用户名: 密码: 验证码:
基于GM-APD的光子计数成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了在更低照度下,微光成像系统能够获取反映目标特征的高质量图像,主要要求实现光电转换和倍增的光电器件具有更高的探测灵敏度和更高的信噪比。为此,各种类型的光电器件层出不穷。工作在盖革模式下的雪崩光电二极管(Avalanche Photodiode in Geiger Mode, GM-APD)以其单光子探测能力、高信噪比、全固态结构、快速响应、低磁场敏感度、低功耗和独特的脉冲式输出等特点,成为微光探测领域研究的热点。本文围绕GM-APD的特性和它在光子计数成像中的应用展开研究,从理论上分析了GM-APD的电气特性和光学特性,建立了GM-APD的等效电路和探测电路模型并对模型进行电气特性的仿真研究。计算了夜天光环境下不同材料的GM-APD产生的光电子分布。基于统计光学理论和蒙特卡洛方法建立了GM-APD成像仿真模型。以理论研究和仿真模型为依据,设计并建立了GM-APD光子计数成像实验平台,实现了微光环境下目标的成像探测,得到了质量良好的光子计数图像。同时,借助平台进行了大量的实验,实验结果验证了论文中理论分析和仿真模型的正确性。
     GM-APD独具的优良性能与构成器件的材料和结构密不可分,半导体材料的受光激发导致共价键断裂机制、雪崩倍增机制和GM-APD具有浅结工艺的全固态结构,为GM-APD的电气和光学特性奠定了基础。微光环境下,以光的量子本性和GM-APD的工作过程,建立了GM-APD的等效电路模型和由其构成的探测电路仿真模型。通过改变模型中入射光强度和频率、反向偏置电压、负载电阻和分布电容的设置,分析了电路中输出电流、输出电压和死时间的变化情况。提高入射光强度和频率, GM-APD的输出电流也随之增大。反向偏置电压越大,产生相同倍增电流输出所需要的时间越短,雪崩倍增的强度也越大。分布电容、负载电阻越大,输出的雪崩信号也越大,雪崩信号脉冲宽度加宽。但是分布电容、负载电阻的提高,将会导致死时间的延长,从而降低GM-APD探测电路捕获光子的数量。
     本文研究了满月光、浓云满月光、晴朗星光和浓云无月光环境下夜天光辐射的光子数分布,得到了单位面积单位时间内夜天光单色辐射光子数范围为2.53×1012至6.96×1015。不同天气条件下,夜天光总的辐射光子数变化范围从3.76×1015到5.75×1016。根据GM-APD的像元面积、量子效率,计算了Si GM-APD和InGaAs GM-APD在单位时间内接收的夜天光辐射光子经光电转换后产生光电子数的分布。Si GM-APD能充分利用月光下的辐射光子。器件在满月光、浓云满月光、晴朗星光和浓云无月光环境下产生的总的光电子数分别为1016338、254084、17303和3460。InGaAs GM-APD在四种天气条件下对0.8μm-1.7μm波段的辐射光子都有较强响应,产生的总的光电子数分别为602325、150581、362302和72460;Si GM-APD在该波段产生的光电子数分别为80584、20146、5556、1111。
     GM-APD单光子计数器工作于门控方式,根据统计光学理论,确定GM-APD单光子计数器输出的光子计数值为离散型随机变量。光子计数平均值与探测点处的入射光强、探测时间、探测器光敏面的面积和量子效率成正比,与入射光的频率和普朗克常数成反比,光子计数平均值可以反映入射光场特性。采用蒙特卡洛方法建立成像仿真模型,通过仿真获得了光子计数图像,分析了时间、光照强度和器件量子效率对成像结果的影响。仿真结果为基于GM-APD的光子计数成像系统的搭建打下了理论基础。
     在理论分析和仿真研究的基础上,设计并建立了基于GM-APD的光子计数成像实验平台。利用平台进行了GM-APD光子计数值与光照关系标定和分辨率测试。测试数据显示在不同光照环境下光子计数值与照度呈分段线性关系,平台最小分辨角为2.0608°。在2.3×10-5lx照度下,对目标进行成像探测,得到了质量良好的光子计数图像。研究了实验平台参数设置的变化对光子计数图像的影响,对绿色植物、枯草和混凝土在夜天光光谱范围和单色光谱进行成像研究。实验结果证明,基于GM-APD的光子计数成像探测方案切实可行,它为微光成像探测领域提供了一种提高成像系统探测灵敏度和信噪比的有效方法。
In order to obtain the high quality image that presents the features of the target in low-light condition, low-light imaging system requires photoelectric devices which achieve photoelectric conversion with multiplication demand higher sensitivity and higher singal to noise ratio. Therefore, a various kinds of photoelectric devices have been developed. Among them, avalanche photodiodes in Geiger mode have gained significant interests in the field of low-light detection due to its single photon detection capability with high SNR, all-solid-state structure, rapid response, insensitive to magnetic field, low power consumption and unique pulse outputs. The characteristics of GM-APD and its application in photon counting imaging were studied in this work. The electrical characteristics and optical properties of GM-APD were analyzed in the theory. The electrical characteristics were simulated by an equivalent circuit model and a detection circuit model. The distributions of the photonelectron generated by the different GM-APDs were