993,124: 25-60.
    [68]Volesky B, Holan Z. Biosorption of heavy metals[J]. Biotechnol. Progress,1995, 11(3):235-250.
    [69]Vijayaraghavan K, Yun Y S. Bacterial biosorbents and biosorption[J]. Biotechnol. Adv.,2008,26(3):266-291.
    [70]Kapoor A, Viraraghavan T. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters:a review[J]. Bioresour Technol,1995,53: 195-206.
    [71]Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae[J]. Water Res.,2003,37:4311-4330.
    [72]陈灿,王建龙.酿酒酵母吸附重金属离子的研究进展[J].中国生物工程杂志,2006,26(1):69-76.
    [73]Ahluwalia S S, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater[J]. Biores. Technol.,2007,98(12):2243-2257.
    [74]戴灵鹏,宋锡园,曹琦,等.紫萍干体对镉离子的生物吸附[J].环境科学与技术,2009,32(9):9-12
    [75]Niu C H, Volesky B, Cleiman D. Biosorption of arsenic(V) with acid-washed crab shells[J]. Water Res.,2007,41(11):2473-2478.
    [76]Veglio F, Beolchini F. Removal of metals by biosorption:a review[J]. Hydrometallurgy,1997,44(3):301-316.
    [77]Wang J L, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae:A review. Biotechnol[J]. Adv.,2006,24(5):427-451.
    [78]Gupta R, Ahuja P, Khan S, et al. Microbial biosorbents:meetings challenges of heavy metals pollution in aqueous solution[J]. Current Sci.,2000,78(8):967-973.
    [79]Plette A C C, Benedetti M F, Riemsdijk W H. Competitive binding of protons, calcium, cadmium, and zinc to isolated cell walls of Gram-positive bacterium[J]. Environ. Sci. Technol.,1996,30(6):1902-1910
    [80]Lina V, Jenny D. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus[J]. J. Hazard. Mater.,2009,167(1-3): 713-726.
    [81]刘红娟,党志,张慧,等.蜡状芽孢杆菌抗重金属性能及对镉的积累[J].农业环境学报,2010,29(1):25-29.
    [82]徐卫华,刘云国,曾光明,等.硫酸盐还原菌及其还原解毒Cr(Ⅵ)的研究进展[J].微生物学通报,2009,36(7):1040-1045
    [83]何义超,刘云国,樊霆,等.棘孢曲霉(Aspergillus aculeatus)对Pb和Cd的吸附特征[J].环境工程学报,2010,4(1):137-141.
    [84]Mameri N, Boudries N, Belhocine D, et al. Batch zinc biosorption by a bacterial nonliving Streptomyces rimosus biomass[J]. Water Res.,1999,33(6):1347-1354.
    [85]黄富荣,尹华,彭辉,等.红螺菌对Cu2+的吸附研究[J].工业微生物,2005,35(1):16-20.
    [86]Akar T, Tunali S. Biosorption characteristics of aspergillus flavus biomass for removal of Pb(Ⅱ) and Cu(Ⅱ) ions from an aqueous solution[J]. Biores. Technol., 2006,97(15):1780-1787.
    [87]Dursun AY, Uslu G, Tepe O, Cuci Y, Ekiz HI. A comparative investigation on the bioaccumulation of heavy metal ions by growing Rhizopus arrhizus and Aspergillus niger[J]. Biochem. Eng. J.,2003,15(2):87-92.
    [88]Filipovic-Kovacevic Z, Sipos L, Briski F. Biosorption of chromium, copper, nickel and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions[J]. Food Technol. Biotechnol.,2000,38:211-216.
    [89]陈灿,王建龙.酿酒酵母对Ag+的吸附特性研究[J].环境科学,2008,29(11):3200-3204
    [90]Klimmek S, Stan H J, Wilke A, et al. Comparative analysis of the biosorption of cadmium, lead, nickel, and zinc by algae[J]. Environ. Sci. Technol.,2001,35(21): 4283-4288.
