用户名: 密码: 验证码:
光电搜跟系统模式切换特性及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电搜跟伺服系统广泛应用于机载侦察、导弹制导、要地防空等领域,它直接影响武器装备的侦察能力与打击精度。随着目标机动性能的提高,对光电搜跟系统的动态特性和跟踪精度都提出了更高的要求。论文以提高光电搜索跟踪的捕获响应速度和跟踪精度为主要目的,围绕光电搜跟伺服系统工程实践中的问题,分别从伺服机构的运动学和动力学建模及整体仿真分析、伺服系统带宽优化设计、跟踪回路多模切换控制方法、图像跟踪器与伺服控制的匹配、跟踪性能的评价等方面展开研究:
     1.分析了光电搜跟伺服系统的工作机理,推导了两轴稳定跟踪平台的空间运动学方程和牛顿力学方程,建立了伺服系统各组成部分的数学模型。为了从系统的角度来反映各种误差因素对光电搜跟伺服系统精度的影响,对机动目标跟踪的工作过程进行了建模和仿真研究,从而为光电搜跟伺服系统的各项性能指标确定以及后续控制问题的研究提供了参考依据。
     2.针对目标机动性带来的光电搜跟系统高动态性能要求,开展了伺服系统带宽优化设计研究。分析了传感器噪声、系统阻尼与机械谐振等因素对系统带宽的影响。应用Bode-Step方法对系统的带宽进行扩展,建立了较为系统的带宽设计与优化方法,为提高光电搜跟系统的伺服性能提供了有效手段。
     3.针对跟踪过程中多控制器切换时对系统控制瞬态特性的影响,对初值补偿(IVC)、复合非线性反馈(CNF)等几种切换控制方法进行了对比研究,提出了基于单参数对称调节的模式切换方法。应用该方法,阶跃响应的上升和稳态时间都较短,且超调较小,稳态误差小,可满足系统对捕获和跟踪的不同需求,实现捕获和跟踪模式的平滑切换。同时,为便于工程中的应用,推导了捕获跟踪调节传递函数的标准形式和转换方法;根据跟踪回路指标要求和系统结构模态不同,通过改变标准形式的截止频率,可快速得到所控对象的捕获跟踪调节控制器。
     4.提出了基于多率预测算法的伺服控制与图像跟踪器的匹配控制设计方法。在分析了图像跟踪器的噪声特性、滞后特性、低采样率对系统跟踪性能的影响后,针对图像跟踪器的统计特性不确定性噪声及滞后的影响,提出了一种基于两级Kalman的滤波预测补偿方法;针对跟踪器的低采样率的影响,结合跟踪回路的动态性和精确性设计指标,提出了一种便于工程应用的直接反馈输入多采样率控制器设计方法,有效改善了光电搜跟系统的动态品质。通过将二者有机结合,提出了基于多率预测算法的伺服控制与图像跟踪器的匹配控制设计方法。
     5.研究了伺服跟踪性能的评估方法与指标。首次将随机灵敏度函数用于光电搜跟系统的性能估计和评价中,提出了图像跟踪伺服系统性能评估的指标参数:随机直流增益参数、随机带宽比和随机谐振参数,应用这三个指标参数可区分由于伺服系统性能的影响而产生的跟踪误差的不同原因,对于此类跟踪系统的性能评估和设计均有指导意义。
An Electro-Optical Search and Track system (EOST) is the device to search and track the target which is detected by the infrared or CCD sensors. The EOST system can be used in many applications such as real time surveillance, homing missile guidance, laser designation systems and weapon fire control systems etc. As the targets are developed toward more maneuverable, the tracking servo system is desired for performance improvements of fast response and precise positioning. Based on the author’s practice experience on developing several EOST systems, this thesis carry on the research work on several aspects such as kinematics and dynamics modeling of tracking servo system, simulation of tracking control in whole time of tracking a target, servo system bandwidth optimization, multi-mode switching control of tracking control loop, matching between image tracker and servo control, and the evaluation of tracking performance.
     1. Firstly, this thesis analyzes the primary principles of the EOST system, derives kinematics equations and Newtonian mechanics equations of a two axes stabilized platform, and establishes the system components’mathematical models. To analyze the effects of error factors on the tracking system’s performance in systemic view, the working process of the system is modeled and simulated, which provides references for the confirmation of its performance indexes and the research of control problems.
