用户名: 密码: 验证码:
嫦娥1号卫星激光高度计(LAM)数据的全月球虚拟现实构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经国家天文台授权,中国地质大学(北京)使用嫦娥1号卫星遥感数据。本论文以中国地质大学(北京)和国家天文台合作“绕月探测工程科学数据应用与研究”(863计划)重点项目为依托,进行遥感信息提取,构建全月球虚拟现实,开展科学研究。
     本文在获得的400轨嫦娥1号激光高度计测高数据(2B数据)和CCD立体相机影像基础上开展遥感信息提取与处理工作。该批数据是根据卫星轨道数据进行高程解算,经过高程、几何校准后的科学数据。首先把这批数据进行高程换算,再导入ERDAS,利用ERDAS软件及数据内插法生成高分辨率全月球DEM模型。
     在高分辨率全月球DEM模型基础上,进一步进行信息提取与处理工作,构建全月球虚拟现实。首先对月球表面进行三维模型构建,导入立体相机影像,再利用Super3Deditor平台渲染成月面真三维虚拟现实场景。全月球虚拟现实的构建为月球科学的研究提供了崭新的技术手段,在全月球虚拟现实中可以进行更深层次的信息提取与处理工作,如任意漫游、测量、标注、截图等工作。全月球虚拟现实成为月球信息提取与处理的高等级技术手段。本论文的主要成果与创新可以概括如下:
     1、基于嫦娥1号卫星激光高度计数据,建立高分辨率DEM模型
     对于激光高度计数据信息进行提取与处理,把得到的400轨激光高度计数据进行高程换算,处理奇异数据,得到文本高程文件。导入ERDAS进行数据处理、内插运算,得到了全月球DEM(数字高程模型)影像。空间分辨率:纬度方向(沿经线)607m,经度方向(沿纬线)303m。输出全月球DEM模型。
     2、构建全月球真三维虚拟现实
     以全月球DEM模型为基础,构建全月球虚拟现实。月球三维模型构建是个人工(或者自动)几何建模的过程,几何建模构建的是形状和纹理,月球DEM规定了月球模型的形状,月球影像决定了月球模型的纹理。几何模型的形状(多边形、三角形、顶点和样条)构成有限制,纹理大小也有限制,月球三维模型的构建过程就是不断的DEM重采样和影像的切割与提取的过程。每个级别的三维模型的切割块数决定了文件数目。当浏览月球三维模型的时候,模型加载是逐级变化的。利用嫦娥1号所搭载的三线阵CCD相机所拍摄的经过经辐射、几何、光度校正后的1082轨数据产品(CCD 2C数据),拼接的全月影像图进行贴图,设置参数渲染生成月面真三维虚拟现实。全月球虚拟现实成为月面信息提取的全新技术手段。
     3、利用全月球虚拟现实进行月面信息提取
     以Super3Deditor为搭载平台的全月球虚拟现实操作系统支持任意漫游、高度测量、地面距离测量、直线距离测量、面积测量、斜率测量、截图、作标记等工作。本文对于月面重要目标在虚拟场景中作了标注,截取了部分虚拟场景图像。任意选择月面50座撞击坑进行直径测量,验证d = k_dD~n,d多项式关系,d为撞击坑深度,D为撞击坑直径,求得n = 1.9。选择了柏拉图月溪、阿尔卑斯峡谷做了长度测量。
     4、利用全月球虚拟现实显示奇异数据并分析——寻找新的研究领域
     对于激光高度计2B数据中存在的偶然误差产生原因进行了理论分析,分析得出月面坡度越大,奇异数据产生越多;月面坡度频繁变化,会产生大量奇异数据。全月球虚拟现实成为显示奇异数据的很好技术,在全月球虚拟现实中奇异高程数据被很好地显示出来,并可以进行深层次分析。奇异数据按纬度主要分布在低纬(30°N→-30°S)和高纬(70°N→90°N、-70°S→-90°S)。按经度分析在0°→30°W之间出现一个峰值(20°W左右)。而在20°W左右的赤道以南地区的中纬度出现的错误数据峰值,与第谷撞击坑的辐射纹重合,在虚拟现实中进行研究发现,该辐射纹深度大且结构复杂。奇异数据的产生在一定程度上反映了月面地形的复杂程度,而表面地形在很大程度上受制于地下的构造情况影响,对于奇异数据的分析有利于月球地质构造的解译。这是种新的研究领域。
     5、发现了Google Moon的严重错误
     登陆Google Moon网站(http://earth.google.com/moon/)发现月球上标记的南北回归线为23°26′(同地球南北回归线),与事实不符,发生严重错误。月球上北回归线为1°32′N,南回归线为1°32′S,这也就是月球上一年中太阳光直射变化的纬度范围。
Authorized by Nation Astronomical Observatory, China University ofGeosciences has the right to use CE-1 remote sensing data. The thesis forms with thepriority project named“Application and Research to the Scientific Data of LunarOrbiter Project”(863 Program) as the base, extracting remote sensing information,constructing virtual reality of the full lunar for scientific research.
