用户名: 密码: 验证码:
长江口盐沼潮沟大型浮游动物群落生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐沼湿地的初级生产力通过潮汐涨退和生物输移运送到河口与近海生态系统,从而可能成为维持这些生态系统食物网中次级生产力的重要的能量基础。目前,许多科学研究已经证实大型浮游动物是河口浮游动物中主要的生物量组成部分,而且也是初级生产者和较高营养级消费者之间非常关键的中间联系。因此,认识河口盐沼大型浮游动物的群落特征以及与其它生物间的营养联系,对于理解盐沼湿地生态系统功能及其与邻近水体间物质与能量联系具有重要意义。本研究选择长江口崇明东滩盐沼湿地和九段沙盐沼湿地作为研究地点,以大型浮游动物的群落结构和输入输出估算为切入点,结合稳定同位素和胃含物分析等技术手段分析揭示大型浮游动物与其它盐沼生物间的取食关系,初步探讨了大型浮游动物在长江口盐沼湿地与河口生态系统间物质联系及交换中的作用。主要研究结果如下:
     1)为了解长江口盐沼湿地大型浮游动物种类组成、多样性及时空分布格局,2010年5月和10月,使用插网作为采样工具,选择崇明东滩盐沼中盐度和浊度较高的小南港潮沟以及盐度和浊度较低的团结沙潮沟,进行了大型浮游动物的群落结构调查。共采集到大型浮游动物9目、18科、28个分类单元。在数量上占优势的是哲水蚤Calanoida、蟹类蚤状幼体Zoea larvae of crabs和短额刺糠虾Acanthomysis brevirostris,约占总捕获个体数得98%。方差分析结果表明大型浮游动物的分布具有明显的季节格局和空间差异。哲水蚤、蟹类幼体和仔稚鱼主要出现在5月,短额刺糠虾主要出现在10月。团结沙潮沟的优势类群/种类是仔稚鱼,而小南港潮沟优势类群/种类为哲水蚤、蟹类幼体和短额刺糠虾。
     2)为了解大型浮游动物在盐沼湿地内的输入输出,2010年3月至2011年2月,使用帆式张网作为采样工具,开展了为期一周年的九段沙盐沼湿地潮沟大型浮游动物逐月研究,计算大型浮游动物相对流通量。周年总体而言,九段沙盐沼是大型浮游动物的源,盐沼向邻近水域有净输出。蟹类蚤状幼体、寄居蟹蚤状幼体Zoea larvae of Diogenidae、中国周眼钩虾Perioculodes meridichinensis、日I本沼虾幼体Juvenile of Macrobrachium nipponense、短额刺糠虾和尖叶大狐钩虾Grandifoxus cuspis为主要的生物输出,其中盐沼地蟹类在繁殖季节释放大量幼体对于盐沼向河口输出浮游动物生物量具有重要意义。部分类群、种类类如哲水蚤、仔稚鱼、天津厚蟹大眼幼体Megalopae of Helice tientsinensis、中华蜾赢蜚Corophium sinensis和谭氏泥蟹幼蟹Juvenile of Ilyoplax deschampsi则出现输入大于输出的现象,除了一些幼蟹或大眼幼体到盐沼生态系统完成其成体的生活史以外,哲水蚤、中华蜾赢蜚等可能为盐沼捕食者所食。
     3)为了解进入盐沼生态系统的大型浮游动物的食源和互花米草入侵对其食源的影响,使用稳定同位素分析技术比较研究了崇明东滩盐沼北部互花米草入侵区域5条潮沟和南部土著植被区5条潮沟内大型浮游动物的食源。结果表明,北部潮沟中的有机颗粒物碳稳定同位素值显著高于南部潮沟,说明互花米草的存在影响了潮沟中的颗粒有机物,表明潮沟中具有来自盐沼高等植物包括互花米草分解形成的颗粒有机碎屑,是浮游动物的可能食源。北部潮沟中桡足类、仔稚鱼和虾类幼体的碳稳定同位素值显著高于南部潮沟,说明它们摄食了潮沟中来自盐沼初级生产力的颗粒有机物,而北部潮沟中的这些动物摄取了部分来自互花米草的有机质。
     4)为了解盐沼潮沟大型浮游动物中的优势类群——蟹类幼体的能量基础,于2007年秋季和冬季和2008年春季和夏季,采集了互花米草和芦苇单一植被斑块内的盐沼蟹类,对优势种类进行了胃含物解剖分析。结果表明优势蟹类天津厚蟹Helice tientsinensis和无齿螳臂相手蟹Chiromantes dehaani胃含物的主要组成成分是植物性材料,分别占其食物组成的37.64-83.99%(天津厚蟹)和52.77-84.16%(无齿螳臂相手蟹)。互花米草入侵并不改变蟹类的取食特性,植物性材料仍然在这两种蟹类的胃含物中占据了最大比重。这说明蟹类通过其成体取食盐沼维管束植物,并于繁殖季节释放幼体,在利用并向河口输出盐沼有机质方面起了一定作用。
     可见,有些盐沼大型浮游动物可通过摄食和阶段性的幼体释放把盐沼植物(包括外来植物)初级生产力输出到河口及外海生态系统,但也有一部分大型浮游动物类群由河口向盐沼净输入,从而将外源有机质带进盐沼生态系统。综上所述,大型浮游动物通过其自身的活动,以及与其它生物的食物网联系,在盐沼与河口/外海生态系统间的物质输移过程中扮演着重要的角色。
It is a general accepted view that the primary productions of saltmarshes could delivered to the adjacent estuary and offshore ecosystem through tide dynamic an biological migration and might become main energy resource maintaining the secondary productivity of the food web in these ecosystems. At present, a lot of previous studies have confirmed that the most biomass of zooplankton was contributed by macrozooplankton. Also many studies have revealed the intermediate linking role of macrozooplankton between primary producers and higher level consumers. Therefore, learning the community structure of salt marsh macrozooplanktons and the trophic connection between them and other biomes is very important for us to understanding the wetland ecosystem function and the linking of material and energy with adjacent water ecosystem. In this study, saltmarshes in the Chongming Island and Jiuduansha Islands of the Yangtze River estuary are selected as study sites. We estimated the input and output of the macrozooplankton in the salt marsh creeks. Meanwhile, the technology of stable isotopic analysis and stomach content analysis were used to reveal the predator and prey relationships between macrozooplankton and others organisms. Also the role of macrozooplankton in the material connection and exchange between the salt marsh and the estuarine ecosystem was preliminarily explored. The main results are listed as follows:
     1) To understand the composition, diversity and the spatial and temporal pattern of macrozooplankton in saltmarshes of the Yangtze River estuary, using fyke-net, I researched the community structures of macrozooplankton in Xiaonangang creek which had higher salinity and turbidity and Tuanjiesha creek which had lower salinity and turbidity, of the Chongming Dongtan salt marsh. During the study, a total of 28 taxa belonging to 9 orders and 18 families were found from the salt marsh creeks of the Yangtze River estuary over two seasons. The most numerically abundant taxa were Calanoida, zoea larvae of crabs and Acanthomysis brevirostris, which contributing about 98% of the total abundance. The results of variance analysis showed that macrozooplankton distribution has obvious seasonal pattern and spatial difference. Calanoida, zoea larvae of crabs and fish larva mainly occurred in May. However A. brevirostris were found mainly in October. The dominant taxon of Tuanjiesha creek was fish larva. But the dominant taxa of Xiaonangang creek were Calanoida, zoea larvae of crabs and A. brevirostris.