     2. To fulfill the demand of quick response performance, the thesis investigates on the optimization design of servo system bandwidth. After analysis on the effect of sensor noise, system damp and resonance on the system bandwidth, this thesis proposed the Bode-Step method to expand the bandwidth of the tracking servo system, and established a systemic method for bandwidth design and optimization. It is an efficient means for improvement of servo capability.
     3. In EOST systems, there are special requirements for better dynamic and steady-state performance, which cannot be satisfied by using only single controller. In order to respond to the changing requirements for better control performance at different stages, several different and independent controllers can be used by switching. This control method is normally called multimode control. The direct switching of the parallel channels might result in an unstable system, or in a system with small stability margins and, therefore, producing large transient error. Several methods were proposed for mode switching from one controller to another. After comparing several methods such as initial value compensation (IVC), composed nonlinear feedback (CNF), an adaptive regulator with a smoothly variable high-order linear response controlled by a single real parameter is employed in an acquisition-tracking system. Using normalized design simplifies the design procedure for practice application. The experiment result shows that the transition between the modes is smooth and rapid, and the transient responses are fast and without substantial overshoots.
     4. A method for servo and image tracker matching problem is proposed after study of the imaging tracker’s lag and low frame frequency, and their influence on performance of tracking control loop. To compensate the tracker’s delay effect, a two-stage Kalman estimator for tracking maneuvering and non-maneuvering targets are provided. The method utilize the first stage of which is a bias-free filter providing target position and velocity estimates, and the second stage of which is a bias filter providing estimates of target acceleration. These two filters act together to provide parallel processing calculations thereby achieving high speed target state determination. During target maneuvers, the output of the second stage is used to correct the output of the first stage. In the absence of maneuver, the second stage is turned off and the first stage provides the target position and velocity estimates. To eliminate the influence of low frame frequency, a direct multi-rate feedback (DMF) control algorithm is brought forth by combining the low rate sub-controller with the fast rate one. The desired rise time of system response is depended on the low rate sub-controller. While the stability margin of system is guaranteed by the fast rate one. It is equivalent to increasing damping for increasing the number of effective controlled input signals in unit time though the fast rate controller. Combing the two-stage Kalman predict filter and the DMF control algorithm, we got the unified multirate predict control scheme (UMPC), which is effective for matching the servo control and tracker output. It is proved that the UMPC algorithm is effectiveness in improving system stability, dynamic performance and tracking accuracy.
     5. Tracking performance evaluation indictors of EOST systems have been investigated. The evaluation of tracking performance is provided by introducing the notion of random sensitivity function. This function, obtained using the method of stochastic linearization, characterizes the stationary tracking error for band-limited random references. Several of its functions, referred to as tracking quality indicators, are introduced to characterize complex tracking behaviors that arise in EOST systems. Various causes of poor tracking (e.g., static unresponsiveness, lagging, oscillatory responses, controller windup, and limitations due to finite trackable domains) can be identified by these indicators. The random sensitivity function and tracking quality indicators are useful for predicting the quality of tracking in EOST systems.
引文
1. Newman E. A.,Hartline P.H., The infreared vision of snakes[J]. Scientific American, 1982. 246(3): 116~127.
    2. Gracheva Eo, Ingolia Nt, Kelly Ym, Cordero-Morales Jf, Hollopeter G, Chesler At, Sánchez Ee, Perez Jc, Weissman Js, Julius D., Molecular basis of infrared detection by snakes[J]. Nature, 2010(3).
    3.葛文奇,红外探测技术的进展、应用及发展趋势[J].红外技术与应用, 2007(4).
    4.周立伟,目标探测与识别[M]. 2001,北京:北京理工大学出版社.
    5.陈伯良,红外焦平面成像器件发展现状[J].红外与激光工程, 2005. 34(1).
    6.苏序,舰载光电探测跟踪系统及其发展趋势[J].舰船论证参考, 1996. 2: 66-70.
    7.王惠,殷占英,光电跟踪仪在舰载近程反导武器系统中的地位与作用[J].舰船科学技术, 1999. 2: 54-56.
    8.王泽和,迈向21世纪的舰用光电设备[J].应用光学, 1998. 19(5): 1-5.