    [91]Tuzun I, Bayramoglu G, Yalcin E, et al. Equilibrium and kinetic studies on biosorption of Hg(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) ions onto microalgae Chlamydomonas reinhardtii[J]. J. Environ. Manage.,2005,77(2):85-92.
    [92]Inbaraj B S, Sulochana N. Carbonised jackfruit peel as an adsorbent for the removal of Cd(Ⅱ) from aqueous solution[J]. Biores. Technol.,2004,94(1):49-52.
    [93]Kobya M, Demirbas E, Senturk E, et al. Adsorption of heavy metal ions from aqueous solution by activated carbon prepared from apricot stone[J]. Biores. Technol.,2005,96(13):1518-1521.
    [94]王国慧.板栗壳对重金属Cr(Ⅵ)吸附性能的研究[J].环境工程学报,2009,3(5):791-794.
    [95]Low K S, Lee C K, Leo A C. Removal of metals from electroplating waste using banana pith[J]. Biores. Technol.,1995,51 (2-3):227-231.
    [96]Dahiya S, Tripathi R M, Hegde A G. Biosorption of lead and copper from aqueous solutions by pre-treated crab and arca shell biomass[J]. Biores. Technol., 2008,99(1):179-187.
    [97]Kuyucak N, Volesky B. Biosorption by fungal biomass[M]. Florida:CRC Press, 1990:173-198.
    [98]Kuyucak N. Feasibility of biosorobents application[M]. Florida:CRC press, 1990:372-377
    [99]Karthikeyan S, Balasubramanian R, Iyer C S P. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions[J]. Biores. Technol.,2007,98(2):452-455.
    [100]Farkas V. Biosynthesis of cell wall of fungi[J]. Microbiological Reviews,1980, 44:117-141.
    [101]Naja G, Mustin C, Volesky B, et al. A high-resolution titrator:a new approach to studying binding sites of microbial biosorbents[J]. Water Res.,2005,39(4): 579-588.
    [102]夏彬彬,仲崇斌,魏德州,等.胶质芽孢杆菌对Zn2+、Cd2+的生物吸附[J].生物技术,2008,18(3):80-84.
    [103]王建龙,陈灿.生物吸附法去除重金属离子的研究进展[J].环境科学学报,2010,30(4):673-701.
    [104]王雅静,戴惠新.生物吸附法分离废水中重金属离子的研究进展[J].冶金分析,2006,26(1):40-45.
    [105]Wojciech P, Wladyslaw R. Modeling the effect of surface heterogeneity in equilibrium of heavy metal ion biosorption by using the ion exchange model[J]. Environ. Sci. Technol.,2009,43(19):7465-7471.
    [106]张玉刚,龙新宪,陈雪梅.微生物处理重金属废水的研究进展[J].环境科学与技术,2008,31(6):58-63.
    [107]Beveridge T J, Murray R G E. Sites of metal deposition in the cell walls of Bacillus subtilis[J]. J. Biotechnol.,1980,141(2):876-887.
    [108]Gupta R, Ahuja P, Khan S., et al. Microbial biosorbents:meetings challenges of heavy metals pollution in aqueous solution[J]. Current Sci.,2000,78(8):967-973.
    [109]Farkas V. Structure and biosynthesis of fungal cell walls:Methodological approaches [J]. Folia Microbiologica,2003,48(4):469-478
    [110]Fourest E, Roux J C. Heavy metal biosorption by fungal mycelial by-products: mechanism and influence of pH[J]. Appl. Microbiol. Biot.,1992,37:399-403.
    [111]Muraleedharan T R, Venkobachar C. Mechanism of biosorption of copper(II) by ganoderma lucidium[J]. Biotechnol. Bioeng.,1990,35:320-325.
    [112]Tsezos M, Volesky B. Biosorption of uranium and thorium[J]. Biotechnol. Bioeng.,1981,23:583-604.
    [113]Akthar M, Sastry K, Mohan P. Mechanism of metal ion biosorption by fungal biomass[J]. Biometals.,1996,9:21-28.