     2) To access the input and output of the macrozooplankton in the salt marsh wetland, an annual research about macrozooplankton fluxes was carried out monthly using stow net in Jiuduansha saltmarshes from March 2010 to February 2011. The relative flux of macrozooplankton was calculated through the formula of'Ferrari index'(Ⅰ). The calculation result suggested Jiuduansha salt marsh was the resource of macrozooplankton. There is net flux from Jiuduansha salt marsh to adjacent water ecosystem. Zoea larvae of crabs, zoea larvae of Diogenidae, Perioculodes meridichinensis, juvenile of Macrobrachium nipponense, A. brevirostris and Grandifoxus cuspis were the main biological output. Among them, a mass of larvae of salt marsh crabs releasing in breeding season had important significance for the total output. On the contrary, the input of other taxa, e.g. Calanoida, fish larva, Megalopae of Helice tientsinensis, Corophium sinensis and juvenile of Ilyoplax deschampsi, was more than output. I think some of juvenile crabs or megalopae of crabs coming into the salt marsh to finish its adult life cycle. And also the Calanoida and Corophium sinensis might be preyed in the salt marsh.
     3) To understand the food source of macrozooplankton and the effects of the Spartina alterniflora invasion to its diet, I compared the food source of macrozooplankton collected from creeks lying in the north of Chongming Dongtan salt marsh having S. alterniflora distribution with macrozooplankton capture from creeks lying in the south of Chongming Dongtan salt marsh just having native plant distributing area through stable isotopic analysis technology. The results showed that carbon stable isotope values of POM, particulate organic matter, in the north creeks were significantly higher than in the south creeks. The reason was the invasion of S. alterniflora affected the POM in the creeks. It can be explained that there were POM coming decomposition from S. alterniflora and higher vegetation in the creeks. And the POM might be food resource of macrozooplankton. The carbon stable isotope values of Calanoida, fish larva and juvenile shrimps from the north creeks were significantly higher than that from the south creeks. The result suggested that macrozooplankton feeding POM from salt marsh primary productivity. Moreover macrozooplankton in the north creeks ingested organic matter from Sp. alterniflora.
     4) In order to understand the energy basis of crab larvae, which is the dominant macrozooplankton species in salt marsh creeks, we sampled crabs from.S. alterniflora and Phragmites anstralis monoculture patches in autumn and winter of 2007 as well as spring and summer of 2008, and made stomach content analysis of the dominant species. The results indicate that the main components of the stomach content of the dominant species, Helice tientsinensis and Chiromanles dehaani arc plant material. The plant material accounts for 37.64-83.99% and 52.77-84.16% in the food composition of H. tientsinensis and C. dehaani, respectively. S. alterniflora invasion does not alter the feeding characteristics of crabs. Plant material still accounts for the largest proportion in the stomach contents of the two dominant crabs. It indicates that salt marsh crabs play a role in transport organic matters from salt marsh to estuary through the adult crab feeding on the vascular plants in salt marsh and release larvae in breeding season.
     All the results shows that some salt marsh macrozooplankton could transport the primary productivity of the salt marsh plants (including exotic plant) through feeding and releasing larvae to the estuarine and offshore ecosystem. But also there were part of macrozooplankton taxa having net input from estuary to the salt marsh, thus exogenous organic matter were brought into the salt marsh ecosystem. In summary, macrozooplankton play an important role between the salt marsh and estuary offshore ecosystem material transporting processes through its own activities, as well as other biological food web links
引文
蔡德陵,李红燕,唐启升.2005.黄东海生态系统食物网连续营养谱的建立:来自碳氮稳定同位素方法的结果[J].中国科学C辑(生命科学),35:123-130.
    蔡德陵,王荣,毕洪生.2001.渤海生态系统的营养关系:碳同位素研究的初步结果[J].生态学报,21:1354-1359.
    陈家宽.2003.上海九段沙湿地自然保护区科学考察集[M].北京:科学出版社.
    陈亚瞿,叶维均,徐兆礼等.2003.长江口滨海湿地生态特征及生态修复[C].载于《上海市湿地保护研讨会论文集》,上海科技出版社.
    陈亚瞿,徐兆礼,王云龙等.1995.长江口河口峰区浮游动物生态研究Ⅱ:种类组成、群落结构、水系指示种[J].中国水产科学,2(1):59-63.
    陈中义.2004.互花米草入侵国际重要湿地崇明东滩的生态后果[D].上海:复旦大学博士学位论文.
    陈中义,傅萃长,王海毅等.2005.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响[J].湿地科学,3:1-7.
    高慧,彭筱葳,李博等.200.互花米草入侵九段沙河口湿地对当地昆虫多样性的影响[J].生物多样性,14:400-409.
    郭沛涌,沈焕庭,刘阿成等.2003.长江河口浮游动物的种类组成、群落结构及多样性[J].生态学报,23(5):892-900.
    黄加祺.1983.九龙江口大、中型浮游动物的种类组成和分布[J].厦门大学学报(自然科学版),22(1):88-95.
    黄加祺,陈柏云.1985.九龙江口浮游桡足类的种类组成和分布[J].台湾海峡,4(1):79-88.
    黄加祺,陈柏云.1986.九龙江口桡足类生态的初步研究[C].甲壳动物论文集,北京:科学出版社,p:260.
    黄加祺,郑重.1986.盐度对九龙江口桡足类分布的影响[J].海洋学报,8(1):83-91.
    黄华梅,张利权,高占国.2005.上海滩涂植被资源遥感分析研究[J].生态学报,25:2686-2693.
    纪焕红,叶属峰.2006.长江口浮游动物生态分布特征及其与环境的关系[J].海洋科学,30(6):23-30.
    金斌松.2010.长江口盐沼潮沟鱼类多样性时空分布格局[D].上海:复旦大学.
    金显仕,唐启升.2002.渤海食物网营养动力学及资源优势种交替——群落结构与生物生产力[C].见:苏纪兰,唐启升.中国海洋生态系统动力学研究Ⅱ:渤海生态系统动力学过程.北京:科学出版社,p:312-354.
    赖伟,林温育,堵南山.1991.长江口浮游动物生态的初步研究[C].第四次中国海洋湖沼科学会议论文集.北京:科学出版社,158-163.
    李强,安传光,马强等.2010.崇明东滩潮间带潮沟浮游动物的种类组成及多样性[J].生物多样性,18(1):67-75.
    李少菁,上官步敏,苏鸣.1986.九龙江口海区歪水蚤卵的形态比较及温度对产卵量和孵化率的影响[J].甲壳动物论文集,北京:科学出版社,240-241.
    廖成章.2007.互花米草入侵对长江口盐沼生态系统碳氮循环的影响[D].上海:复旦大学.
    林霞,李春月,陆开宏.2001.温度和盐度对细巧华哲水蚤存活率的影响[J].宁波大学学报(理工版),14(1):43-46.
    刘光兴,陈洪举,朱延忠等.2007.三峡工程一期蓄水后长江口及其邻近水域浮游动物的群落结构[J].中国海洋大学学报,37(5):789-794.