    9. Defense-Update.Com, Lockheed Martin Gyrocam Wins Additional Order for VOSS. 2010.10.
    10. George Downey,Larry Stockum. Electro-Optical Tracking Considerations[C]. Acquisition, Tracking and Pointing III, SPIE Proceedings. 1989.
    11. George A. Downey. Electro-Optical Tracking Considerations II[C]. Acquisition, Tracking and Pointing XVIII, SPIE. 2003.
    12.刘艳行,高精度光电跟踪伺服系统的几个关键技术[J].中国科技信息, 2007. 20: 270-271.
    13. K M Grigoriadis,F Wu. Integrated H∞plant/controller design via linear matrix inequalities[C]. IEEE Conf. Decision Control. 1997.
    14. K. M. Grigorindis, G. Zhu, R. E. Skclton, Optimal redesign of linear systems[J]. ASME Journal Dynimic System Measurement and Control, 1996. 118: 596-605.
    15. I. Kajiwara,A. Nagamatsu, An approach of optimal design for simultaneous optimization of structure and control systems using sensitivity analysis[J]. J. SICE, 1990. 26(10): 1140-1147.
    16. J. Onoda,H. Haftka, An approach to structrue/control simultaneous optimization for large flexible spacecraft[J]. AIAA Journal, 1987. 25(8):1133-1138.
    17. R. E. Skelton, B. R. Hanks, M. Smith, Structure redesign for improved dynamic response[J]. J. Guid. Control Dyn., 1992. 15(5): 1272-1278.
    18. R. E. Skelton,J. H Kim. The optimal mix of structure redesign and active dynamic controller[C]. Proc., American Control Conf. 1992. Chicago.
    19. R. E. Skelton, T. Iwasaki, K. M. Grigoriadis, A unified approach to control design[M]. 1998, London: Taylor and Francis.
    20. K. M. Grigoriadis,R. E. Skelton. Integrated structural and control design for vector second-order systems via LMIs[C]. American Control Conference. 1998. Philadelphia.
    21. A Chattopahyay,C. E Seeley, Multiobjective design optimization procedure for control of structures using piezoeletric materials[J]. J. intelligent Material Systems Struct, 1994(5): 403-411.
    22. Mona Meisami-Azad, Javad Mohammadpour, Karolos M Grigoriadis, Explicit solutions for collocated structural control with guaranteed H2 norm performance specifications[J]. Smart Materials and Structures, 2009(18).
    23. N. S. Khot,S. A Heise, Consideration of plant uncertainties in the optimum structural-control design[J]. AIAA Journal, 1994. 32: 610-615.
    24. N. S. Khot, Multicriteria Optimization for Design of Structures with Active Control[J]. Journal of Areospace Engineering, 1998. 11(2): 45-51.
    25. J. H. Kim, T. Shimomura, H. Okubo, Simultaneous Optimal Design of Structural and Control Systems via Successive LMI Optimization[J]. Journal of Intelligent Material Systems and Structures vol. 16 no. 11-12 977-982, 2005. 16(11): 977-982.
    26. I. M. Jin,A. E Sepulveda, Structural/control system optimization with variable actuator masses[J]. AIAA Journal, 1995. 33(9): 1709-1714.
    27. Y.-P. Yang,Y.-A. Chen, Multiobjective optimization of hard disk suspension assemblies. II: Integrated structure and control design[J]. Comput. Struct., 1996. 59(4): 771-782.
    28. Ortega M G,Rubio F R, Systematic design of weighting matrices for the Hinf mixed sensitivity problem[J]. Journal of Process Control, 2004. 14(1): 89~98.
    29. Aguiar A. P., Hespanha J. P., Kokotovi P. V., Performance limitations in reference tracking and path following for nonlinear systems[J]. Automatica, 2008. 44(3):598~610.
    30. Bewley T. R.,Ziane M. A., Fundamental limit on the heat flux in the control of incompressible channel flow[J]. IEEE Transactions on Automatic Control, 2007. 52(11): 2118~2128.
    31.王广雄,何雨奋,伺服设计的性能极限[J].电机与控制学报, 1997. 1(4): 238~240.
    32.姚郁,傅绍文,贺风华,王晓晨,基于加权函数选择的伺服系统性能优化设计方法[J].自动化学报, 2009. 35(11): 1470~1475.