     The altimetry data of 400-circle CE-1 laser altimeter (2B) is a scientific data,which is founded upon the lunar area coordinate. It comes into being through altitudecalculation basing on satellite trajectory data, via altitude and geometrical orientation,and the research is done based upon it. The high resolution lunar DEM is producedvia leading modified altitude data to ERDAS, using ERDAS software and datainterpolation method.
     Based on the high resolution lunar DEM model, the next work for this thesis areextracting and dealing with further information, constructing virtual reality of the fulllunar. First, build the three-dimensional model of the lunar surface, importthree-dimensional camera image, and then use Super3Deditor platform drawing thelunar surface true three-dimensional virtual reality scenes. The virtual reality of thefull lunar provides a new means of technology for lunar science research, that is uponthe technology of virtual reality of the full lunar, a further work of informationextraction and processing can develop, such as arbitrary roaming, measurement,annotation, screen shots and so on. The virtual reality of the full lunar technology hasbecome a high-grade technical means for information extraction and processing. Themajor achievements and innovation of this paper can be summarized as follows:
     1. Building high-resolution DEM model on the basis of the CE-1 satellite laseraltimeter data.
     Extract and process laser altimeter data to get the 400-circle laser altimeter data,then do elevation conversion and dispose singular data in order to get the textelevation file. Import the file into ERDAS for data processing and interpolationoperations to acquire full lunar DEM (digital elevation model) image. Spatialresolution: latitude, longitude, 607m, longitude direction (along the weft) 303m, andput the full lunar DEM model out.
     2. Constructing the full lunar of true three-dimensional virtual reality
     Construction of the virtual reality of full lunar is based on full lunar DEM model. Generating lunar three-dimensional model is an artificial or automatic geometricmodeling process, which describes shape and texture. Lunar DEM defines the shapeof lunar model, and lunar image defines the texture of it. The construction ofgeometric model shape (polygon, triangle, tiptop and spline) and texture areconditional, so the process of generating lunar three-dimensional model is a continualcourse of resample and slicing, extracting images. The number of files depends on theslicing lumps numbers of three-dimensional model in every level. When browsinglunar three-dimensional model, model import is changing from one level to another.The lunar true three-dimensional virtual reality generates by using 1082-circle dataproduction (CCD 2C data), which comes out via radiation, geometric and photometricadjustments to the data captured by the CCD piranha color in CE-1.The virtual realityof the full lunar becomes a new technique for the extraction of lunar surfaceinformation.
     3. Using the virtual reality of the full lunar to abstract information on the lunarsurface
     The full lunar virtual reality operating system which equipped withSuper3Deditor as the platform can support any roaming, height measuring, grounddistance measurement, the straight line distance measurement, area measurement, theslope measurements, screenshots, marking and so on. In the thesis, important pointson the lunar surface in the virtual scene have been marked, and a part of the virtualscene images have been intercepted. Measured the diameter of 50 craters which wereselected arbitrarily on the lunar surface in order to verify polynomialrelations d = k_dD~n,d stands for the crater depth, D is the crater diameter, finally getthat n = 1.9. The result of length measurement fof Plato Wolgye and Alpine Canyon isselected.