calculated in the various spectral conditions of night sky radiation. An imaging simulation model based on GM-APD was established according to statistical optics theory and Monte Carlo method. A photon counting imaging test platform based on GM-APD was designed and setup. The imaging detection of the target can be achieved on the platform in the low-light environment. The good quality photon counting images were obtained. At the same time, a large number of experiments on the platform verified the results of theoretical analysis and the simulation results validity of the model.
     The excellent performances of GM-APD come from the material and structure of the device. The electrical and optical properties of GM-APD base on covalent bonds rupture mechanism, avalanche multiplication mechanism, as well as all-solid-state structure of GM-APD with a shallow junction. In the low-light environment, combining quantum nature of photons and the work process of GM-APD, an equivalent circuit model and a detection circuit model were put forward. The output current, output voltage and dead time were analyzed with respect to the change of incident light intensity and frequency, reverse bias voltage, load resistance and parasitic capacitance. The output current of GM-APD increased with increasing the intensity and frequency of incident light. The Larger the reverse bias voltage, the shorter the time required to produce the same output current; the larger the avalanche multiplication. With increasing the parasitic capacitance or load resistance, the amplitude and wildth of the GM-APD output pulse increased. However, as the value of the parasitic capacitance and load resistance increased, the dead time increased correspondingly, which resulted in reducing detectability of GM-APD on photons.
     The photon distributions of night sky radiation were studied in full moonlight, heavy cloud full moonlight, clear starlight and heavy cloud no moonlight conditions. The density of of the photon ranged from 2.53×1012/m2·s·μm to 6.96×1015/m2·s·μm under monochromatic radiation. The number of the total photon was from 3.76×1015/m2·s to 5.75×1016/m2·s in the night sky spectrum on different weather. The number of the photoelectron per second generated by photoelectric conversion in Si GM-APD and InGaAs GM-APD were calculated according to GM-APD's pixel size, quantum efficiency. Si GM-APD made good use of the photons radiated in moonlight condition, the number of the photoelectron was 1016338, 254084,17303 and 3460 per second in night sky spectrum in full moonlight, heavy cloud full moonlight, clear starlight and heavy cloud no moonlight conditions, respectively. InGaAs GM-APD had a strong response from 0.8μm to 1.7μm. For InGaAs GM-APD (Si GM-APD), the number of the photoelectron was 602325,150581,362302, and 72460(80584,20146, 5556 and 1111) per second on the above four weather, respectively.