    [114]Kapoor A, Viraraghavan T. Heavy metal biosorption sites in Aspergillus niger[J]. Biores. Technol.,1997,61(3):221-227.
    [115]Tobin J M, Cooper D G, Neufeld R J. Uptake of metal ions by Rhizopus arrhizus biomass[J]. Appl. Environ. Microb.,1984,47(4):821-825.
    [116]Kuyucak N, Volesky B. Accumulation of cobalt by marine alga[J]. Biotechnol. Bioeng.,1989,33(7):809-814.
    [117]Gupta R, Ahuja P, Khan S, et al. Microbial biosorbents:meetings challenges of heavy metals pollution in aqueous solution[J]. Current Scienc.,2000,78(8): 967-973.
    [118]Mullen L D, Wolf D C, Ferris F G, et al. Removal of silver from photographic wastewater effluent using Acinetobacter baumannii BL54[J]. Appl. Environ. Microb.,1989,55:3143-3149.
    [119]Figueira M M, Volesky D, Mathieu H J. Instrumental analysis study of iron species biosorption by Sargassum biomass[J]. Environ. Sci. Technol.,1999, 33(11):1840-1846.
    [120]Chen C, Wang J L. Correlating metal ionic characteristics with biosorption capacity using QSAR model[J]. Chemosphere,2007a.69(10):1610-1616.
    [121]Chen C, Wang J L. Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae[J]. Appl. Microbiol. Biot.,2007b,74(4): 911-917.
    [122]陈灿,王建龙.利用QSAR模型探讨分类条件下金属离子性质与酵母吸附容量之间的关系[J].环境科学学报,2008,28(1):76-82).
    [123]Sadin O., Ersin K., Annarita P., et al. Biosorption of Cd, Cu, Ni, Mn and Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub.sp. decanicus and Geobacillus thermoleovorans sub.sp. stromboliensis:Equilibrium, kinetic and thermodynamic studies[J]. Chem. Eng. J.,2009,152(1):195-206.
    [124]蔡佳亮,黄义,郑维爽.生物吸附剂对废水重金属污染物的吸附过程和影响因子研究进展[J].农业环境科学学报,2008,27(4):1297-1305.
    [125]李青彬,褚松茂,徐伏,等.芽孢杆菌生物吸附处理含铜废水研究[J].环境科学与技术,2007,30(5):89-92.
    [126]Sibel T, Ahmet C, Tamer A. Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil[J]. Chem. Eng. J.,2006,115(3): 203-211.
    [127]傅锦坤,刘月英,古萍英,等.乳酸杆菌A90吸附还原Ag(Ⅰ)的谱学表征[J].物理化学学报,2000,16(9):779-782.
    [128]邱廷省,尹艳芬,蔡鲁晟,等.含锌重金属废水藻类吸附处理技术[J].水资源保护,2009,25(5):70-73.
    [129]Kratochvil D, Volesky B. Advances in the biosorption of heavy metals[J]. Trends Biotechnol.,1998,16(7):291-300.
    [130]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002,233-248.
    [131]Singelton I, Simmons P. Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae[J]. J. Chem. Technol. Biot.,1996,65(1): 21-28.
    [132]徐雪芹,李小明,杨麒,等.丝瓜瓤固定简青霉吸附废水中Pb2+和Cu2+的机理[J].环境科学学报,2008,28(1):95-100.
    [133]Ozer A, Ozer D. Comparative study of the biosorption of Pb (Ⅱ), Ni(Ⅱ) and Cr (Ⅵ) ions onto S. cerevisiae:determination of biosorption heats[J]. J. Hazard. Mater. B,2003,100(1-3):219-229.
    [134]郜瑞莹,陈灿,王建龙.酿酒酵母吸附Zn2+和Cd2+的动力学[J].清华大学学报(自然科学版),2007,47(6):897-890.
    [135]冯咏梅,于文华,常秀莲,等.裙带菜吸附重金属镍离子的研究[J].水处理 技术,2004,30(5):276-278.