    33. Erik Coelingh, Assessment of Mechatronic System Performance at an Early Design Stage[J]. IEEE/ASME TRANSACTIONS ON MECHATRONICS. 7(3).
    34. Wenjie Liu, Structural Dynamic Analysis and Testing of Coupled Structures. 2006, London University.
    35. Anton C Pil,Haruhiko H. Asada, Integrated Structure/Control Design of mechatronic System Using a Recursive Experimental Optimization Method [J]. MECHATRONICS, 1996. 1(3).
    36. Tetsuya Iwasaki. Integrated System Design by Separation[C]. Proceedings of the 1999 IEEE International Conference on Control Applications. 1999. Hawaii,USA.
    37. K. Ono,T. Tcramoto, Design methodology to stabilize the natural mode of vibration of a swingarm positioning mechanism[J]. ASME Adv. Info. Storage Syst., 1992(4): 343-359.
    38.佟首峰,姜会林,刘云清,刘鹏,吴琼,自由空间激光通信系统APT粗跟踪伺服带宽优化设计[J].光电工程, 2007. 34 (9).
    39. H. W. Bode, Network Analysis acrd Feedback Amplifier Design[M]. 1947: Van Nostrand.
    40. Stein G, Respect the unstable[J]. IEEE Control Systems Magazine, 2003. 23(4): 12~25.
    41.王广雄,何朕,控制系统设计[M]. 2008,北京:清华大学出版社.
    42. Chen J, Sensitivity integrals and transformation techniques: a new perspective[J]. IEEE Trans. Automatic Control, 1997. 42(7): 1037-1042.
    43. Iglesias P A, Tradeoffs in linear time-varying systems: an analogue of Bode's sensitivity integral[J]. Automatica, 2001(37): 1541-1550.
    44. Sung H-K,Hara S, Properties of complementary sensitivity function in SISO digital control systems[J]. International Journal of Control, 1989. 50(9): 1283-1295.
    45. Wu B-F,Jonckhecre E A, A simplified approach to Bode’s theorem for continuous-time and discrete-time systems[J]. IEEE Trans. Automatic Control, 1992. 37(11): 1797-1802.
    46. Alireza Karimi, Daniel Garcia, Roland Longchamp. Iterative Controller tuning Using Bode's Integrals[C]. Proceedings of the 41st IEEE Conference on Decision and Control. 2002. Las Vegas, Nevada USA.
    47. B J Lurie,P J Enright, Classical Feedback Control with MATLAB[M]. 2000: Marcel Dekker.
    48. B.J. Lurie, A. Ghavimi, F.Y. Hadaegh, E. Mettler, System Trades Using Bode-Step Control Design[J]. J. Guidance, Control and Dynamics, 2001. 25(2): 309-315.
    49. R.J. Mitchell. Obtaining Maximum Feedback and Desired Phase Margin[C]. Proc. IASTED Conference, Applied Simulation and Modelling. 2003. Marbella, Spain.
    50.李楷,姚红萍,光电跟踪仪目标捕获过程控制技术研究[J].激光与红外, 2009. 39(5): 518-520.
    51. M. Iwasaki, K. Sakai, N. Matsui. High-speed and high-precision table positioning system by using mode switching control[C]. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. IECON '98. 1998. Nagoya Japan.
    52. T. Yamaguchi, H. Numasato, H. Hirai, A mode-switching control for motion control and its application to disk drives: design of optimal mode-switching conditions[J]. IEEE/ASME Transactions on Mechatronics, 1998. 3(3): 202~209.
    53. Steven Brooke, Design of approximate optimal servo for the JMCT chopping secondary[J]. Proc. SPIE. 2479: 233-244.
    54.金钰,天地景投影伺服系统的研究与实现[J].北京理工大学学报, 1999. 19(6): 710-713.
    55.冯培业,董宁,张宇河,天地景投影伺服系统控制算法的改进[J].北京理工大学学报, 2002. 22(3): 351-354.
    56. Bradley L M, Corriveau J P, Tindal N E, Launch area theodolite system[J]. SPIE, 1991 (2): 48-60.
    57. Downs J, Smith S, Schwickert J, Larry Stockum, High performance gimbal controlfor self-protection weapon system[J]. SPIE, 1998 (5): 77-86.