    刘学勤.2006.湖泊底栖动物食物组成及食物网研究[D].武汉:中国科学院武汉水生生物研究所.
    陆健健.1996.中国湿地的分类[J].环境导报,1:1-2.
    马云安,马志军.2006.崇明东滩国际重要湿地[M].北京:中国林业出版社.
    彭建华,郑金秀,马沛明等.2008.长江口南北支浮游甲壳动物的比较及南水北调工程影响预测[J].生态学杂志,27(11):1948-1954.
    沈国英,黄凌风,郭丰等.2010.海洋生态学[M],北京:科学出版社.
    王金庆.2008.长江口优势掘穴蟹类栖息地选择和生态系统工程效应[D].上海:复旦大学.
    王卿,安树青,马志军等.2006.入侵植物互花米草——生物学、生态学及管理[J].植物分类学报,44:559-588.
    王卿.2007.长江口盐沼植物群落分布动态及互花米草入侵的影响[D].上海:复旦大学.
    王荣,李超伦,张武昌等.2002.浮游动物种群动力学及其对生态系统中的调控作用——稳定同位素营养级分析[C].见:苏纪兰,唐启升.中国海洋生态系统动力学研究Ⅱ:渤海生态系统动力学过程.北京:科学出版社,154-163.
    谢东风,范代读,高抒.2006.崇明岛东滩潮沟体系及其沉积动力学[J].海洋地质与第四纪底质,26(2):9-16.
    徐宏发,赵云龙.2005.海市崇明东滩鸟类自然保护区科学考察集[C].北京:中国林业出版社,2-24.
    徐玲,李波,袁晓等.2006.崇明东滩春季鸟类群落特征[J].动物学杂志,41(6):120-126.
    徐晓军,王华,由文辉等.2006.崇明东滩互花米草群落中底栖动物群落动态的初步研究[J].海洋湖沼通报,(2):89-95.
    徐兆礼,洪波,朱明远等.2003.东海赤潮高发区春季浮游动物生态特征的研究.应用生态学报[J],14(7):1081-1085.
    徐兆礼.2005.长江口北支水域浮游动物的研究[J].应用生态学报,16(7):1341-1345.
    许振祖,黄加祺.1983.九龙江口水螅水母、管水母、钵水母和栉水母类的生态研究[J].厦门大学学报(自然科学版),22(3):364-373.
    杨泽华,童春富,陆健健.2007.盐沼植物对大型底栖动物群落的影响[J].生态学报,27:4387-4393.
    姚俊杰,褚素兰,沈昆根等.2009.贵州市花溪河大型浮游动物的初步研究[J].水生态学杂志,2(4):29-34.
    袁兴中,,陆健健.2001.长江口潮沟大型底栖动物群落的初步研究[J].动物学研究,22:211-215.
    张衡,何文珊,童春福等.2008.崇西湿地冬季潮滩鱼类种类组成及多样性分析[J].长江流域资源与环境,16:308-313.
    赵平,袁晓,唐思贤等.2003.崇明东滩冬季水鸟的种类和生境偏好[J].动物学研究,24:387-91.
    郑重.1964.浮游生物学概论[M].北京:科学出版社.
    郑重.1982.河口浮游生物研究[J].自然杂志,5(3):218-222.
    郑重,李少氰,许振祖.1984.海洋浮游生物学[M].北京:海洋出版社,468-494.
    周慧,仲阳康,赵平等.2005.崇明东滩冬季水鸟生态位分析[J].动物学杂志,40(1):59-65.
    周淑婵.2009.长江口盐沼潮间带潮沟水体中浮游动物时空分布格局[D].上海:复旦大学.
    Amend M, Shanks A,1999. Riming of larval release in the mole crab Emerita taloida [J]. Marine Ecology Progress Series,183:295-300.
    Albaina A, Villate F, Uriarte I,2009. Zooplankton communities in two contrasting Basque estuaries (1999-2001):reporting changes associated with ecosystem health [J]. Journal of Plankton Research,31(7):739-752.
    Allen DM, Johnson WS, Ogburn-matthews V,1995. Trophic relationships and seasonal utilization of salt-marsh creeks by zooplanktivorous fishes [J]. Environmental Biology of Fishes,42:37-50.
    Anger K, Spivak E, Luppi T, Bas C, Ismael D,2008. Larval salinity tolerance of the South American salt-marsh crab, Neohelice (Chasmagnathus) granulata: physiological constraints to estuarine retention, export and reimmigration [J]. Helgoland Marine Research,62(2):93-102.
    Anna RA,2003. Community Structure and Trophic Interactions in Restored and Natural Estuarine Mudflats:Complex Trophic Cascades and Positive and Negative Effects of Nutrients [D]. USA, Los Angeles:University of California.
    Archambault P, Bourget E,1999. Influence of shoreline configuration on spatial variation of meroplanktonic larvae, recruiment and diversity of benthic subtidal communities [J]. Journal of Experimental Marine Biology and Ecology,238: 161-184.
    Azovsky AI, Saburova MA, Chertoprood ES,2005. Selective feeding of littoral harpacticoids on diatom algae:hungry grourmands [J]? Marine Biology 148: 327-337.
    Badano El, Villarroel E, Bustamante RO, Marquet, PA, Cavieres, LA.2007. Ecosystem engineering facilitates invasions by exotic plants in high-Andean ecosystems [J]. Journal of Ecology,95(4):682-688.
    Badosa A, Boix D, Brucet S, Lopez-Flores R, Quintana XD,2006. Nutrients and zooplankton composition and dynamics in relation to the hydrological pattern in a confined Mediterranean salt marsh (NE Iberian Peninsula) [J]. Estuarine, Coastal and Shelf Science,66,513-522.
    Ballard L, Myers A,2000. Observations on the seasonal occurrence and abundance of gelatinous zooplankton in Lough Hyne, Co. Cork, South-West Ireland [M]. Biology and Environment:Proceedings of the Royal Irish Academy 100B (2): 75-83.
    Banas NS, McDonald PS, Armstrong DA,2009. Green crab larval retention in Willapa Bay, Washington:an intensive lagrangian modeling approach [J]. Estuaries and Coasts,32(5):893-905.
    Barnes RK, Mann KH,1980. Fundamentals of Aquatic Ecosystems [M]. Blackwell Scientific Publications, Oxford.
    Barthelemy RM, Jule Y, da Prato JL, Liberge M,2006. Expression of serotonin and enkephalins in calanoid copepods (Crustacea):an immunohistochemical study [J]. Journal of Plankton Research,28(11):1047-1053.
    Bas C, Luppi T, Spivak E,2005. Population structure of the South American Estuarine crab, Chasmagnathus granulatus (Brachyura:Varunidae) near the southern limit of its geographical distribution:comparison with northern populations [J]. Hydrobiologia,537:217-228.
    Bednarski M, Morales-Ramirez A,2004. Composition, abundance and distribution of macrozooplankton in Culebra Bay, Gulf of Papagayo, Pacific coast of Costa Rica and its value as bioindicator of pollution [J]. Revista de Biologia Tropical,52(2): 105-119.
    Beeftink WG,1977. The coastal salt marshes of western and northern Europe:an ecological and phytosociological approach. In:Chapman V (eds) Wetland coastal ecosystems [C]. Elsevier, Amsterdam, pp:109-155.