    [136]Malik A. Metal bioremediation through growing cells[J]. Environ. Int.,2004, 130(2):261-278.
    [137]Kaewsarn P. Biosorption of copper(Ⅱ) from aqueous solutions by pre-treated biomass of marine algae Padina sp. [J]. Chemosphere,2002,47(10):1081-1085.
    [138]Hashim M A, Chu K H. Biosorption of cadmium by brown, green, and red seaweeds[J]. Chem. Eng. J.,2004,97(2-3):249-255.
    [139]Schiewer S, Volesky B. Ionic strength and electrostatic effects inbiosorption of divalentmetal ions and protons[J]. Environ. Sci. Technol.,1997a,31(9): 2478-2485.
    [140]Schiewer S, Volesky B. Ionic strength and electrostatic effects in biosorption ofprotons[J]. Environ. Sci. Technol.,1997b,31(7):1863-1871.
    [141]Daughney C J, Fein J B. The effect of ionic strength on the adsorption of H+, Cd2+, Pb2+, and Cu2+ by Bacillus subtilis and Bacillus licheniformis:A surface complexation model[J]. J. Colloid Interf. Sci.,1998,198(1):53-77.
    [142]Matheickal J T, Yu Q. Biosorption of lead(Ⅱ) and copper(Ⅱ) from aqueous solutions by pretreated biomass of Australian marine algae[J]. Biores. Technol., 1999,69(3):223-229.
    [143]Vieira R H S F, Volesky B. Biosorption:A solution to pollution[J]. Intern. Microbiol.,2000,3(1):17-22.
    [144]王建龙,韩英健,钱易.微生物吸附金属离子的研究进展[J].微生物学通报,2000,27(6):449-445.
    [145]夏梦翎,孙小梅,黄冰,等.三乙烯四胺修饰啤酒废酵母菌吸附Hg(Ⅱ)的性能[J].应用化学,2011,11:1317-1322.
    [146]Wang J L. Biosorption of copper(Ⅱ) by chemically modified biomass of Saccharomyces cerevisiae[J]. Process Biochem.,2002,37(8):847-850.
    [147]Cihangir N, Saglam N. Removal of cadmium by Pleurotus sajur-caju basidomycetes[J]. Acta Biotechnol.,1999,19(2):171-177.
    [148]Rincon J, Gonzalez F, Ballester A, et al. Biosorption of heavy metals by chemically-activated alga Fucus vesiculosus[J]. J Chem. Technol. Biotechnol., 2005,80(12):1403-1407.
    [149]黄晓婷,孙长斌,陈小玲,等.预处理方式对微紫青霉菌吸附Cu2+的影响及其吸附机理[J].生物工程学,2009,25(1):76-83.
    [150]唐宏科,杨利娟.中空聚合物微粒的研究进展[J].化学世界,2011,9:569-572.
    [151]赵静贤.模板法制备Ti02光催化剂的研究进展[J].上海化工,2011,10:22-25.
    [152]Zhu Y F, Feng Y, Yu D B, et al. Synthesis of MoS2 nanotubule arrays by aluminum oxide template[J]. Rare Metal Materials Eng.,2011,40(S2):339-341.
    [153]张瑛,颜世峰,饶水琴,等.三聚氰胺甲醛微球的制备及模板法构建聚谷氨酸基微胶囊[J].高等学校化学学报,2011,32(10):2447-2452.
    [154]蔡斌,胡炜,杜宝吉,等.模板法及其在纳米材料制备领域的应用研究进展[J].材料导报,2010,24(8):107-112.
    [155]王凤春,臧雪松,吕莹,等.硅钨酸掺杂的聚苯胺:实物模板法制备及催化性能[J].无机化学学报,2011,27(11):2195-2200.
    [156]马占华,薛沙,李军,等.硬模板法合成晶态介孔金属氧化物研究进展[J].现代化工,2011,31(8):18-21,23.