     GM-APD single photon counter was operated in gated mode. The photon counting values were discrete type random variables according to statistics optical theory. It could be concluded that the average photon counting values were proportional to the incident light, detection time, photosensitive surface area and quantum efficiency of GM-APD and inversely proportional to the frequency and Planck's constant. The characteristics of incident light field can be reflected by the average photon counting values. The Monte Carlo method was adopted to develop an imaging model. The photon counting images were obtained by the simulations. Furthermore, the time, light intensity and quantum efficiency of the device were changed to observe the effects on the simulation results. The theoretical foundation was supplied for the design of the photon counting imaging system based on GM-APD.
     The GM-APD-based photon counting imaging test platform was designed and established based on the theoretical analysis and simulation studies. The photon counting values and illumination calibration and resolution test were achieved on the platform. The testing data showed that the relationship between photon counting values and illumination was piecewise linear in different illumination conditions, the minimum resolution angle was 2.0608°. With the image printed as the target, the good quality photon counting images were obtained at the illumination of 2.3×10-5 lx. The illumination and sampling time were changed to observe the influence of these parameters on the imaging quality. The hay, green plants and concrete were imaged in the night sky spectrum or at a certain wavelength. The experimental results showed that the scheme of GM-APD-based photon counting imaging was practicable. It provided an effective method to improve detectivity and SNR for the low-light imaging.
引文
[1]方如章.夜视器件(上册).第1版.南京:华东工程学院,1988
    [2]I P Csorba. Selected papers on image tubes. Bellingham:The Optical Engineering Press, 1990
    [3]张敬贤,李玉丹,金伟其.微光与红外热成像技术.第1版.北京:北京理工大学出版社,1995
    [4]方如章,刘玉凤.光电器件.第1版.北京:国防工业出版社,1988
    [5]徐之海,李奇.现代成像系统.第1版.北京:国防工业出版社,2001
    [6]张鸣平,张敬贤,李玉丹.夜视系统.第1版.北京理工大学出版社,1993
    [7]周立伟.夜视像增强器(蓝光延伸与近红外延伸光阴极)的近期进展.光学技术,1998,2:18-27
    [8]周立伟.微光成像技术的发展与展望.天津:天津科学技术出版社,2003
    [9]程开富.微光摄像器件的发展趋势.电子元器件应用,2004,(6)10:7-10
    [10]李庆喜,向训清,崔志刚.微弱光成像技术及发展.信息记录材料,2003,(4)2:27-33
    [11]金伟其,刘广荣,王霞等.微光像增强器的进展及分代方法.光学技术,2007,(30)4:460-464
    [12]周立伟.像增强技术的进展.电子科技导报,1994,4:9-11
    [13]邹异松.光电成像原理.第1版.北京:北京理工大学出版社,1997
    [14]IP Csorba. Electron image tubes and image intensifiers. Proc. of SPIE,1991
    [15]周立伟.光电子成像—走向新的世纪.北京理工大学学报,2002,(22)1:1-14
    [16]周立伟.光电子成像:回顾和展望.中国计量学院学报,2001,(12)2:25-29
    [17]李斌.国外夜视技术军事应用现状.国防技术基础,2010,11:60-61
    [18]J L A Fordham. Astronomical performance of a micro-channel plate instensified photon counting detector. Mon Not R Astr Soc,1989,237:513-521
    [19]R W Aircy. DQE enhancement of MCP intensifiers for astronomy results of the MICX programme. Proc. of SPIE,1990,1235:338-346