    58.孙健,高慧斌,动态高型控制方法在电视跟踪系统中的应用[J].光电工程, 2004(07).
    59.宋彦,高慧斌,郭同健,余毅,经纬仪控制模态切换时的动态分析和脱靶量跃变抑制[J].光学精密工程, 2008. 16(11): 2158-2163.
    60.李秋明,冯汝鹏,于镭,刘升才,转台伺服系统变模态控制器最优切换状态设置[J].宇航学报, 1998. 19(3): 79-82.
    61.胡旭晓,多模态控制策略的平稳过渡及其应用研究[J].中国机械工程, 2005. 16 (16): 1423-1426.
    62.胡旭晓,潘晓弘,基于惩罚函数的多模态平稳过渡策略研究[J].浙江大学学报(工学版), 2006. 40 (7): 1114-1116.
    63. B. J. Lurie. Multi-mode Synchronized Control for Formation Flying Interferometer[C]. AIAA Guidance, Navigation, and Control Conference and Exhibit. 2003. Austin, Texas.
    64. P.J.Enright, F.Y.Hadaegh, B.J.Lurie. Nonlinear Multi-Window Controllers[C]. AIAA Guidance Navigation and Control Conference. 1996. San Diego,CA.
    65. James Downs, Steve Smith, Jim S. High Performance Gimbal Control for Self-protection Weapon Systems[C]. SPIE Conference on Acquisition,Tracking and Pointing XII. 1998.
    66. John Murray Fitts, Aided Tracking as Applied to High Accuracy Pointing Systems[J]. IEEE Transacton on Aerospace and Electronic Systems, 1973. 9(3).
    67. John S. Alenl, Joe Stufflebeam, Dan Feller. Development of a Feed-forward Controller for a Tracking Telescope[C]. SPIE Conference on Acquisition,Tracking and Pointing XVIII. 2004.
    68.李连升,张志英,现代雷达伺服系统[M]. 1987:国防工业出版社.
    69. Wenshu Yang,Jiaguang Ma. A New Tracking and Measuring Control System for Optical and Elechronic Theodolite[C]. SPIE Conference on Acquisition,Tracking and Pointing XVI. 2002.
    70.周宏仁,敬忠良,王培德,机动目标跟踪[M]. 1991,北京:国防工业出版社.
    71.李晓峰,非线性滤波在光电跟踪中的应用及仿真研究[J].红外与激光工程, 2007. 36(z2).
    72.陈娟,耿爱辉,吴绍勇,脱靶量前馈补偿光电跟踪伺服系统的跟踪精度[J].长春工业大学学报(自然科学版), 2007(04).
    73.黄永梅,目标速度预测在光电跟踪控制系统中的应用[J].红外与激光工程, 2004. 33(5).
    74.颜世刚,刘少伟,柳磊,光电跟踪系统计算机辅助控制实现[J].光学与光电技术, 2009. 7(3): 45-48.
    75.黄永梅,马佳光,傅承毓,预测滤波技术在光电经纬仪中的应用仿真[J].光电工程, 2002. 29(4): 5~9.
    76. P. R. Kalata,K. M. Murphy.α-βTarget Tracking with Track Rate Variations[C]. Proceedings. of the 29th Southeastern Symposium on System Theory. 1997.
    77. Bryson S. Effects of Lag and Frame Rate on Various Tracking Tasks[C]. SPIE. 1993.
    78. Steven L.Chodos. Track Loop Bandwidth, Sensor Sample Frequency, and Track Loop Delays[C]. SPIE Conefrence on Acqusitioin,Tracking and Poniting. 1998.
    79.王连明,葛文奇,李杰,跟踪系统中跟踪器延迟的自适应预测补偿方法[J].光电工程, 2002. 29(4): 13-16.
    80. Zhang Hongye, Wei Wuzhong, Cai Ymgzhen, Predictive Control of Optoelectronic Tracking System[J]. Journal of Beijing Institute of Technology, 1999. 8(3): 270-275.
    81.赵金宇,李文军,连远锋,电视跟踪系统脱靶量动态滞后误差的修正[J].电光与控制, 2004. 11(3): 20-22.