    [157]Fan X J, Song X Q, Yang X H, et al. Facile fabrication of ZrO2 hollow porous microspheres with yeast as bio-templates [J]. Mater. Res. Bull.,2011,46(8): 1315-1319.
    [158]姜小阳,李霞.纳米二氧化硅微球的应用及制备进展[J].硅酸盐通报,2011,30(3):577-582.
    [159]Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire[J]. Nature,1998,391:775-778.
    [160]马金艳,曲凤玉,徐莹璞,等.以天然植物为模板合成高度有序的多级复合孔材料[J].高等学校化学学报,2010,31(6):1103-1107.
    [161]Zhou H, Fan T X, Zhang D, et al. Novel bacteria-templated sonochemical route for the in situ one-step synthesis of ZnS hollow nanostructures[J]. Chem. Mater., 2007,19(9):2144-2146.
    [162]Bai B, Wang P P, Wu L, et al. A novel yeast bio-template route to synthesize Cr2O3 hollow microsphere[J]. Mater. Chem. Phys.,2009,114(1):26-29.
    [163]Bai B, Guan W X, Li Z Y, et al. Bio-template route for facile fabrication of Cd(OH)@yeast hybrid microspheres and their subsequent conversion to mesoporous CdO hollow microsphere[J]. Mater. Res. Bull.,2011,46(1):26-31.
    [164]Huang M J, Wang Y J. Synthesis of calcium phosphate microcapsules using yeast-based biotemplate[J]. J. Mater. Chem.,2012,22(2):626-630.
    [165]Arriagada F J, Osseo-Asare K. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion:Effects of the water/surfactant molar ratio and ammonia concentration[J]. J. Colloid Interface Sci.,1999,211(2):210-220
    [166]方培育,吴建青.高温稳定TiO2-SiO2复合粉体的两步水热法制备[J].华南理工大学学报(自然科学版),2009,37(12):1-6.
    [167]Liang Y J, Ouyang J, Wang H Y, et al. Synthesis and characterization of core-shell structured SiO2@YVO4:Yb3+, Er3+ microspheres[J]. Appl. Surf. Sci., 2012,258(8):3689-3694.
    [168]Santos G A, Santos C M B, Silva S W, et al. Sol-gel synthesis of silica-cobalt composites by employing Co3O4 colloidal dispersions[J]. Colloids and Surface A., 2012,395:217-224.
    [169]Xu R, Jia M, Li F T, et al. Preparation of mesoporous poly(acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye[J]. Appl Phys. A-Mater.,106(3):747-755.
    [170]Kirubaharan A M K, Selvaraj M, Maruthan K, et al. Synthesis and characterization of nanosized titanium dioxide and silicon dioxide for corrosion resistance applications[J]. J. Coat. Technol. Res.,2012,9(2):163-170.
    [171]Nagamine S, Sugioka A, Konishi Y Preparation of TiO3 hollow microparticles by spraying water droplets into an organic solution of titanium tetraisopropoxide[J]. Mater. Lett.,2007,61(2):444-447.
    [172]Roy P, Bertrand G, Coddet C. Spray drying and sintering of zirconia based hollow powders[J]. Powder. Technol.,2005,157(1-3):20-26.
    [173]Chung Y S, Lim J S, Park S B, et al. Templated synthesis of silica hollow particles by using spray pyrolysis[J]. Chem. Eng. J.,2004,37:1099-1104.
    [174]Caruso F, Caruso R A, Mohwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J]. Sci.,1998,282(5391):1111-1113.
    [175]Kim H C, Jia X Q, Christopher M S. A route to nanoscopic SiO2 posts via block copolymer templates[J]. Adv. Mater.,2001,13(11):795-797.
    [176]Yang M,Wang G,Yang Z Z. Synthesis of hollow spheres with mesoporous silica nano-particles shell[J]. Mater. Chem. Phys.,2008,111(1):5-8.
    [177]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interf. Sci,1968,26(1):62-69.
    [178]Lu Y, Joe M, Xia Y N. Synthesis and crystallization of hybrid spherical colloids composed of polystyrene cores and silica shells[J]. Langmuir,2004,20(8): 3464-3470.