    [20]E Roaux, J C Richard, C Piaget etc.. Third generation imaging intensifier. Advances in Electronics and Electron Physics,1985,64A:71-75
    [21]J R Howorth, R Hokom, Z Hawton etc.. Exploring the limits of performance of third generation image intensifiers. Vacuum,1980, (30)11:551-555
    [22]H K Pollehn. Performance and reliability of third generation imaging intensifiers. Advances in Electronics and Electron Physics,1985,64A:61-69
    [23]谭显裕.微光夜视和红外成像技术的发展及军用前景.航空兵器,2001,3:29-34
    [24]向世明.三代微光和超二代微光夜视技术的研究和开发.应用光学,1994,(15)2:1-5
    [25]吴晗平.军用微光夜视系统的现状与研究.应用光学,1994,(15)1:15-19
    [26]骆冠平,何开远,王志宏等.二代微光像增强器的发展与应用.红外技术,2000,(22)2:7-10
    [27]B K Chang. Study of control principles photocathode composition of the supersecond generation image intensifier. Acta Optica Sinica,1994, (14)2:193-197
    [28]J Dupuy, J Schrijvers, G Wolzak. XX1610:the super second generation image intensifier. Proc.of SPIE,1989,1072:13-18
    [29]H P赫尔齐克.微光学元件、系统和应用.第1版.北京:国防工业出版社,2002
    [30]白廷柱,金伟其.光电成像原理与技术.第1版.北京:北京理工大学出版社,2006
    [31]宋述燕,陈波.新型图像传感器ICCD的原理及应用.科技信息,2007,29:132-133
    [32]左防,刘广荣,高稚允等.用于微光成像的BCCD, ICCD, EBCCD性能分析.北京理工大学学报,2002,(22)1:109-113
    [33]张金林,万蔚,芮挺.基于EBCCD的微光成像仿真.传感技术学报,2009,(22)8:1142-1145
    [34]周立伟,刘广荣,高稚允等.用于微光摄像的高灵敏度电子轰击电荷耦合器件.中国工程科学,1999,(1)3:56-62
    [35]刘广荣,周立伟,王仲春等.背照明CCD微光成像技术.红外技术,2000,(22)1:8-12
    [36]M Suyama, T Sato, S Ema etc.. Single-photon-sensitive EBCCD with additional multiplication. Proc. of SPIE,2006,6294:629401-6294011
    [37]C B Johnson. Review of electron-bombarded CCD cameras. Proc. of SPIE,1998, 3434:45-53
    [38]姜德龙,吴奎,王国政等.基于BCG-MCP的四代微光像增强技术.红外技术,2003,(25)6:45-48
    [39]徐江涛,张兴社.微光像增强器的最新发展动向.应用光学,2005,(26)2:21-23
    [40]T W Sinora, E J Benderb, T Chaua etc.. New Frontiers in 21st Century Microchannel Plate (MCP) technology:Bulk Conductive MCP Based Image Intensifiers. Proc. of SPIE, 2000,4128:1-9
    [41]王丽,尚晓星,王瑛.微光夜视技术的新进展.河南科技学院学报,2007,35(3):91-93
    [42]K Costello, G Davis, R Weiss etc.. Transferred electron photocathode with greater than 5% quantum efficiency beyond 1 micron. Proc. of SPIE,1991, Vol.1449:40-45
    [43]艾克聪.微光夜视技术的现状和发展设想.应用光学,1995,16(3):11-22
    [44]何伟基.电子倍增CCD的倍增机制及其在光子计数成像的应用.南京:南京理工大学,2009
    [45]魏继锋,张凯.光子成像计数技术及其新进展.激光与光电子学进展,2007,(44)7:27-32
    [46]N Smith, C Coates, A Giltinan etc.. EMCCD Technology and its Impact on Rapid Low-Light Photometry. Proc. of SPIE,2004,5499:162-172
    [47]张灿林,陈钱,周蓓蓓.高灵敏度电子倍增CCD的发展现状.红外技术,2007,(29)4:192-195
    [48]苏学征EMCCD技术—单光子水平的成像探测.现代科学仪器,2005,2:51-53
    [49]iXon EMCCD Camera:Back-illuminated EMCCD Cameras. Andor Technology. http://www.andor.com/scientific_cameras/ixon/
    [50]Newton EMCCD and CCD Cameras:A New Approach to Spectroscopy. Andor Technology. http://www.andor.com/scientific_cameras/newton/
    [51]R C Jennison. Relationship between photons and electromagnetic waves derived from classical radio principles. Proc. of Microw Antennas Propag,1999,1:91-93.