    Belnap J, Phillips SL, Sherrod SK,2005. Soil biota can change after exotic plant invasion:does this affect ecosystem processes [J]? Ecology,86(11):3007-3017.
    Bocher P, Cherel Y, Labat JP, Mayzaud P, Razouls S, Jouventin P,2001. Amphipod-based food web:Themisto gaudichaudii caught in nets and by seabirds in Kerguelen waters, southern Indian Ocean [J]. Marine Ecology Progress Series,223:261-276.
    Bouillon S, Raman AV, Dauby P, Dehairs F,2002. Carbon and nitrogen stable isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem (Andhra Pradesh, India) [J]. Estuarine Coastal and Shelf Science,54(5):901-913.
    Bousfield EL, Heard RW,1986. Systematics, Distributional ecology, and some host-parasite relationships of Uhlorchestia Uhleri (Shoemaker) and U. Spartinophila, new species (Crustacea:Amphipoda), endemic to salt marshes of the Atlantic coast of north America [J]. Journal of Crustacean Biology,6(2): 264-274.
    Bouillon S, Koedam N, Raman AV, Dehairs F,2002. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests [J]. Oecologia, 130:441-448.
    Boyd RJ,1973. A survey of the plankton of Strangford Lough Co [J]. Down. Proceedings of the Royal Irish Academy,73 (B):231-267.
    Brucet S, Boix D, Lopez-Flores R, Badosa A, Moreno-Amich R, Quintana XD,2005. Zooplankton structure and dynamics in permanent and temporary Mediterranean salt marshes:taxon-based and size-based approaches [J]. Archiv Fur Hydrobiologie,162,535-555.
    Brucet S, Boix D, Lopez-Flores R, Badosa A, Quintana XD,2006. Size and species diversity of zooplankton communities in fluctuating Mediterranean salt marshes [J]. Estuarine, Coastal and Shelf Science,67,424-432.
    Brugnoli-Olivera E, Diaz-Ferguson E, Delfino-Machin M, Morales-Ramirez A, Arosemena AD,2004. Composition of the zooplankton community, with emphasis in copepods, in Punta Morales, Golfo de Nicoya, Costa Rica [J]. Revista de Biologia Tropical,52(4):897-902.
    Brusati ED, Grosholz ED,2009a. Effect of native and invasive cordgrass on Macoma petalum density, growth, and isotopic signatures [J]. Estuarine Coastal and Shelf Science,71:517-522.
    Brusati ED, Grosholz ED,2009b. Does invasion of hybrid cordgrass change estuarine food web [J]? Biological Invasions,11(4):917-926
    Cai WJ, Wiebe WJ, Wang YC, Sheldon JE,2000. Intertidal marsh as a source of dissolved inorganic carbon and a sink of nitrate in the Satilla River-estuarine complex in the southeastern US [J]. Limnology and Oceanography,45(8): 1743-1752.
    Canuel AE, Cloern JE, Ringelberg D B, Guckert JB, Rau, GH.1995. Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay [J]. Limnology and Oceanography,40: 67-81.
    Ceccherelli VU, Mistri M, Franzoi P,1994. Predation impact on the meiobenthic harpacticoid Canuella perplexa in a lagoon of the Po River Delta [J], Italy. Estuaries,17(1):283-287.
    Champalberta G, Pagano M, Sene P, Corbin D,2007. Relationships between meso-and macro-zooplankton communities and hydrology in the Senegal River Estuary [J]. Estuarine, Coastal and Shelf Science,74:381-394.
    Chalkia D, Pitta, P,2003. Temporal variation and dynamics of pelagic variables in two contrasting coastal ecosystems [J]. Journal of the Marine Biological Association, U.K.83:23-25.
    Chapman VJ,1992. Ecosystems of the World-wet coastal ecosystems [Mj. vol I,2nd edn. Elsevier Science Publishers, Amsterdam.
    Clark DR, Azem KV, Hays GC,2001. Zooplankton abundance and community structure over a 4000 Km transect in the north-east Atlantic [J]. Journal of Plankton Research,23:365-372.
    Creach V, Schrickea MT, Bertru G, Mariotti A,1997. Stable isotopes and gut analyses to determine feeding relationships in saltmarsh macroconsumers [J]. Estuarine. Coastal and Shelf Science,44:599-611.
    Criales MM, Robblee MB, Browder JA, Cardenas H, Jackson TL,2011. Field observations on selective tidal-stream transport for post larval and juvenile pink shrimp in Florida Bay [J]. Journal of Crustacean Biology,31(1):26-33.
    Currin CA, Newell SY, Paerl HW,1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt marsh food webs considerations based on multiple stable-isotope analysis [J]. Marine Ecology Progress Series,121: 99-116.
    Currin CA, Wainright SC, Able KW,2003. Determination of food web support and trophic position of the mummichog, Fundulus heteroclitus, in New Jersey smooth cordgrass(Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes [J]. Estuaries,26:495-510.
    Dalpadado P, Ellertsen B, Melle W, Dommasnes,2000. Food and feeding conditions of Norwegian spring-spawning herring (Clupea harengus) through its feeding migrations [J]. Journal of Marine Science,57:843-857.
    Dame R, Chrzanowski T, Bildstein K., Kjerfve B and 7 others.1986. The outwelling hypothesis and North Inlet, South Carolina [J]. Marine Ecology Progress Series 33,217-229.
    Dame RF, Allen DM,1996. Between estuaries and the sea [J]. Journal of Experimental Marine Biology and Ecology 200:169-185.
    Darren S Gewant, Stephen M Biolens,2005. Macrozooplankton and micronekton of the lower San Francisco estuary:seasonal, interannual, and regional variation in relation to environmental conditions [J]. Estuaries,28(3):473-485.
    Dean AF, Bollens SM, Simenstad C, Cordell J,2005. Marshes as sources or sinks of an estuarine mysid:demographic patterns and tidal flux of Neomysis kadiakensis at China Camp marsh, San Francisco estuary [J]. Estuarine Coastal and Shelf Science,63(1-2):1-11.
    Debashish M, Saintilan N, Williams RJ,2009. Zooplankton inputs and outputs in the saltmarsh at Towra Point, Australia [J]. Wetlands Ecology Manage,17:225-230.
    Descroix A, Harvey M, Roy S, Galbraith PS.,2005. Macrozooplankton community patterns driven by water circulation in the St. Lawrence marine system, Canada [J]. Marine Ecology Progress Series,302:103-119.
    Dias N, Sprung M, Hassall M,2005. The abundance and life histories of terrestrial isopods in a salt marsh of the Ria Formosa lagoon system, southern Portugal [J]. Marine Biology,147:1343-1352.
    Dittel AI, Epifanio CD, Lizano O,1991. Flux of crab larvae in a mangrove creek in the Gulf of Nicoya, Costa Rica [J]. Estuarine, Coastal and Shelf Science,32: 129-140.
    Dittmar T, Hertkorn N, Kattner G, Lara RJ,2006. Mangroves, a major source of dissolved organic carbon to the oceans [J]. Global Biogeochemical Cycles,22(1), 7pp.
    Duarte CM,2000. Marine biodiversity and ecosystem services:an elusive link [J]. Journal of Experimental Marine Biology and Ecology,250:117-132.