    82. Tai Quach,M.Farooq. A Fuzzy Logic-based Target Tracking Algorithm[C]. SPIE. 1998.
    83.凌建国,刘尔琦,杨杰,基于H∞滤波器的红外小目标运动预测和跟踪方法[J].红外与毫米波学报, 2005. 24(5): 366-369.
    84. Shreenath Shetty, A Mult-sensor Tracking System With an Image-Based Maneuver Detector[J]. IEEE Transaction on Aerospace and Electronic Systems, 1996. 32(1): 167-181.
    85. Schulthess, Lt M.Er Al., Altitude control and trajectory for the High Balloon Experiment [J]. SPIE Acquisition,Tracking and Pointing VIII, 1994(2221):590-609.
    86.杨培根等译,美国国防部手册:火力控制系统总论[M]. 1998,北京:兵器工业出版社.
    87.安凯,马佳光,等,一种运动目标位置合成的快速算法[J].光电工程, 2001. 28(4): 5-8.
    88.安凯,马佳光,傅承毓,运动目标位置的合成[J].系统工程与电子技术, 2002. 24(19): 16-18.
    89. Birmiwal K. Bar-Shalomy, Variable dimension filter for maneuvering target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 1982. 18(5): 611~619.
    90. Chammas a B,Leondes C T, Pole Assignment by Piecewise Constant Output Feedback[J]. Int. J.Control, 1979. 29 (1): 31~38.
    91. Hagiwara T. Araki M, Pole Assignment by Multi-rate Sampled-data Output Feedback[J]. Int. J. Control, 1986. 44(6): 1661~1673.
    92. Patton Rj, Liu Gp, Patel P, Sensitivity Properties of Multirate Feedback Control System Based on Eigen-Structure Assignment[J]. IEEE Trans. Automat. Contr, 1995. 40(2): 337~342.
    93. Berger C S,Peduto D., Robust Digital Control Using Multirate Sampling[J]. Int. J. Control, 1997. 67(5): 813-824.
    94. A.M.Azad,T.Hesketh. H∞Optimal Control of Multirate Sampled-Data Systems[C]. Proceedings of the American Control Conference. 2002.
    95. B.Bamieh P.G.Voulgaris, Optimal H∞and H2 Control of Hybrid Multi-rate System[J]. Systems and Control Letters, 1993(20): 249-261.
    96. Dullerud. G,S Lall, A New Approach for analysis and Synthesis of Time-Varying Systems[J]. IEEE Transactions on Automatic Control, 1999(44): 1486~1497.
    97. Dullerud. G,Lall. S, Asynchronous Hybrid Systems with Jumps Analysis and Synthesis Methods[J]. Systems and Control Letters, 1999(37): 61~69.
    98. M.F.Sagfors, H.T Toivonen, B.Lennartson, State-Space Solution to the Periodic Multirate H∞Control Problem: A Lifting Approach[J]. IEEE Trans. On Automatic Control, 2000. 45(12): 2345-2350.
    99. Sanjay Lall,Geir Dullerud, An LMI Solution to the Robust Synthesis Problem forMulti-rate Sampled-Data Systems[J]. Automatica, 2001(37): 1909~1922.
    100.肖建,多采样率数字控制系统[M]. 2003,北京:科学出版社.
    101.赵霞,多速率采样控制系统设计方法研究. 2003,哈尔滨工业大学:哈尔滨.
    102. Hiroshi Ito. Improvement of Deadbeat Servomechanism Using Multi-rate Input Control[C]. Proceedings of American Control Conference. 2000. Chicago.
    103. M.J Er, Lee. S.C, Tan. L.L. Digital-Signal-Processor-Based Multirate PID Control of a Two-Link Flexible-Joint Robot[C]. Proceedings of Digital Signal Processing Applications. 1996.
    104. Low. K. S, Chiun. K.Y, Ling. K.V. A DSP-Based Servo System Using Generalized Predictive Control[C]. Power Conversion Conference. 1997. Nagaoka.
    105. Chung Choo Chung, Seung-Hi Lee, Dong Seul Jeong. Multirate Output Feedback Control and Its Application to Galvanometer Servo Systems[C]. American Control Conference. 2003.
    106. Herbert Werner. Robust Control of a Laboratory Flight Simulator by Nondynamic Multirate Output Feedback[C]. Proceedings of the 35th Conference on Decision and Control. 1996. Kobe Japan.