    [52]张雪皎,万钧力.单光子探测器件的发展与应用.激光杂志,2007,(28)5:13-15
    [53]陶源,王平,尚金萍.APD在紫外通信中的应用探讨.舰船电子工程,2010,(30)5:98-101
    [54]邵军虎,黄涛,王晓波.硅雪崩二极管光子辐射特性的实验研究.光子学报,2005,(34)3:354-356
    [55]寇松峰,陈钱,顾国华等.基于APD阵列的单光子计数成像研究.半导体光电.2008,(29)6:968-974
    [56]寇松峰.APD光子计数成像技术研究.南京:南京理工大学,2010
    [57]J Okeeffe, J Jacson. New developments in photon counting modules. Optical Metrology, 2006,1:58-61
    [58]J C Jackson, A P Morrison, P Hurley etc.. Process Monitoring and Defect Characterization of Single Photon Avalanche Diodes. ICMTS,2001,14:165-170
    [59]D Phelan, J C Jackson, R M Redfern etc.. Geiger Mode Avalanche Photodiodes for Microarray Systems. Proc. of SPIE,2002,4626:89-97
    [60]张鹏飞,周金运,廖常俊等.APD单光子探测技术.光电子技术与信息,2003,(16)6:6-11
    [61]方俊彬,廖常俊,魏正军等.超短光脉冲波形对门模单光子探测的影响.光子学报,2009,(38)9:2192-2195
    [62]权菊香.Si-单光子探测器的全主动抑制技术.激光与光电子学进展,2006, (43)5:43-46
    [63]J C Jackson, P K Hurley, B Lane etc.. Comparing leakage currents and dark count rates in Geiger-mode avalanche photodiodes. Appl. Phys. Lett.,2002, (80)22:4100-4102
    [64]J C Jackson, A P Morrison, D Phelan etc.. A Novel Silicon Geiger-Mode Avalanche Photodiode. Proc. of IEDM,2002,32.2(2):797-800
    [65]J C Jackson, J Donnelly, B O'Neill etc.. Integrated bulk/SOI APD sensor:bulk substrate inspection with Geiger-mode avalanche photodiodes. Electronics Letters,2003, (39)9:735-736
    [66]Datasheet:PCDMini. http://sensl.com/products/photon-counting-systems/pcdmini/
    [67]C Jackson, A Mathewson. Improvements in silicon photon counting modules. Proc. of SPIE,2005,5726:69-76
    [68]李琦,迟欣,王骐.基于盖革模式APD阵列的单脉冲3D激光雷达原理和技术.激光与红外,2006,(36)12:1116-1119
    [69]J C Jackson, D Phelan, A P Morrison etc.. Towards integrated single photon counting microarrays. Optical Engineering,2003, (42)1:112-118
    [70]S Vasile, P Gothoskar, R Farrell etc.. Photon Detection with High Gain Avalanche Photodiode Arrays. IEEE Transations on Nuclear Science,1998, (45)3:720-723
    [71]C Niclass, A Rochas, P A Besse etc.. Toward a 3-D Camera Based on Single Photon Avalanche Diodes. Journal of Selected Topics in Quantum Electronics,2004, (10)4:796-802
    [72]M Jack, J Asbrock, C Anderson etc.. Advances in Linear and Area HgCdTe APD Arrays For Eye safe LADAR Sensors. Proc. of SPIE,2001,4454:198-211
    [73]龚威G-APD阵列一种具有单光子灵敏度的三维成像探测器.激光技术,2007,(31)5:452-455
    [74]S Bellis, R Wilcock, C Jackson etc.. Photon counting imaging:the Digital APD. Proc. of SPIE,2006,6068:1-10
    [75]H P Wong, R T Chang, E Crabbe etc.. CMOS Active Pixel Image Sensors Fabricated Using a 1.8V 0.25μm CMOS Technology. IEEE Transactions on Electron Devices,1998, (45)4:889-894
    [76]A Biber, P Seitz, H Jackel. Avalanche Photodiode Image Sensor in Standard BiCMOS Technology. IEEE Transactions on Electron Devices,2000, (47)11:2241-2243