    [179]王鹏程,柳松,刘梦溪.单分散纳米二氧化硅的制备与分散性研究[J].无机盐工业,2011,43(2):40-43.
    [180]聂鲁美,张俊计,陈积世,等.单分散二氧化硅微球的制备及反应机理[J].陶瓷学报,2010,31(1):75-78.
    [181]Weinzierl D, Lind A, Kunz W. Hollow SiO2 microspheres produced by coating yeast cells[J]. Cryst. Growth Des.,2009,9(5):2318-2323.
    [182]Nomura T, Morimoto Y, Ishikawa M, et al. Synthesis of hollow silica microparticles from bacterial templates. Adv. Powder Technol.,2010,21(1):8-12.
    [183]于源华,何乃彦,刘美湘.根霉菌为模板矿化合成纳米结构SiO2材料的研究[J].分析化学,2008,36(1):83-86.
    [184]张博,任天瑞,吴青海,等.以集胞藻6803为生物模板制备二氧化硅中空微球[J].过程工程学报,2011,11(1):107-112.
    [185]刘朋程,张旭东,何文,等.无定形介孔SiO2纳米粉体的仿生合成及表征[J].化工新型材料,2010,38(4):110-114.
    [186]Fischer E. Synthese der mannose und lavulose[J]. Chem. Ges.,1890,23: 799-805.
    [187]Pauling L J. A theory of the structure and process of formation of antibodies[J]. Am. Chem. Soc.,1940,62(3):2643-2657.
    [188]Dichey F H. The preparation of pecific adsobents[J]. J. Proc. Natl. Aead. Sci., 1949,35:277-299.
    [189]Wulff G, Sarhan A. The use of polylmer with enzyme-analogoue structures for the resolution of racemates[J]. Angew. Chem. Int. Ed. Engl.,1972,11(2):341-346.
    [190]Wulff G, Sahan A, Zabrocki K. Enzyme-analongue built polymers and the use for the resolution of racemates[J]. Tetrahedron. Lett.,1973,14(44):4329-4332.
    [191]Wulff G, Vesper W, Grobe-Einsler R, et al. Enzyme-analogue built polymers,4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates[J]. Macromol. Chem Physics,1977,178(10):2799-2816.
    [192]Wulff G, Vesper W. Preparation of chromatographic sorbents with chiral cavities for racemic resolution[J]. J Chromatography A,1978,167:171-186.
    [193]小宫山真.分子印迹学:从基础到应用(吴世康,汪鹏飞)[M].北京:科学出版社,2006:12-15.
    [194]Tsukagoshi K, Yu K Y, Maeda M, et al. Metal ion selective adsorbent prepared by surface imprinting polymerization[J]. Bull. Chem. Soc. Jpn.,1993,66(114): 2646-2652.
    [195]张卫英,李晓,朱兰兰.表面分子印迹材料制备研究进展[J].现代化工,2005,25(12):20-23.
    [196]Norlow O, Glad M, Mosbach K. Acrylic polymer preparation containing recognition sites obtained by imprinting with substrates [J]. J. Chromatogr.,1984, 299:29-41.
    [197]Andersson L, Ekberg B, Mosbach K. Synthesis of a new amino acid based cross-linker for preparation of substrate selective acrylicpolymers[J]. Tetrahedron Lett.,1985,26(30):3623-3624.
    [198]Kodakari N, Katada N, Niwa M. Molecular sieving property of silica overlayer on tin oxide generated by organic template[J]. Appl Surf Sci,1997,121(122): 292-295.
    [199]Jiang X M, Tian W, Zhao C D, et al. A novel sol-gel-material prepared by a surface imprinting technique for the selective solid-phase extraction of bisphenol A[J]. Talanta,2007,72(1):119-125.
    [200]Visnjevski A, Schomacker R, Yilmaz E, et al. Catalysis of a Diels-Alder cycloaddition with differently fabricated molecularly imprinted polymers[J]. Catal. Commun.,2005,6(9):601-606.