    107. Hiroshi Fujimoto, Keisuke Fukushima, Shinsuke Nakagawa. Vibration Suppression Short-Span Seeking of HDD with Multirate Feedforward Control[C]. Proceedings of the 2006 American Control Conference Minneapolis. 2006. Minnesota, USA.
    108. Ryozo Nagamune, Xinghui Huang, Roberto Horowitz. Multirate Track-Following Control with Robust Stability for a Dual-Stage Multi-Sensing Servo System in HDDs[C]. Proceedings of the 44th IEEE Conference on Decision and Control. 2005. Seville, Spain.
    109. Josep Tornero, Ricardo Piza, Pedro Albertos, Julian Salt. Multirate LQG Controller Applied to Self-Location and Path-Tracking in Mobile Robots[C]. Proceedings fo the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2001.
    110.冯兴强,杨文淑,提高采样控制系统带宽的方法研究[J].光电工程, 2003. 30(4): 20-23.
    111.红外跟踪测量系统通用规范. 1998,国防科技工业委员会.
    112.舰载光电跟踪仪设计定型试验规程. 2002.01,中国人民解放军总装备部.
    113.舰船红外警戒设备规范. 2002.8,中国人民解放军总装备部.
    114. Yongsoon Eun, Reference Tracking in Feedback Control with Saturation Actuators, Electrial Engineering. 2003, University of Michigan.
    115. Yongsoon Eun, Pierre T. Kabamba, Semyon M. Meerkov, Tracking of Random References: Random Sensitivity Function and Tracking Quality Indicators[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003. 48(9).
    116. Yongsoon Eun, Pierre T. Kabamba, Semyon M. Meerkov, Analysis of Random Reference Tracking in Systems With Saturating Actuators[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005. 50(11): 1861-1867.
    117. Gholson N H,Moose R L, Maneuvering target tracking using adaptive state estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977. 13(3): 310-316.
    118. Hampton R L T,Cooke J R, Unsupervised tracking of maneuvering vehicles[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973. 9(2): 197-207.
    119.马佳光,捕获跟踪与瞄准系统的基本技术问题[J].光电工程, 1989(3): 1~42.
    120.熊伟,谢剑薇,光电跟踪控制系统导论[M]. 2009,北京:国防工业出版社.
    121. G. F. Franklin, J. D. Powell, A. Emami-Naeini, Feedback Control of Dynamic Systems[M]. 4th ed. 2002: Prentice-Hall.
    122. T. Yamaguchi, K. Shishida, H. Hirai, K. Tsuneta, M. Sato, Improvement of servo robustness for digital sector servo system (hard disk drives)[J]. Magnetics, IEEE Transactions on, 1992. 28(5): 2910~2912.
    123. T. Yamaguchi, K. Shishida, S. Tohyama, H. Hirai, Mode switching control design with initial value compensation and its application to head positioning control on magnetic disk drives[J]. Industrial Electronics, IEEE Transactions on, 1996. 43(1): 65_73.
    124. T. Yamaguchi, Y. Soyama, H. Hosokawa, K. Tsuneta, H. Hirai, Improvement of settling response of disk drive head positioning servo using mode switching control with initial value compensation[J]. Magnetics, IEEE Transactions on, 1996. 32(3 part:2): 1767_1772.
    125. Z. Lin, M. Pachter, S. Banda, Toward improvement of tracking performance Nonlinear feedback for linear system[J]. International Journal of Control, 1998. 70(1): 1-11.
    126. B. M. Chen, T. H. Lee, K. Peng, V. Venkataramanan, Composite nonlinearfeedback control for linear systems with input saturation: Theory and an application[J]. IEEE Transactions on Automatic Control, 2003. 48(3): 427-439.
    127. Kemao Peng, Ben M. Chen, Tong H. Lee, V. Venkataramanan, Design and implementation of a dual-stage actuated HDD servo system via composite nonlinear control approach[J]. Mechatronics, 2004. 14(9): 965-988.
    128. K. Peng, B. M. Chen, G. Cheng, T. H. Lee, Comprehensive modeling and compensation of nonlinearities and friction in a hard disk drive servo system[J]. IEEE Transactions on Control Systems Technology, 2005. 13(5): 708-721.
    129.胡浩军,运动平台捕获、跟踪与瞄准系统视轴稳定技术研究. 2005,国防科学技术大学.