     4. Making use of the full lunar virtual reality to display and analyze singular datain order to look for new areas of research
     In the thesis, there is theoretical analysis to the cause of accidental error in thelaser altimeter 2B data, which reveals that the greater the slope of the lunar surface is,the more the singular data is, that is to say, frequent changes in the slope of the lunarsurface would produce great amount of singular data. The virtual reality of the fulllunar appears to be good technology for displaying singular data, and singularelevation data are displayed in the virtual reality of the full lunar which can be analyzed in further. Singular data latitudes are mainly located at low latitudes (30°N→-30°S) and high latitudes (70°N and S→90°N, -70°→-90°S). A peak (20°W orso) appears at 0°→30°W through longitude analysis. The fault peak data in themid-latitude regions in the south of the equator around 20°W coincides with theradiation pattern of the Tycho crater, and it is found that in virtual reality research, theradiation pattern exists with deep depth and complex structure. Singular data to acertain extent reflects the complexity of the topography of the lunar surface, thesurface topography of underground tectonic situation is highly subject to singularanalysis of the data interpretation of the lunar geological structures, which is a newarea for research.
     5. Finding a serious error of Google Moon
     Visiting the Web site http://earth.google.com/moon/ of Google Moon, it is foundthat the moon is marked with 23°26'on the Tropic of Cancer and Tropic of Capricorn,the same with those of Earth, which is a serious error, inconsistent with the facts. Onthe Moon, Tropic of Cancer is 1°32'N, while Tropic of Capricorn 1°32'S, which is thelatitude range of direct sunlight spot moving on the moon in a year.
引文
1. Andujar C,Fairen M,Brunet P. Afford able projection system for 3D interaction.In: The lst Ibero-American Symposium in Computer Graphics. University of Minho,2002.
    2. Archinal B A, Rosiek M R, Kirk R L, et al. Report on the final completion ofThe unified lunar control network 2005 and lunar topographic model. U.SGeological Survey Open-File Report, 2007.
    3. Archinal B A, Rosiek M R, Kirk R L, et al. The unified lunar control network2005. U.S. GeologicalSurvey Open-File Report 2006-1367, Version 1.0, 2006.
    4. Burdea G,Coiffet P. Virtual Reality Technology.NJ:John wiley and sons,1994.
    5. Bartza D, Grvitb O, Lanzendo M, et al. Virtual Endoscopy for Cardio VascularExploration.PPComputer Aided Radiology and Surgery (CARS2001),Berlin,2001:1005-1009.
    6.Burdea, G., and P. Coiffet, La Realite Virtuelle, Hermes, Paris,1993.
    7.Burdea, G., E. Roskos, D. Silver, F. Thibaud, and R. Wolpov,“A DistributedVirtual Environment with Dextrous Force Feedback,”in Proceedings of Interfaceto Real and Virtual World Conference, Montpellier, France, 1992, P255-256
    8. Buthiau D, Antoine E, Piette J C, et al. Virtual Tracheo2bronchial Endoscopy:Educational and Diagnostic Value. Surg. Radiol Anat, 1999,18(2):P125-131.
    9. Cook A C, Spudis P D, Robinson M S, et al. Lunar topography and basins mappedusing a Clementine stereo digital elevation model. Lunar Planet Sci, 2002,XXXIII: 1281.
    10. Dailey P S,Hutehinson T A,Fournier R F,et al. Status Report: JSIMSEnvironmentalTailoring Servies (JETS) Tailoring Algorithms and Framework Assessment.99S-SIW-154, 1999.
    11. De Hon R A. Variations in interior morphology of 15-20 KM Lunarcraters-Implications for a major subsurface discontinuity: 1980 January 1,P2207-2219.
    12.Dinsmore, M., N. Langrana, G. Burdea, and J. Ladeji,“Virtual Reality Trainingfor Palpation of Subsurface Tumors”in Proceeding of IEEE InternationlSymposium on Virtual Reality and Applications (VRAIS’97), Albuquerque, NM,1997,P54-60.