    [77]C Xu, W Q Zhang, M Chan. A Low Voltage Hybrid Bulk/SOI CMOS Active Pixel Image Sensor. Eelectron Device Letters,2001, (22)5:248-250
    [78]J C Jackson, A P Morrison, B Lane etc.. Characterization of Large Area SPAD Detectors Operated in Avalanche Photodiode Mode. IEEE LEOS,2000,1:17-18
    [79]O Steinvall, T Carlsson, C Gronwall etc.. Laser based 3-D imaging:new capabilities for optical sensing—technical overview and research problems. Swedish Defence Research Agency,2003
    [80]R Marino, T Stephens, R Hatch etc.. A Compact 3D Imaging Laser Radar System Using Geiger mode APD Arrays:System and Measurements. Proc. of SPIE,2003,5086:1-15
    [81]M A Albota, R M Heinrichs, D G Kocher etc.. Three-Dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser. Applied Optics, 2002,41(36):7671-7678
    [82]B F Aull, A H Loomis, D J Young etc.. Geiger-Mode Avalanche Photodiodes for Three-Dimensional Imaging. Lincoln Laboratory Journal,2002, (13)2:335-350
    [83]刘晓波,李丽.基于盖革模式APD阵列的激光雷达性能分析.航空兵器,2009,6:35-38
    [84]S Johnson, P Gatt, T Nichols. Analysis of Geiger-Mode APD Laser Radars. Proc. of SPIE, 2003,5086:359-368
    [85]Min Seok Oh, Hong Jin Kong. An improvement on accuracy of laser radar using a Geiger-mode avalanche photodiodes by time-of-flight analysis with Poisson statistics. Proc. of SPIE,2010,7684:76841-10
    [86]R D Richmond, R Stettner, J W Glessner. Eye-safe laser radar focal plane array for three dimensional imaging. Proc. of SPIE,2000,4035:172-178
    [87]R Heinrichs, B F Aull, R M Marino etc.. Three dimensional laser radar with APD array. Proc. of SPIE,2001,4377:106-117
    [88]R M Marino, W R Davis, G C Rich etc.. High resolution 3D laser radar flight test experiments. Proc. of SPIE,2005,5791:138-151
    [89]M J Halmos, M D Jack, J F Asbrock etc..3D flash ladar at Raytheon. Proc. of SPIE, 2001,4377:84-97
    [90]M K Browder, B Evans, J D Beck etc.. Three dimensional imaging sensors program. Proc. of SPIE,2001,4377:73-83
    [91]C Niclass, A Rochasl, P A Besse etc.. A 4μs integration time imager based on CMOS single photon avalanche diode technology. Sensors and Acruarors,2006,273-281
    [92]S Buckley, S Bellis, R Wilcock etc.. Scalable Geiger/APD/PIN multi-channel sensing platform. Proc. of SPIE,2006,6119:611909
    [93]S Bellis, C Jackson. Silicon photon-counting sensors facilitate in vivo monitoring. Biophotonics International,2005,12:50-53
    [94]S Bellis, C Jackson, A Konig. Photon Counting Sensors for Medical and Biophotonic Applications. Laser & Photonik,2005,5:34-38
    [95]秦小林,周春元,李和祥等.单光子雪崩二极管的被动主动混合抑制技术.半导体光电,2004,(25)6:459-462
    [96]李水峰,熊予莹,李日豪等.红外InGaAs/InP单光子探测器暗计数的研究.量子光学学报,2007,(13)2:141-145
    [97]赵峰,郑力明,廖常俊等.红外单光子探测器暗计数的研究.激光与光电子学进展,2005,(42)8:29-32
    [98]廖常俊.红外通信波段SAGM APD单光子探测应用技术研究.量子光学学报,2005,(11)4:176-184