    130. Steven L. Chodos. Track loop bandwidth,sensor sample frequency and track loop delays[C]. SPIE Conference on Acquisiton,Tracking and Pointing XII. 1998. Orlando,Florida: SPIE.
    131.姬伟,陀螺稳定光电跟踪平台伺服控制系统研究. 2006,东南大学:南京.
    132.杨秀华,预测滤波技术在光电目标跟踪中的应用研究. 2004,中国科学院长春光学精密机械与物理研究所:长春.
    133. B.Freidland, Treatment of bias in recursive filtering[J]. IEEE Trans.Auto.Cont., 1969. AC(14): 359-367.
    134. M.B.Iganagni, Separate-bias Kalman estimator with bias state noise[J]. IEEE Tra ns.Automat.Contr, 1990. 35(3): 338-341.
    135. A.T.Alouani, P.Xia, T.R.Rice, Wd.Blair, On the optimality of two-stage state est imation in the presence of random bias,[J]. IEEE Trans. Automat.Contr., 1993. 38(8): 1279-1282.
    136. A.T.Alouani, P.Xia, Tr.Rice, Wd.Blair. Two-Stage Kalman estimator for tracking maneuvering targets[C]. Proc.IEEE Inter. Conf.Syst.Man Cyber. 1991. Charlotesville,VA.
    137. A.T.Alouanie. A two-stage Kalman estimator for state estimation in the presence of random bias and tracking maneuvering targets[C]. 30th IEEE Conf, Decision and Control. 1991. Brighton,UK.
    138. M. Karaman,W.C. Messner, Robust dual stage HDD track follow control systems design for hand-off shaping[J]. Digest of APMRC 2002, 2002.
    139. D.Y. Abramovitch,G.F Franklin, A brief history of disk drive control[J]. IEEEControl Systems Magazine, 2002. 22(3): 28-42.
    140. P.A. Weaver,R Ehrlich. The use of multirate notch filters in embedded servo disk drives[C]. Proceedings of American Control Conference. 1993.
    141. D. Eckardt, Design of Pinite Response Controllers by Pole Assigment in Multirate Sampled-Data Systems[J]. International Journal of Control, 1989. 49(4): 1185-1193.
    142. C.S. Berger,D. Peduto, Robust digital control using multirate input sampling[J]. International Journal of Control, 1997. 67(5): 813-824.
    143. J. Tornero, Y. Gu, M. Totnizuka. Analysis of Multi-rate Discrete Equivalent of Continuous Controller.[C]. Proceeeding of the American Control Conference. 1999. San Diego,California.
    144. H. In, Zhang, C., A Multirate Digital Controller for Model Matching[J]. Automatica, 1994. 30(6): 1043-1050.
    145. Julian Salt,Pedro Albertos. Multirate controllers design by rate decomposition[C]. Proceedings of the 39th IEEE Conference on Decision and Control. 2000. Sydney.
    146. M. Nakamura, S. Goto, N. Kyura, Mechatronic Servo System Control[M]. 2004: Springer.
    147.孙玉杰,汪岳峰,牛燕雄,电视跟踪系统视频信噪比测试研究[J].光电子·激光, 2003. 14 (4).
    148.张根耀,赵宗涛,光电子噪声下的目标跟踪误差分析[J].云南大学学报, 2003. 25(5): 405~407.
    149. Pierre T. Kabamba Yongsoon Eun, and Semyon M. Meerkov, Analysis of Random Reference Tracking in Systems With Saturating Actuators[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005. 50(11): 1861-1867.
    150.张文博,范大鹏,张智永,李凯,光电稳定跟踪装置中微机电陀螺应用研究[J].光学精密工程, 2006. 14(4): 689-696.
    151. Michael C Dudzik, Infrared Electro-Optical Systems Design,Analysis,and Testing[M]. The Infrared Electro-Optical Systems Handbook, ed. David L. Shumaker Joseph S. Accetta. Vol. 4. 1993: SPIE-International Society for Optical Engine.
    152.苏奎峰,吕强、耿庆锋, TMS320F2812原理与开发[M]. 2005,北京:电子工业出版社.
    153. TI, TMS320F28x Multichannel Buffered Serial Port (McBSP) Peripheral Reference Guide. www.ti.com, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700