    13. Eckart P, Aldrin B, Bishop S, et al.The Lunar Base Handbook. McGraw-HillHigherEducation,1999.
    14. Elston W E,et al. Lunar nearside tectonic patterns from orbiter 4 Photographs.JGeophys.Res, 1971,76(23):P5670-5674.
    15. Fisher S S,HumPhries J,MeGreevy M,etal.The virtual environment display system.In: ACM Workshop on lnteractive 3D GraPhies.New、brk:ACMPress,1986.P77—87.
    16. Foley,J.,A.van Dam,S.Feiner,and J.Hughes, Computer Graphics: Priciples andPractices,Addison-Wesley,Reading,MA. 1990.
    17. Foley,J.,A.van Dam,S.Feiner,and J.Hughes,and R.Phillips, Introduction toComputer Graphics, Addison-Wesley,Reading,MA. 1994.
    18. Foley J D Interfaees for advanced computing (cover story).Sci A M,1987,257(4):P126-135.
    19. Google moon 2010.http://www.google.com/moon/.
    20. Heiken G H,Vaniman D T,French B M,et al. Lunar Sourcebook: A User’s Guide tothe Moon.Cambridge University Press, 1991.
    21. HeiligML.SensoramaSimulator.USPatent, 3050870, 1962, 08, 28.
    22. Heim M. Metaphysics of Virtual Reality. Oxford: Oxford University Press,1993.
    23.Hodges C A, Wilhelms D E. Formation of lunar basin ring*1.Icarus,1978,34(2):P294-323.
    24.Hongli liu, Qiu Feng, Shi Haipeng,et al. Research on key Technologies of VirtualTourism Learning System.International Conference on Artificial Intelligenceand Education,2009,(ICAIE2009)Volume I P161-166.
    25.Hongli liu, Qiu Feng ,Shi Haipeng, et al. The Implementation of the VirtualTourism Teaching System.International Symposium on Computational Intelligenceand Design,2009,(ISCID 2009)Volume II P225-228.
    26.HongLi liu, LinLin Wang. Application of Virtual Reality in Ancient Buildings—Take the Summer Palace for Example.Modelling and Simulation in ArchitectureCivil Engineering and Materials,2008,Volume VI.
    27.HongLi Liu,ChenJianPing.Beijing tourism school of 3D virtual reality networktransmission.International Conference on Intelligent Computation Technologyand Automation,2010 (ICICTA2010) Vol3 P884-886.
    28.HongLi Liu,ChenJianPing.Node composition and data optimizing of Super3D Editor-Take the virtual reality of Red Dutch wetlands as an example.IntelligentHuman-Machine Systems and Cybernetics,2010 (IHMSC 2010),Vol1 P249-251.
    29.HongLi Liu,ChenJianPing,WangJing.Making of the Red Lotus Wetland Scene VirtualReality.Proceedings of Third International Conference on Modelling andSimulationJune.,2010,4-6, P230-233.
    30.Jean G. Air Force“Virtual Flag”makes up for lost flying hours.http://www.nationaldefensemagazine.org/issues/2007/May/AirForeeVirtual.htm31.J.H.Woodward et al.Laser Altimeter for Appollo Lunar Orbit. Record NEREMTechnical Papers part1, 1971, P213-216.
    32.Jianping Chen,Hongli Liu,Min Guo.The high resolution lunar planet DEM basedon the altimetry data of 400-circle CE-1 laser altimeter (2B).IntelligentMaterials, Applied Mechanics and Design Science. 2012, Vol.142.
    33.Jianping Chen, Hongli Liu.The lunar Virtual Reality Structure Based on CE-1Data,Advanced Building Materials and Structure Engineering.2012,Vol.461.
    34.John R.Jensen Introductory Digital Image Processing Pearson Prentice Hall 2005.
    35.Kagadis G C , Patrinou V , Kaloger C P , et al .Virtual Endoscopy in the Diagnosisof an Adult Double Tracheal Bronchi Case. European Journal of Radiology,2001,40(9):P50-53.
    36.Lee T Y, Lin P H , Lin C H ,et al .Interactive 3 - D Virtual Colonoscopy System.IEEE Trans. on Information Technology in Biomedicine,1999 ,3 (2):P139-150.