    Dulepova EP,2008. Dynamics of structural and functional characteristics of zooplankton in the Northern Sea of Okhotsk in the "Warm" and "Cold" years [J]. Oceanology,48(3):378-382.
    Dussart BM,1965. Les Differentes categories de plancton [J]. Hydrobiologia,26: 72-74.
    Eggers T, Jones TH,2000. You are what you eat...or are you [J]? Trends in Ecology and Evolution,15(7):265-266.
    Ehrenfeld JG, Scott N.2001. Invasive species and the soil:effects on organisms and ecosystem processes [J]. Ecological Applications,11:1259-1260.
    Fanelli E, Cartes JE, Rumolo P, Sprovieri M,2009. Food-web structure and trophodynamics of mesopelagic-suprabenthic bathyal macrofauna of the Algerian basin based on stable isotopes of carbon and nitrogen [C]. Deep-sea Research Part I-Oceanographic Research Papers,56(9):1504-1520.
    Fanelli E, Cartes JE, Papiol V,2011. Food web structure of deep-sea macrozooplankton and micronekton off the Catalan slope:Insight from stable isotopes [J]. Journal of Marine Systems,87(1):79-89.
    Farber S,1987. The value of coastal wetlands for protection of property against hurricane wind damage [J]. Journal of Environmental Economics and Management,14:143-151.
    Feng ZX, Guan RY,1964. Feeding habit of Sesarma dehaani and its relationship with agriculture [J]. Chinese Journal of Zoology,2:81-82.
    Fejes E, Roelke D, Gable G, Heilman J, McInnes K, Zuberer D,2005. Microalgal productivity, community composition, and pelagic food web dynamics in a subtropical, turbid salt marsh isolated from freshwater inflow [J]. Estuaries,28, 96-107.
    Fernadez-Rosado M.J, Lucena J,2001. Space-time heterogeneities of the zooplankton distribution in La Concepcion reservoir (Istan Malaga; Spain) [J]. Hydrobiologia 455:157-170.
    Feyrer F, Matern SA,2000. Changes in fish diets in the San Francisco Estuary following the invasion of the clam Potamocorbula amurensisi. Interagency Ecological Program for the San Francisco Estuary [J]. Environmental Biology of Fishes,67:277-288.
    Flores-Verdugo JF, Day JW, Briseno-Duenas R,1987. Structure, litterfall, decomposition and detritus dynamics of mangroves in a Mexican coastal lagoon with an ephemeral inlet [J]. Marine Ecology Progress Series,35:83-90.
    French JR, Stoddart DR,1992. Hydrodynamics of salt-marsh creek systems-implications for marsh morphological development and material exchange [J]. Earth Surface Processes and Landforms,17(3):235-252.
    Froneman PW, Pakhomov EA, Gurney LJ, Hunt BPV,2002. Predation impact of carnivorous macrozooplankton in the vicinity of the Prince Edward Island archipelago (Southern Ocean) in austral autumn 1998. Deep-sea Research Part Ⅱ-Topical studies in Oceanography [C],49(16):3243-3254.
    Gascon S, Brucet S, Sala J, Boix D, Quintana XD,2007. Comparison of the effects of hydrological disturbance events on benthos and plankton salt marsh communities [J]. Estuarine Coastal and Shelf Science,74(3):419-428.
    Gasiuanite ZR,2000. Coupling of the limnetic and brackishwater plankton crustaceans in the Curonian Lagoon (Baltic Sea) [J]. International Review of Hydrobiology,85 (5/6):653-661.
    Gaughan DJ, Potter IC,1995. Composition, distribution and seasonal abundance of zooplankton in a shallow, seasonally closed estuary in temperate Australia [J]. Estuarine, Coastal and Shelf Science,41 (2):117-135.
    Griffin SL, Herzfeld M, Hamilton DP,2001. Modelling the impact of zooplankton grazing on phytoplankton biomass during a dinoflagellate bloom in the Swan River Estuary, Western Australia [J]. Ecological Engineering,16(3):373-394.
    Greenwood A, O'Riordan, RM, Barnes, DKA,2001. Seasonality and vertical zonation of zooplankton in a semi-enclosed sea-lough [J]. Journal of the Marine Biological Association of the U.K.,81:213-220.
    Grosholz E,2002. Ecological and evolutionary consequences of costal invasions [J]. Trends in Ecology and Evolution.17:22-27.
    Haddon M,1994. Size fecundity relationships, mating-behavior, and larval release in the New-zealand paddle crab, Ovalipes catharus (White,1843) (Brachyura, Portunidae), New Zealand [J]. Journal of Marine and Freshwater Research,28(4): 329-334.
    Hansen B, Bjornsen PK, Hansen PJ,1994. The size ratio between planktonic predators and their prey [J]. Limnology and Oceanography,2:395-403.
    Hansson LA, Bergman E, Cronberg G,1998. Size and structure and succession in phytoplankton communities:the impact of interactions between herbivory and predation [J]. Oikos,81:337-345.
    Hampel H, Cattrijsse A, Vincx M,2003. Tidal, diel and semi-lunar changes in the faunal assemblage of an intertidal salt marsh creek [J]. Estuarine, Coastal and Shelf Science,56:795-805.
    Hampel H, Cattrijsse A,2004. Temporal variation in feeding rhythms in a tidal marsh population of the common goby Pomatoschistus microps (Kroyer,1838) [J]. Aquatic Sciences,66(3):315-326.
    Harvey M, Galbraith PS, Descroix A,2009. Vertical distribution and diel migration of macrozooplankton in the St. Lawrence marine system (Canada) in relation with the cold intermediate layer thermal properties [J]. Progress in Oceanography,80: 1-21.
    Healy T.R..2005. Salt marsh [A]. In:Schwartz ML (Editors) Encyclopeia of Coastal Science. Springer, Dordrecht.
    Hollingsworth A, Connolly RM,2006. Feeding by fish visiting inundated subtropical saltmarsh [J]. Journal of Experimental Marine Biology and Ecology, 336(1):88-98.
    Houser, DS, Allen, DM,1996. Zooplankton dynamics in an intertidal salt marsh basin [J]. Estuaries,19:659-673.
    Hutchings L, Pillar SC, Verheye HM,1991. Estimates of standing stock, production and consumption of mesozooplankton and macrozooplankton in the Benguela ecosystem [J]. South African Journal of Marine Science-suid-arfikaanse Tydskrif Vir Seeeetenskap,11:499-512.
    Islam MS, Hibino M, Tanaka M,2007. Tidal and diurnal variations in larval fish abundance in an estuarine inlet in Ariake Bay. Japan:implication for selective tidal stream transport [J]. Ecological Research,22(1):165-171.
    Jackson D, Harkness DD, Mason CF,1986. Spartina anglica as a carbon source for salt-marsh invertebrates:a study using δ13C values [J]. Okios,46:163-170.
    James WN, Mark DB,2005. Marine biology [M]. San Francisco:Benjamin Cummings.
    James-Pirri MJ, Raposa KB, Catena JG,2001. Diet composition of Mummichogs, Fundulus heteroclitus, from restoring and unrestricted regions of a New England (U.S.A.) salt marsh [J]. Estuarine, Coastal and Shelf Science 53:205-213.