    [99]廖常俊,李日豪,魏正军等.用于量子保密通信的红外单光子探测器.全国第十二次光纤通信暨第十三届集成光学学术会议论文集,2005,223-234
    [100]李水峰,李宗书. InGaAs/InP雪崩二极管的温度-电压特性.中国科技信息,2009,11:173-174
    [101]周金运,彭孝东,张鹏飞等.量子保密通信用单光子探测系统的设计初探.光电工程,2004,(31)7:31-34
    [102]周金运,张鹏飞,彭孝东等.基于门控制模式的单光子探测电路设计.半导体光电,2004,(25)4:304-307
    [103]吕华,彭孝东等.单光子探测器APD无源抑制特性研究.应用光学,2006,(27)4:355-358
    [104]吕华.单光子探测器APD的外围抑制电路设计.科技经济市场,2007,7:4
    [105]孙志斌,马海强,雷鸣等.近红外单光子探测器.物理学报,2007,(56)10:5790-5795
    [106]Liu Wei, Yang Fuhua, Wu Meng. A New Method to Investigate InGaAsP Single Photon Avalanche Diodes Using a Digital Sampling Oscilloscope. Chinese Journal of Semiconductors,2006, (27)10:1711-1716
    [107]刘伟,杨富华.近红外单光子探测.物理,2010,(39)12:825-831
    [108]陈修亮.1550nm单光子探测及其应用研究.上海:华东师范大学,2006
    [109]周金运,彭孝东,林清华等. InGaAs-APD门模单光子探测及其应用.量子电子学报,2004,(21)4:401-404
    [110]王飞,赵远,张宇.激光脉冲强度对于盖革模式单光子探测测距精度影响的理论研究.光学学报,2010,(30)10:2771-2775
    [111]王金东,吴祖恒,张兵等.用于红外单光子探测的雪崩光电二极传输线抑制电路模型的理论分析.物理学报,2008,(57)9:5621-5627
    [112]张忠祥,韩正甫,刘云.超导单光子探测技术.物理学进展,2007,(27)1:1-8
    [113]吴青林,刘云,陈巍等.单光子探测技术.物理学进展,2010,(30)3:296-306
    [114]周立伟.关于微光像增强器的品质因数.红外与激光工程,2004,33(4):331-337
    [115]张闻文.基于噪声特性的电子倍增CCD最佳工作模式研究.南京:南京理工大学,2009
    [116]孙凤久.应用光电子技术基础.第1版.沈阳:东北大学出版社,2005
    [117]J Okeeffe, C Jackson. Low-Light Imaging:Silicon photon-counting detectors enable next-generation imaging. Laser Focus World,2006,17:1-5
    [118]张永林,狄红卫.光电子技术.第1版.北京:高等教育出版社,2005
    [119]Kindt W J, Shahrjerdy N H, Zeijl H W. A silicon avalanche photodiode for single optical photon counting in the Geiger mode. Sensor and Actuators,1997, A60:98-102
    [120]J C Jackson, D Phelanb, A P Morrison. Characterization of Geiger Mode Avalanche Photodiodes for Fluorescence Decay Measurements. Proc. of SPIE,2002,4650:55-66
    [121]Alexander W Lightstone, Andrew D Macgregor, Darlene E Macsween etc.. Photon counting modules using RCA silicon avalanche photodiodes. Electron. Eng.,1989, (10)8:1023-1032
    [122]T E Ingerson, R J Kearney, R L Coulter, Photon counting with photodiodes. App. Opt., 1983,(22)13:2013-2018
    [123]A Haapalinna, P Karha, E Ikonen. Spectral reflectance of silicon photodiodes. Applied Optics,1998, (37)4:729-732
    [124]Xiaoli Sun, Frederic M Davidson. Photon Counting with Silicon Avalanche Photodiodes. Journal of Light Wave Technology,1992,8:1023-1032
    [125]Chin-Tang Sah, Noyce R N, Shockley W. Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics. Proc. of IRE,1957,9:1228-1243
    [126]R J McIntyre. A New Look at Impact Ionization—Part Ⅰ:A Theory of Gain, Noise, Breakdown Probability, and Frequency Response. IEEE Transactions on Electron Devices, 1999,(46)8:1623-1631
    [127]John P R David, Graham J Rees. The Physics of Low Noise Avalanehe Photodiodes. Electronic&Electrical Engineering University of Sheffield, U.K.