    37.Margot J L, Campbell D B, Jurgens R F, et al.The topography of Tycho Crater.J Geophys Res,1999, 104: P11875-11882.
    38.Margot J L, Campbell D B, Jurgens R F, et al. Topography of the lunar poles fromRadarinterferometry: A survey of cold trap locations. Science, 1999, 284:P1658-1660.
    39.Martin P D,Pinet P C,Chevrel S D, et al. On the Highland Crust Diversity andMare-Highland Transitions in the Mare Humorum Region of the Moon.Bulletin ofthe American Astronomical Society, 1997:986,P29.
    40.Mutch T A,et al. Geology of the Moon-A Stratigraphic View.PrincetonUniv.Princeton,New Jersey,1970.
    41.Nakasatoa T,Sasakia M, Ehara S , et al . Virtual CT Endoscopy of Ossicles inthe Middle Ear. Journal of Clinical Imaging, 2001 ,25 (3):P171-177.Berlin ,2001:P1005-1009.
    42.NASA 2010.http://ilrs.gsfc.nasa.gov/satellite-missions/list-of-satellites/lunar.html.
    43.NASA. Exploring our solar system features.National Aeronautics and SpaceAdministration, 2004,http://www.nasa.gov/missions/solarsystem/index.html.
    44.Nozette S,Lichtenberg C L,Spaudis P,et al. The Clementine Bistatic RadarExperiment.Science, 1996, 274:P1495-1498.
    45.Ping J,Heki K,Matsumoto K,et al. A Degree 180 Spherical Harmonic Model for theLunarTopography.Advance Space Research, 2003,31(11):P2377-2382.
    46.Preim B,Bartz D. Visualization in medicine theory,algorithms and applications.San Francisco: Morgan Kaufmann Publishers Inc,2007.
    47. Preter E. The Lunar Base Handbook-An Introduction to Lunar Base Design,Development and Operations. NewYork:The McGraw Hill Companies, 1999,Inc.855.
    48. Radetzky A, Nu A. Visualization and Simulation Techniques for SurgicalSimulators Using Actual Patient’s Data.Artificial Intelligence in Medicine.2002 ,26 (4) : P255-279.
    49. Razdana A , Patel K,Farin G E , et al .Visualization of Multicolor Laser ConfocalMicroscope Data. Computers and Graphics, 2001 , Vol 25(5):P371-382.
    50. Rodionova J F. The morphology of the lunar surface.Parts in the region of workof the mobile geological laboratory vehicle in Mare Imbrium.1993 January1,P161-165.
    51. Rosiek M R, Kirk R, Howington-Kraus E. Color-coded topography and shaded reliefmap ofthe lunar near side and far side hemispheres. Lunar Planet Sci, 2002,XXXIII: 1792.
    52. Rycroft M. The Cambridge Encyclopedia of Space Cambridge University Press,UKKonopliv A S,Asmar S W,Yuan D N. Recent gravity models as a result of the lunarprospector mission. ICARUS, 2001, 150: P1-18.
    53.Schroeder WJ,Zarge JA.Lorensen WE.Decimation of triangles meshes. ComputerGraphics, 1992,26(2):P65-69.
    54. Seymour N E,Gallagher A G,Roman S A,et al. Virtual reality surgical laparoscopicsimulators: how to choose. Surgic Endosc,2003,17:P1943-1950.
    55. Smith D E, Zuber M T, Neumann G A, et al. Topography of the Moon from the ClementineLidar.J Geophys Res, 1997, 102:P1591-1611.
    56. Sutherland I E.The ultimate display. Proceedings of the International Federationof Information Processing(IFIP) Congress. New York,1965.P506—508.
    57. Wieczorek M A, Jolliff B L, Khan A, et al. The constitution and structure ofThe lunar interior.Rev Mineral Geochem, 2006, 60:P221-364.
    58. Wieczorek M A.The gravity and topography of the terrestrial planets. TreatiseGeophys, 2007,10:P165-206.
    59. Zuber M T, Smith D E, Lemoine F G, et al.The shape and internal structure ofthe Moon from the Clementine Mission. Science, 1994, 266:P1839-1843.USGS.http://planetarynames.wr.usgs.gov/moon/moonTOC.html(美国地质勘探局).