    Jin BS, Fu CZH, Zhong JSH, Li B, Chen JK, Wu JH,2007. Fish utilization of a salt marsh intertidal creek in the Yangtze River estuary, China [J]. Estuarine, Coastal and Shelf Science,73:844-852.
    Johnson GE, Gonor JJ,1982. The tidal exchange of Callianassa Californiensis (Crustacea, Decapoda) Larvae between the ocean and the Salmon river estuary, Oregon [J]. Estuarine, Coastal and Shelf Science,14:501-516.
    Johnson CL, Runge JA, Curtis KA, Durbin, EG and 6 others,2011. Biodiversity and Ecosystem Function in the Gulf of Maine:Pattern and Role of Zooplankton and Pelagic Nekton [J]. Plos One.6(1):e16491.
    Johnston D and Freeman J,2005. Dietary preference and digestive enzyme activities as indicators of trophic resource utilization by six species of crab [J]. Biology Bulletin,208:36-46
    Kathiresan K,2000. A review of studies on Pichavaram mangrove, southeast India [J]. Hydrobiologia,430:185-205.
    Kennish MJ,2001. Coastal salt marsh systems in the US:A review of anthropogenic impacts [J]. Journal of Coastal Research 17:731-748.
    Kennish MJ.2002. Environmental threats and environmental future of estuaries [J]. Environmental Conservation,29:78-107.
    Keuskamp D,2004. Limited effects of grazer exclusion on the epiphytes of Posidonia sinuosa in South Australia [J]. Aquatic Botany,78:3-14.
    Kneib RT,1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh:causes and questions [J]. Estuaries,7(4A):392-412.
    Kneib RT,1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology [C],35,163-220.
    Kneib RT, Lee SY, Kneib JP,1999. Adult-juvenile interactions in the crabs Sesarma (Perisesarma) bidens and S. (Holometopus) dehaani (Decapoda:Grapsidae) from intertidal mangrove habitats in Hong Kong [J]. Journal of Experimental Marine Biology and Ecology,234:255-273.
    Kneib, RT,2000. Salt marsh ecoscapes and production transfers by estuarine nekton in the southeastern United States. In:Weinstein, M.P., Kreeger. D.A. (Eds.), Concepts and Controversies in Tidal Marsh Ecology [C]. Kluwer Academic Publishers, Dordrecht, pp.267-291.
    Kuroda M, Wada K, Kamada M,2005. Factors influencing coexistence of two brachyuran crabs, Helice tridens and Parasesarma plicalum, in an estuarine salt marsh, Japan [J]. Journal of Crustacean Biology,25:146-153.
    Kwak TJ, Zedler JB,1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes [J]. Oecologia,110:262-277.
    Laffaille P, Brosse S, Feunteun E, Baisez A, Lefeuvre JC,1998. Role of fish communities in particulate organic matter fluxes between salt marshes and coastal marine waters in the Mont Saint-Michel Bay [J]. Hydrobiologia,374:121-133.
    Laffaille P, Lefeuvre JC, Schricke MT, Feunteun E,2001. Feeding ecology of 0-group sea bass, Dicentrarchus labrax, in salt marshes of Mont Saint Michel Bay (France) [J]. Estuaries,24(1):116-125.
    Lago, RP,1993. Tidal exchange of larvae of Sesarma catenata (Decapoda, Brachyura) in the Swartkops estuary, South Africa. South African Journal of Zoology, 28(4):182-191.
    Lana PD, Guiss C,1992. Macrofauna-plant-biomass interactions in a euhaline salt-marsh in Paranagua Bay (SE Brazil) [J]. Marine Ecology Progress Series, 80(1):57-64.
    Lehtiniemi M, Nordstrom H,2008. Feeding differences among common littoral mysids, Neomysis integer, Praunus flexuosus and P. inermis [J]. Hydrobiologia, 614(1):309-320.
    Lesutiene J, Gorokhova E, Gasiunaite ZR. Razinkovas A,2008. Role of mysid seasonal migrations in the organic matter transfer in the Curonian Lagoon. south-eastern Baltic Sea [J]. Estuarine Coastal and Shelf Science,80(2):225-234.
    Levin LA, Bosch DF, Covich A, Dahm C and 8 others.2001. The function of marine critical transition zones and the importance of sediment biodiversity [J]. Ecosystems,4:430-451.
    Levin LA, Neira C, Grosholz ED.2006. Invasive cordgrass modifies wetland trophic function [J]. Ecology,87:419-432.
    Levine JM, Vila M, D'Antonio CM. Dukes JS, Grigulis K, Lavorel S,2003. Mechanisms underlying the impacts of exotic plant invasions [J]. Proceedings of The Royal Society of London Series B-Biological Sciences,270:775-781.
    Li KZ, Yin JQ, Huang LM, Tan YH,2006. Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China [J]. Estuarine, Coastal and Shelf Science,67:543-552.
    Lonsdale DJ, Coull BC,1977. Composition and seasonality of zooplankton of North Inlet, South Carolina [J]. Chesapeake Science,18:272-283.
    Lopes CB, Lilleb(?) AI, Pato P, Dias JM, Rodrigues SM, Pereira E, Duarte AC,2008. Inputs of organic carbon from Ria de Aveiro coastal lagoon to the Atlantic Ocean [J]. Estuarine, Coastal and Shelf Science,79:751-757.
    Lopez-Duarte PC, Tankersley RA,2007. Circatidal swimming behavior of brachyuran crab zoea larvae:implications for ebb-tide transport. Marine Biology,151(6): 2037-3051.
    Lopez-Duarte PC, Tankersley RA,2009. Developmental shift in the selective tidal-stream transport behavior of larvae of the fiddler crab Uca minax (LeConte) [J]. Journal of Experimental Marine Biology and Ecology,368(2):169-180.
    Ma HG, Townsend H, Zhang XS, Sigrist M, Christensen V,2010. Using a fisheries ecosystem model with a water quality model to explore trophic and habitat impacts on a fisheries stock:A case study of the blue crab population in the Chesapeake Bay [J]. Ecological Modelling,221(7):997-1004.
    Mandle L, Bufford JL. Schmidt IB, Daehler CC.2011. Woody exotic plant invasions and fire:reciprocal impacts and consequences for native ecosystems [J]. Biological Invasions,13(8):1815-1827.
    Marchand C, Lallier-Verges E, Disnar JR, Keravis, D,2008. Organic carbon sources and transformations in mangrove sediments:A Rock-Eval pyrolysis approach [J]. Organic Geochemistry,39(4):408-421.
    Marion A, Harvey M, Chabot D, Brethes JC,2008. Feeding ecology and predation impact of the recently established amphipod, Themisto libellula, in the St. Lawrence marine system, Canada [J]. Marine Ecology Progress Series,373: 53-70.
    Martinez-Gaxiola MD, Durazo R, Gaxiola-Castro G,2010. Influence of the geostrophic transport of phosphates on primary production off Baja California (Mexico) [J]. Ciencias Marinas,36(2):135-145
    Mazumder D, Saintilan N. Williams RJ,2009. Zooplankton inputs and outputs in the saltmarsh at Towra Point Australia [J]. Wetlands Ecology and Management, 17(3):225-230.
    McLusky D., Elliott M.2004. The Estuarine Ecosystem-Ecology. Threats and Management [M]. Third eds. Oxford University Press PP:36-41.