    [128]Masafumi Oshiro. Low Light Imaging system for luminescence probes in living animals. Proc. of SPIE,1999,3600:113-116
    [129]R Brown, K Ridley, J Rarity. Characterization of silicon avalanche Photodiodes for Photon correlation measurements 1:Passive quenching. Applied Optics,1986, (25)22:4122-4126
    [130]P Owens, J Rarity, P TaPster. Photon counting with Passively quenched Germanium avalanche. Applied OPtics,1994, (33)30:6895-6901
    [131]L Q Li, L M Davis. Single photon avalanche diode for single molecule detection. Rev. Sci. Instrum,1993, (64)6:1524-1529
    [132]F Zappa, A Lotito, A C Giudice etc.. Monolithic Active—Quenching and Active—Reset Cicruit for Single Photon Avalanche Detectors. Journal of Solid-State Circuits, 2003,(38)7:1298-1301
    [133]彭孝东,周金运,廖常俊等.雪崩抑制技术在SPADs中的应用.光电子技术,2004,2:66-70
    [134]向世明,高教波,焦明印等.现代光电子成像技术概论.第1版.北京:北京理工大学出版社,2010
    [135]金伟其,刘广荣,白廷柱等.夜视领域几个热点技术的进展及分析.光学技术,2005,(31)3:405-409
    [136]L J Yin, B X Tan, J Shen etc.. Wavelet de-noising and nonlinear enhancement on low light level image. Journal of Information and Computational Science,2008,2:679-686
    [137]郁道银,谈恒英.工程光学.第2版.北京:机械工业出版社,2006
    [138]王海晏.光电技术原理及应用.第1版.北京:国防工业出版社,2008
    [139]R L Boylestad, L Nashelsky. Elecectronic Devices and Circuit Theory. Prentice-Hall, 1992
    [140]S B Alexander. Optica communication Receiver Design. IEE Telecommunications Series.1997
    [141]Henri Dautet, Pierre Deschamps, Bruno Dion etc.. Photon counting techniques with silicon avalanche photodiodes. Applied Optics,1993, (32)21:3894-3900
    [142]A G Stewart, V Saveliev, S J Bellis etc.. Performance of 1mm2 Silicon Photomultiplier. Journal of Quantum Electronics,2008, (44)2:157-164
    [143]M G Bisogni, C Carpentieri, P Delogu etc.. Characterization of A Single Photon Counting Imaging System by the Transfer Functions Analysis. Transactions on Nuclear Science,2007, (54)1:245-251
    [144]I A Elbakri. Characterization of a CMOS detector for limited-view mammography. Proc. of SPIE,2007,6510:651049
    [145]G Ribordy, N Gisin, O Guinnard etc.. Photon counting at telecom wavelengths with commercial InGaAs/InP avalanche photodiodes:current performance. Journal of Modern Optics,2004, (51)9:1381-1398
    [146]J Richardson, R K Henderson, D Renshaw. Dynamic quenching for single photon avalanche diode arrays. International imaging sensor workshop,2007,258-260
    [147]戚康男,秦克诚,程路.统计光学导论.第1版.天津:南开大学,1987
    [148]裴鹿成,张孝泽.蒙特卡罗方法及其在粒子输运问题中的应用.第1版.北京:科学出版社,1980
    [149]吴青林.高速电子学及其在量子信息技术中的应用.安徽:中国科学技术大学,2008
    [150]赵勋杰.光子计数成像原理及其应用.红外与激光工程,2003,(32)1:42-45
    [151]王晓辉,胡新奇,俞信等.光子计数成像探测系统及其在生命科学中的应用.北京理工大学学报,1997,(17)4:503-506
    [152]R G W. Brown, R Jones. Characterization of silicon avalanche photodiodes for photon correlation measurement 2:active quenching. Appl. Opt.,1987, (26)12:2383-2389

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700