    60.曹建峰,黄勇,胡小工等.月球重力场对“嫦娥一号”近月轨道的影响.宇航学报,2010年4月,第31卷第4期:P998-1004.
    61.程罡,吴江涛.三维游戏场景设计与制作.北京:电子工业出版社,2010年05期.
    62.戴国忠.可穿戴交互计算.高技术通讯,2001年,(7)P51-55.
    63.刁吉才.实时混合仿真系统的MSM—14A/DD/A转换器.航空兵器, 1981年06期.
    64.丁长明.导弹飞行仿真设备中的直驱液压随动系统.航空兵器,1982年.
    65. Edward Angel著,吴文国译.交互式计算机图形学——基于OpenGL的自顶向下方法(第3版).清华大学出版社, 2006年,2: P273-279.
    66.国防科工委月球探测工程中心.中国探月.北京:科学出版社,2007年.
    67.韩鹏.地理信息系统开发ArcObjects方法.武汉:武汉大学出版社,2005年.
    68.杭州大学.虚拟故宫游.科学管理,1996年,Vol16.4 P64.
    69.和平鸽工作室.OpenGL三维图形系统开发与实用技术.北京:清华大学出版社,2003年.
    70.胡中为,徐伟彪.行星科学.北京:科学出版社,2008年.
    71.黄柯棣,刘宝宏,黄健,等.作战仿真技术综述.系统仿真学报,2004年,16(9):P1887—1895.
    72.黄勇.“嫦娥一号”探月飞行器的轨道计算研究(博士论文).上海:上海天文台,2006年.
    73.简氏防务周刊. 2006年4月26日刊.
    74.金丽华,金晟业,陈圣波,等.“嫦娥一号”第一幅月面遥感影像撞击坑特征.吉林大学学报(地球科学版),2009年9月第39卷第5期:P942-946.
    75.金祖孟,陈自悟.地球概论.北京:高等教育出版社,1997年7月.
    76.李伯虎,柴旭东.复杂产品虚拟样机支撑平台的初步研究与开发计算机仿真.2003年,20(1):P4-8.
    77.李德仁.数字省、市在国土规划与城镇建设中的作用.测绘学报,2002年,31:P1-3.
    78.李芙玲,张瑾.碰撞检测技术研究.华北科技学院学报,2004年,6,1(2):P71-73.
    79.李浩水,杨质.航空火控实验中飞行系统实时混合仿真研究.火力与指挥控制, 1981年02期.
    80.李双庆.各国火箭介绍:质子号(俄罗斯).中国航天,1995年,4:P30-33.
    81.李竹林等.基于LOD建模的视景仿真生成技术研究.计算机技术与发展,2006年.2,16(2):P50-52.
    82.量士海.人机交互.北京:北京大学出版社,2004年.
    83.罗丹.运载火箭“土星五号”.国外科技动态,2003年,8:P35-35.
    84.罗朔锋等.高性能面向对象场景图系统.系统仿真学报,2005年,2:P424.
    85.孟治国,陈圣波,崔腾飞,等.基于嫦娥一号卫星激光高度计数据的月表有效反射率.吉林大学学报(地球科学版),2010年5月,第40卷第3期:P721-725.
    86.欧阳自远,李春来,邹永廖,等.月球探秘.北京:海燕出版社,2001年.
    87.欧阳自远.月球科学概论.北京:中国宇航出版社,2005年9月.
    88.潘云鹤,类锦诗.敦煌真实与虚拟.杭州:浙江大学出版社,2003年.
    89.彭群生.计算机真实感图形的算法基础.北京:科学出版社,1999年.
    90.彭仪普.地形三维可视化及其实时绘制技术研究(博士论文).西南交通大学,2002年.
    91.平劲松,黄倩,鄢建国,等.基于嫦娥一号卫星激光测高观测的月球地形模型CLTM-s01.中国科学G辑:物理学力学天文学, 2008年,第38卷第11期:P1601-1612.