    McMahon KE, Johnson BJ, Ambrose WG,2005. Diet and movement of the Killifish, Fundulus Heteroclitus, in a Maine salt marsh assessed using gut contents and stable isotope analyses [J]. Estuaries 28, (6):966-973.
    Mia Y, Shokita S, Watanabe S,2001. Stomach contents of two grapsid crabs, Helice formosensis and Helice leachi [J]. Fisheries Science,67:173-175.
    Minello TJ, Able KW, Weinstein MP, Hays C.G.,2003. Salt marshes as nurseries for nekton:testing hypotheses on density, growth and survival through meta-analysis [J]. Marine Ecology Progress Series 246:39-59.
    Montoya-Maya PH, Strydom N. A.,2009. Zooplankton composition, abundance and distribution in selected south and west coast estuaries in South Africa [J]. African Journal of Aquatic Science,34(2):147-157.
    Mustafa S, Nair VR, Govindan K,1999. Zooplankton community of Bhayandar and Thane salt pans around Bombay [J]. Indian Journal of Marine Science,28(2): 184-191.
    Nagelkerken Ⅰ(eds),2009. Ecological Connectivity among Tropical Coastal Ecosystems [M]. Dordrecht:Springer.
    Neumann-Leitao S, Schwamborn R, Macedo SJ, Medeiros C, Koening ML. Montes MJF, Feitosa FAN, Gusmao LMO,2001. Plankton dynamics at Itamaraca mangrove estuarine system, Pernambuco, Brazil. Ecosystem and Sustainable Development Ⅲ, Advances in Ecological Sciences [C],10:435-445.
    Nixon SW,1980. Between coastal marshes and coastal waters-a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. In:Hamilton P, MacDonald KB (eds) Marine science [M], vol Ⅱ:estuarine and wetland processes. Plenum Press, New York.
    O'Connor NJ, Judge ML,2004. Molting of fiddler crab Uca minux megalopae: stimulatory cues are specific to salt marshes [J]. Marine Ecology Progress Series, 282:229-236.
    Odum EP,1968. Energy flow in ecosystems:a historical review [J]. American Zoologist,8:11-18
    Odum EP,1980. The status of three ecosystem level hypotheses regarding salt marshes; tidal subsidy, outwelling and the detritus based food chain. In:Kennedy, VS (Ed.), Estuarine Perspectives [M]. Academic Press, New York, pp:85-496.
    Odum EP,2000. Tidal marshes as outwelling/pulsing systems. In:Weinstein MP & Kreeger DA (eds). Concepts and controversies in tidal marsh ecology [M]. Kluwer Academic Publishers, Dordrecht. PP:3-8.
    Pakhomov EA, Perissinotto R, Froneman PW,1999. Predation impact of carnivorous macrozooplankton and micronekton in the Atlantic sector of the Southern Ocean [J]. Journal of Marine Systems,19(1-3):47-64.
    Parsons T R, Takahashi M, Hargrave B,1984. Biological Oceanographic Processes [M].3rd ed. Oxford:Pergamon Press.
    Paterson AW, Whitfield AK,1997. A stable carbon isotope study of the food-web in a freshwater-deprived South African estuary, with particular emphasis on the ichthyofauna [J]. Estuarine, Coastal and Shelf Science,45:705-715.
    Pepin P, Dower JF,2007. Variability in the trophic position of larval fish in a coastal pelagic ecosystem based on stable isotope analysis [J]. Journal of Plankton Research,29(8):727-737.
    Perissinotto R, Pakhomov EA,1998. The trophic role of the tunicate Salpa thompsoni in the Antarctic marine ecosystem [J]. Journal of Marine Systems,17(1/4): 361-374.
    Platell EM, Freewater P,2009. Importance of saltmarsh to fish species of a large south-eastern Australian estuary during a spring tide cycle [J]. Marine and Freshwater Research,60(9):936-941.
    Porri F, McQuaid CD, Froneman WP,2007. Spatio-temporal variability of small copepods (especially Oithona plumifera) in shallow nearshore water off the south coast of South Africa [J]. Estuarine, Coastal and Shelf Science 72:711-720.
    Quan WM, Fu CZ, Jin BS, Luo YQ, Li B, Chen J.K, Wu JH,2007. Tidal marshes as energy sources for commercially important nektonic organisms:stable isotope analysis [J]. Marine Ecology Progress Series 352:89-99.
    Quan WM, Ni Y, Shi LY, Chen QY,2009. Composition of fish communities in an intertidal salt marsh creek in the Changjiang River estuary, China [J]. Chinese Journal of Oceanology and Limnology,27(04):806-815.
    Quintana XD; Comin FA; Moreno-Amich R,1998. Nutrient and plankton dynamics in a Mediterranean salt marsh dominated by incidents of flooding [C]. Part 2: Response of the zooplankton community to disturbances. Journal of Zooplankton Research,20(11):2109-2127.
    Quintana XD,2002. Measuring the intensity of disturbance in zooplankton communities of Mediterranean salt marshes using multivariate analysis [J]. Journal of Plankton Research,24,255-265.
    Quiros R, Boveri MB,1999. Fish effects on reservoir trophic relationships [J]. Theoretical Reservoir Ecology and Its Applications,529-546.
    Ravichandran S, Kannupandi T, Kathiresan K,2006. Mangrove leaf litter processing by sesarmid crabs [J]. Ceylon Journal of Science,35(2):107-114.
    Rawlinson KA, Davenport J, Barnes DKA,2005. Tidal exchange of zooplankton between Lough Hyne and the adjacent coast [J]. Estuarine Coastal and Shelf Science,62(1-2):205-215.
    Rokneddine A,2004a. The influence of salinity and temperature on the reproduction of Arctodiaptomus salinus (Daday,1885) (Copepoda, Calanoida) in the temporary salt marsh, "La Sebkha Zima" (Morocco) [J]. Crustaceana,77: 923-940.
    Rokneddine A,2004b. The influence of salinity and temperature on the growth of Arclodiaptomus salinus (Daday,1885) (Copepoda, Calanoida), from the temporary salt marsh, "La Sebkha Zima", (Morocco) [J]. Crustaceana,77: 1025-1044.
    Rolland S, Fulton Ⅲ,1983. Interactive effects of temperature and predation on an estuarine zooplankton community [J]. Journal of Experimental Marine Biology and Ecology,72:67-81.
    Roulet NT.2000. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol:Prospects and significance for Canada [J]. Wetlands,20 (4):605-615.
    Rountree RA, Able K.W,2007. Spatial and temporal habitat use patterns for salt marsh nekton:implications for ecological functions [J]. Aquatic Ecology 41:25-45.
    Rozas LP, Minello TJ,1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats:a review of sampling design with focus on gear selection [J]. Estuaries,20:199-213.
    Ryther JH,1969. Photosynthesis and fish production in the sea [J]. Science,66:72-80.
    Sato M, Jumars PA,2008. Seasonal and vertical variations in emergence behaviors of Neomysis americana [J]. Limnology and Oceanography,53(4):1665-1667.
    Schlacher TA. Wooldridge, TH,1994. Tidal influence on distribution and behavior of the estuarine opossum shrimp Gastrosaccus brevifissura [C]. In:Dyer KR, Orth RJ (Eds.),Changes in Fluxes in Estuaries:Implications from Science to Management. Olsen & Olsen, Fredensborg, Denmark, pp:307-312.