    [201]Suzuki A,Tada M, Sasaki T, et al. Design of catalytic sites at oxide surfaces by metal-complex attaching and molecular imprinting techniques [J]. J. Mol. Catal. A-Chem.,2002,182(1):125-136。
    [202]罗勇,刘岚,李丽虹,等.硅胶表面茶碱分子印迹聚合物的制备及性能研究[J].中山大学学报(自然科学版),2005,44(6):49-53.
    [203]Rao T P, Daniel S, Gladis J M. Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction(IIP-SPE)[J]. Trac-trend. Anal. Chem.,2004,23(1):28-35.
    [204]邓勃.印迹技术在痕量金属分离和富集中的应用[J].中国无机分析化学,2011,1(1):1-6.
    [205]牟怀燕,高云玲,付坤,等.离子印迹聚合物研究进展[J].化工进展,2011, 30(11):2467-2480
    [206]安富强,高保娇,李刚.硅胶表面铜(Ⅱ)离子印迹聚乙烯亚胺的制备及结合特性研究[J].高分子学报,2007,4:366-373.
    [207]Muge A, Sinem M, Serap S, et al. Ion-imprinted beads for molecular recognition based mercury removal from human serum[J]. Int. J. Biol. Macromol., 2007,40(2):159-166.
    [208]Zhai Y H, Liu Y W, Chang X J, et al. Metal ion-small molecule complex imprinted polymer membranes:Preparation and separation characteristics [J]. React. Funct. Polym.,2008,68(1):284-291.
    [209]Zhao J C, Han B, Zhang Y F, et al. Synthesis of Zn(Ⅱ) ion-imprintedsolid-phase extraction material and its analytical application[J]. Anal. Chim. Acta.,2007, 603(1):87-92.
    [210]Zheng H, Zhang D, Wang W Y, et al. Highly selective determination of palladium(Ⅱ) after preconcentration using Pd(Ⅱ)-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique[J]. Microchim. Acta,2006, 157(1-2):7-11.
    [211]张强华,石莹莹,熊清平,等.分子印迹壳聚糖/凹土分离富集-火焰原子吸收光谱测定痕量铅[J].应用化学,2011,28(9):1073-1081.
    [212]Li C X, Gao J, Pan J M, et al. Synthesis, characterization, and adsorption performance of Pb(Ⅱ)-imprinted polymer in nano-TiO2 matrix[J]. J. Environ. Sci., 2009,21(12):1722-1729.
    [213]Liu Y, Liu Z C, Gao J, et al. Selective adsorption behavior of Pb(Ⅱ) by mesoporous silica SBA-15-supported Pb(Ⅱ)-imprinted polymer based on surface molecularly imprinting technique[J]. J. Hazard. Mater.,2011,186(1):197-205.
    [214]Bayramoglu G, Arica M Y. Synthesis of Cr(Ⅵ)-imprinted poly(4-vinyl pyridine-co-hydroxyethyl methacrylate) particles:Its adsorption propensity to Cr(Ⅵ)[J]. J. Hazard. Mater.,2011,187(1-3):213-221.
    [215]Ren Y M, Wei X Z, Zhang M L. Adsorption character for removal Cu(Ⅱ) by magnetic Cu(Ⅱ) ion imprinted composite adsorbent[J]. J. Hazard. Mater.,2008, 158(1):14-22.
    [216]He Q, Chang X J, Wu Q, et al. Synthesis and applications of surface-grafted Th(Ⅳ)-imprinted polymers for selective solid-phase extraction of thorium(Ⅳ) [J]. Anal. Chim. Acta.,2007,605(2):192-197.
    [217]Gao B J, An F Q, Zhu Y. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles[J]. Polymer,2007,48(8):2288-2297.
    [218]Wang X.W., Zhang L, Ma C.L., et al. Enrichment and separation of silver from waste solutions by metal ion imprinted membrane[J]. Hydrometallurgy,2009, 100(1-2):82-86.