    92.齐敏,郝重阳,佟明安.三维地形生成及实时显示技术研究进展.中国图象图形学报,2000年,5(4):P269-275.
    93.饶成,李勋祥,陈定方.细节层次技术在VR视景系统中的应用.湖北工业大学学报,2005年,20(3):P52—54.
    94.邵胜利,陈悦,陈瑜中.虚拟现实系统的三维建模技术.计算机世界,1995年(39):P45.
    95.束志业,甘壁文,任梅.飞行器数字稳定系统模拟仿真研究.中国空间科学技术,1981年05期.
    96.孙家广.计算机图形学.北京:清华大学出版社,2002年.
    97.孙琴.阿波罗时代的苏联载人登月计划.中国航天,1991年,8:P43-45.
    98.童恒建.三维数字景观种场景图的组织与绘制.测绘信息与工程,2005年, 30(5):P9-10.
    99.汪成为,高文,王行仁.灵境(虚拟现实)技术的理论、实现及应用.北京:清华大学出版社,1996年.
    100.王大轶,李铁寿.月球软着陆的显式制导控制研究.高技术通讯,2000年,10(7):P88-92.
    101.王劼,崔乃刚,等.定常推力登月飞行器最优软着陆轨道研究.高技术通讯,2003年,13(4):P39-2.
    102.王亚飞.基于虚拟现实技术的城市景观仿真系统开发.河南大学,2007年,5:P16-20.
    103.魏迎梅,栾悉道,等译(Grigore C.Burdea Philippe Coiffet著)虚拟现实技术.电子工业出版社,2005年.
    104.徐虎.虚拟现实技术在故宫博物院的应用.博物馆技术, 2004年3期:P83-86.
    105.徐凌.基于OpenSceneGraph引擎的漫游系统的研究与实现.武汉理工大学,2008年,5:P14-16,26.
    106.徐青.地形三维可视化技术.测绘出版社, 2000年.
    107.薛大洄.余度飞行控制系统的仿真研究.航空学报, 1981年03期.
    108.杨昕,汤安国,邓凤东,等. ERDAS遥感数字图像处理实验教程.科学出版社,2009年.
    109.杨玉琳.抗TWT—Serrodyne仿真Doppler信号转发式干扰的一个简便方法.制导与引信,1980年02期.
    110.叶玉驹,简召全等.高等画法几何学.北京:国防工业出版社,1990年.
    111.尹小菡,蔡继红.大规模虚拟战场环境三维生成技术研究.系统仿真学报,2000年,12(5):P514—517.
    112.余明.简明天文学教程.北京:科学出版社,2010年.
    113.张永敬(第二炮兵工程学院).战略导弹液体火箭发动机操作训练仿真模拟系统.推进技术,1989年6月3期.
    114.张帆,白奉天,任朝峰. LOD技术在航天发射场虚拟现实系统中的应用研究.导弹试验技术, 2009年第4期P26-28.
    115.张金钊,张金锐,张金镝.虚拟现实与游戏设计.北京:冶金工业出版社,2007年.
    116.张烈,骆春慧.计算机三维建模与动画基础.北京:清华大学出版社,2008年.
    117.赵沁平. DVENET分布式虚拟环境.北京:科学出版社,2002年.
    118.赵沁平,怀进鹏,李波,等.虚拟现实研究概论.计算机研究与发展,1996年,33(7):P493-500.
    119.赵沁平.虚拟现实综述.中国科学F:信息科学, 2009年,第39卷第1期:P2-46.
    120.中国科学院探月工程应用系统总体部.绕月探测工程科学应用专家委员会工作参考资料(内部资料)2008年.
    121.中国科学院地球化学研究所.月质学研究进展,北京:科学出版社,1997年,P1-312.
    122.嫦娥1号全月球影像图集编辑委员会.嫦娥1号全月球影像图集,北京:中国地图出版社2010年, P8.
    123.盛聚,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社, 1994年.
    124.张小红.机载激光雷达测量技术理论与方法.武汉:武汉大学出版社, 2007年.
    125.张新琴,夏秀文.月球撞击坑的动力学研究.地球物理学进展2008年12月Vol. 23.6:P1797-1801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700