    Schmidt SN, Olden JD, Solomon CT, Vander Zanden MJ,2007. Quantitative approaches to the analysis of stable isotope food web data [J]. Ecology,88(11): 2793-2802.
    Schwamborn R, Schwamborn SHL, Silva TA, Neumann-Leitao S, Staint-Paul U,2006. Ingestion of large centric diatoms, mangrove detritus, and zooplankton by zoeae of Aratus pisonii (Crustacea:Brachyura:Grapsidae) [J]. Hydrobiologia,560:1-13.
    Seda J, Devetter M,2000. Zooplankton community structure along a trophic gradient in a canyon-shaped dam reservoir [J]. Journal of Plankton Research 22: 1829-1840.
    Shang X, Zhang GS, Zhang J,2008. Relative importance of vascular plants and algal production in the food web of a Spartina-invaded salt marsh in the Yangtze River estuary [J]. Marine Ecology Progress Series,367:93-107.
    Sheaves M,2009. Consequences of ecological connectivity:the coastal ecosystem mosaic [J]. Marine Ecology Progress Series,391:107-115.
    Sierszen ME, Morrice JA, Moffett MF, West CW,2004. Benthic versus planktonic foundations of three Lake Superior coastal wetland food webs [J]. Journal of Great Lakes Research,30:31-43.
    Spivak ED, Anger K, Luppi T, Bas C, Ismael D,1994. Distribution and habitat preferences of 2 Grapsid crab species in Mar-Chiquita Lagoon (Province of Buenos-Aires, Argentina) [J]. Helgolander Meeresuntersuchungen,48(1):59-78.
    Sponaugle S, Cowen RK, Shanks A, Morgan SG and 7 others,2002. Predicting self-recruitment in marine populations:Biophysical correlates and mechanisms [J]. Bulletin of Marine Science,70(1):341-375.
    Stevens PW, Montague CL, Sulak KJ,2006. Fate of fish production in a seasonally flooded saltmarsh. Marine Ecology Progress Series,327:267-277.
    Sullivan MJ, Moncreiff CA,1990. Edaphic algae are an important component of salt marsh food-webs:evidence from multiple stable isotopes analysis [J]. Marine Ecology Progress Series,62:149-159.
    Sutherland DL, Closs GP,2001. Diel patterns of mysid drift (Crustacea:Mysidacea) in the Taieri River Estuary, New Zealand [J]. New Zealand Journal of Marine and Freshwater Research,35:197-200.
    Tackx MLM, Herman PJM, Gasparini S, Irigoien X, Billiones R, Daro MH,2003. Selective feeding of Eurytemora affinis (Copepoda, Calanoida) in temperate estuaries:model and field observations [J]. Estuarine. Coastal and Shelf Science 56(2):305-311.
    Teal JM,1962. Energy flow in the salt marsh ecosystem of Georgia [J]. Ecology 43: 614-624.
    Trancart T, Lambert P, Rochard E, Daverat F, Roqueplo C, Coustillas J,2011. Swimming activity responses to water current reversal support selective tidal-stream transport hypothesis in juvenile thinlip mullet Liza ramada [J]. Journal of Experimental Marine Biology and Ecology,399(2):120-129.
    Vargas CA, Martinez RA, Escribano R, Lagos NA,2010. Seasonal relative influence of food quantity, quality, and feeding behaviour on zooplankton growth regulation in coastal food webs [J]. Journal of the Marine Biological Association of the United Kingdom,90(6):1189-1201.
    Vernberg FJ,1993. Salt-marsh processes:a review [J]. Environmental Toxicology Chemistry,12:2167-2193.
    Vilas C, Drake P, Fockedev N,2008. Feeding preferences of estuarine mysids Neomysis integer and Rhopalophthalmus tartessicus in a temperate estuary (Guadalquivir Estuary, SW Spain) [J]. Estuarine Coastal and Shelf Science, 77(3):345-356.
    Vinas MD, Negri RM, Fernando C. Ramirez FC, Hernandez D,2002. Zooplankton assemblages and hydrography in the spawning area of anchovy (Engraulis anchoita) off Rio de la Plata estuary (Argentina-Uruguay) [J]. Marine and Freshwater Research,53:1031-1043.
    Vorwerk PD, Froneman PW,2009. The importance of estuarine-derived carbon for the nearshore marine environment:studies on two contrasting South African estuaries [J]. African Journal of Aquatic Science,34(2):137-146.
    Wainright, SC, Weinstein, MP, Able, KW,2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass Spartina alterniflora and the common reed Phragmiles australis to brackish-marsh food webs [J]. Marine Ecology Progress Series,200:77-91.
    Wall DH, Palmer MA, Snelgrove PVR.2001. Biodiversity in critical transition zones between terrestrial, freshwater, and marine soils sediment:processes, linkages, and management implications [J]. Ecosystems,4:418-420.
    Wang RZ, Yuan L, Zhang LQ,2010. Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China [J]. Ecological Engineering,36(6):799-806.
    Wang YP, Zhang RS, Gao, S,1999. Geomorphic and hydrodynamic responses in salt marsh-tidal creek systems, Jiangsu, China [J]. Chinese Science Bulletin,44(6): 544-549.
    Weinstein MP, Litvin SY,2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes:a stable isotope approach [J]. Transactions of the American Fisheries Society,129:797-810.
    Wilson JP, Sheaves M,2001. Short-term temporal variations in taxonomic composition and trophic structure of a tropical estuarine fish assemblage [J]. Marine Biology 139:787-796.
    Wimpenny RS,1966. The plankton of the sea [M]. New York, Elsevier.
    Winder M, Jassby AD,2011. Shifts in Zooplankton Community Structure: Implications for Food Web Processes in the Upper San Francisco Estuary [J]. Estuaries and Coasts,34(4):675-690.
    Wolfe BE, Klironomos JN.2005. Breaking new ground:soil communities and exotic plant invasion [J]. Bioscience,55:477-487.
    Wooldridge T,1999. Estuarine zooplankton community structure and dynamics. In: Allanson, B. R.& Baird, D., eds. Estuaries of South Africa [M]. Cambridge University Press, Cambridge, U. K.,141-166.
    Wozniak AS, Roman CT, Wainright SC, McKinney RA, James-Pirri MJ,2006. Monitoring food web changes in tide-restored salt marshes:A carbon stable isotope approach [J]. Estuaries and Coasts,29(4):568-578.
    Yozzo DJ, Smith DE,1998. Composition and abundance of resident marsh-surface nekton:comparison between tidal freshwater and salt marshes in Virginia, USA [J]. Hydrobiologia,362:9-19.
    Zedler JB, Kercher S.2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes [J]. Critical Reviews in Plant Sciences, 23:431-452.
    Zhou SC, Jin BS, Guo L, Qin HM, Chu TJ, Wu JH,2009. Spatial distribution of zooplankton in the intertidal marsh creeks of the Yangtze River Estuary, China [J]. Estuarine, Coastal and Shelf Science,85(3):399-406.
    Zimmer M, Pennings SC, Buck TL, Carefoot TH,2002. Species-specific patterns of litter processing by terrestrial isopods (Isopoda:Oniscidea) in high intertidal salt marshes and coastal forests [J]. Functional Ecology,16:596-607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700