    [219]Li Q, Su H J, Li J, et al. Studies of adsorption for heavy metal ions and degradation of methyl orange based on the surface of ion-imprinted adsorbent[J]. Process Biochem.,2007,42(3):379-383.
    [220]Liu Y H, Cao X H, Hua R, et al. Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel[J]. Hydrometallurgy,2010, 104(2):150-155.
    [221]Gladis J M, Rao T P. Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/seperation of traces of uranium[J]. Microchim. Acta.,2004,146(3-4):251-258.
    [222]Buhani, Suharso, Sumadi. Adsorption kinetics and isotherm of Cd(Ⅱ) ion on Nannochloropsis sp biomass imprinted ionic polymer[J]. Desalination,2010, 259(1-3):140-146.
    [223]Pan J.M., Zou X.H., Yan Y.S., et al. An ion-imprinted polymer based on palygorskite as a sacrificial support for selective removal of strontium(Ⅱ) [J]. Appl. Clay Sci.,2010,50(2):260-265.
    [224]http://www.xudianchiwang.com/photo/show-10.html
    [225]戚建华,梁宗锁,邓西平,等.板栗壳吸附Cu2+的平衡与动力学研究及工艺设计[J].环境科学学报,2009,29(10):2141-2147.
    [226]Hameed B H, Tan I A W, Ahmad A L. Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon[J]. Chem. Eng. J.,2008,144 (2):235-244.
    [227]Machida M, Yamazaki R, Aikawa M, et al. Role of minerals in carbonaceous adsorbents for removal of Pb(Ⅱ) ions from aqueous solution[J]. Sep. Purif. Technol.,2005,46(1-2):88-94.
    [228]姜烛,张宝善,胡海霞.霉菌吸附重金属离子的研究进展[J].微生物学通报,2008,35(7):1129-1135.
    [229]Rahele R, Mojgan N, Amir A Ri. Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water:Kinetics, isotherms and error analysis[J]. Chem. Eng. J.,2011,171(3):1004-1011.
    [230]Xi F, Wu J. Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent[J]. J. Chromatogr. A, 2004,1057(1-2):41-47.
    [231]Shi Q H, Tian Y, Dong X Y, et al. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption[J]. Biochem. Eng.J.,2003,16(3): 317-322.
    [232]任月明.铜离子印迹磁性生物吸附材料的制备及性能研究,[博士学位论文].哈尔滨:哈尔滨工程大学,2008:95-97.
    [233]Dai S, Burleigh M C, Shin Y S, et al. Imprint coating:A novel synthesis of selective functionalized ordered mesoporous sorbents[J]. Angew Chem. Int. Ed., 1999,38(9):1235-1239.
    [234]陈灿,王建龙.酿酒酵母对放射性核素铯的生物吸附[J].原子能科学技术,2008,42(4):308-313.
    [235]Bueno B Y M, Torem M L, Molina F, et al. Biosorption of lead(Ⅱ), chromium(Ⅲ) and copper(Ⅱ) by R. opacus:Equilibrium and kinetic studies[J]. Mineral Eng.,2008,21(1):65-75.
    [236]石光,胡小艳,郑建泓,等.Cu(Ⅱ)印迹壳聚糖交联多孔微球去除水溶液中金属离子[J].离子交换与吸附,2010,26(2):103-110.
    [237]Kosaraju S L, D'ath L, Lawrenc A. Preparation and characterisation of chitosan microspheres for antioxidant delivery[J]. Carbohydr. Polym.,2006,64(2): 163-167.
    [238]王玲玲,闫永胜,邓月华,等.铅离子印迹聚合物的制备、表征及其在水溶液中的吸附行为研究[J].分析化学,2009,37(4):537-542.
    [239]Li C X, Gao J, Pan J M, et al. Synthesis, characterization, and adsorption performance of Pb(Ⅱ)-imprinted polymer in nano-TiO2 matrix[J]. J. Environ. Sci., 2009,21(12):1722-1729.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700