用户名: 密码: 验证码:
基于多下一跳路由机制的QoS保证技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,IP网络QoS保证技术的研究从未停歇,但一直停留在模型层面,相关协议和算法的研究未进入实质性工程技术攻关阶段,无论是InterServ模型、DiffServ模型还是QoS路由技术都未进入成熟商业运营阶段。深究其原因,其关键问题之一是在现有技术体制下,担负选路功能的网络节点对于给定的目的IP地址只有唯一路径可供使用,即传统QoS保证技术都是基于单下一跳路由机制进行研究。基于多下一跳路由机制,QoS保证技术如何实现?本文研究正是围绕这一问题展开。
     依托国家863计划探索导向类项目“一种基于节点势能导向的多路由产生机制”,笔者研究了多下一跳路由机制下的QoS保证技术。研究以节点势能导向的多路由机制环境为基础,以DiffServ模型区分服务提供理念为参考,以有效利用网络传输资源为准则,重点关注基于多下一跳路由QoS保证的技术体制和工程实现方法。论文按照“寻径:产生多下一跳路由,选路:选择下一跳路由,以及涉及的关键技术”的思路进行阐述。
     主要研究内容如下:
     1)提出一种基于广度优先搜索定势的多下一跳路由算法,以节点加入搜索树的先后确定势能值,按照一定的规则生成路由表,理论证明了该算法产生路径的有效性。与现有的扩展最短路径多下一跳路由算法相比,该算法在节点处产生更多的下一跳且实现复杂度低,在网络流量均衡性上也优于扩展最短路径算法。
     2)提出一种基于下一跳性能分级匹配转发的QoS保证技术。该技术用不同性能等级的下一跳资源传输不同等级的业务分组,网络层实现服务区分对待,避免了业务争用有限的单下一跳链路资源,使分组平均时延性能相对于DiffServ得到很大的改善。同时,该方法具有无连接特性、网络层服务区分性和复杂度低等优点。
     3)提出一种基于最优下一跳选择的QoS保证技术。该技术从多个下一跳链路中选择一条性能最优的用于传输分组来保证一定的QoS。针对该技术提出一种改进的路径选择算法,该算法克服目前路径选择算法中选路参数过于单一的不足且基于局部信息进行选路决策,选路性能明显优于改进前且运算复杂度相当。
     4)提出一种在不同性能下一跳子集合间进行流量调整的算法。该算法基于“好的资源谨慎用,给业务好的资源”的思想,在不同性能子集合间进行业务流量调整,使分组平均时延仍在一定范围之内且优于DiffServ。对于同一链路子集合内业务流量均衡问题,提出一种流量分级调整算法,将流量调整分为初始分割和局部调整两部分,分析表明提出的算法可以很好的均衡网络流量。
     5)提出一种多下一跳故障分级恢复机制,利用局部信息完成路由重选择。将多下一跳故障恢复机制分别与上述两种QoS保证技术相结合,使其支持一定的网络生存性。通过对故障恢复时间的分析,结果表明多下一跳故障分级恢复机制在故障恢复时间性能上优于现有的生存机制。同时,具有较好的资源利用率性能。
     基于多下一跳路由机制的QoS保证技术研究处于起步阶段,笔者初步研究体会是:利用局部技术手段改善网络全局资源利用;易于工程实现;算法调整灵活,可扩展性强。但是业务流量,特别是流汇聚流量模型描述的不确定性,仍然是影响QoS保证技术性能的本质因素。因此,在业务流特性模糊且变化剧烈的条件下,稳健性强的选路算法是该方向未来研究的突破口。
Over the past decade, the study of guarantee IP QoS never stops, but has been staying in the model level. The relevant protocols and algorithms are still discussed in theory and never have engineering research. InterServ, DiffServ and QoS routing model are not into the mature phase of business operations. Go into the reasons, one of the key problems is that the network nodes responsible for routing for a given IP addresses has only one path to available in the existing system, namely the traditional QoS guarantee techniques are studied based on the single nexthop routing mechanism. How to achieve QoS assurance techniques based on multi-nexthop routing mechanism? This study is focus on the issue.
     Relying on the Nation 863 Program "A multi-nexthop routing scheme based on node potential-oriented", the author study QoS assurance techniques based on multi-nexthop routing scheme. The research is based on multi-routing mechanism of node potential-oriented, makes the differentiated services concept of DiffServ model as a reference and lets effective use of network transmission resources as the guidelines, focuses on the technology system and project implementation of multi-nexthop routing QoS guarantee. Paper is in accordance with the idea "routing: the generating multi-nexthop route, using: choosing the next hop, and the key technologies" to elaborate.
     The main contents are as follows:
     1) The breadth-first search sequence potential multi-nexthop routing algorithm is proposed. It determines potential value of the node with the order joined the search tree and according to certain rules generate routing table. The effectiveness of path generated by proposed routing algorithm is proved in theory. Comparing with existing multi-nexthop routing algorithm based on extended shortest path, it produces more available nexthops, has low complexity, and is good at balancing the network traffic.
     2) Proposes a mechanism matching capability of hierarchical nexthops to forward packets for QoS with the multiple nexthops. Packets belonging different service level are transported by nexthops which are appropriate to this service level and the network layer implements differentiated services. So the service with different levels competing for limited single nexthop link resources is avoided. And then the average packet delay exceeds the one of DiffServ. At the same time, this method has properties of connectionless, differentiation service in the network layer and low complexity.
     3) Proposed a QoS assurance technique based on selecting optimal nexthop. It selects a best nexthop from multiple nexthop links for transporting packets to ensure a certain degree of QoS. For applying this technique a path selection algorithm is proposed. The algorithm overcomes the shortage that path selection parameter used by current path selection algorithm is too single and then route decision is based on local information. As a result, path selection performance of proposed algorithm is significantly better than before and the computational complexity is same.
     4) The algorithm adjusting traffic between subsets with different performance are discussed. It is based on the idea "careful use of good resources, good resources for the business" to adjust traffic. So the average packet delay is still within a certain range and still better than DiffServ. For balancing load within same subset, a classification algorithm for adjusting traffic is presented. It is composed with two parts: initial traffic segmentation and local adjustment. Simulation results show that the algorithm can balance network traffic well.
     5) Proposed a multi-grade failure recovery mechanism using local information to complete re-routing options. Multi-nexthop failure recovery mechanism is combined with above two technologies respectively and let them to support a certain degree of network survivability. The analysis of failure recovery time shows that the multi-grade failure recovery mechanism is better than the existing survival mechanism in the failure recovery time. At the same time, it has better resource utilization performance.
     The study of QoS guarantee technology based on multi-nexthop routing mechanism is in the initial stage. We can summarize initial experience that: the proposed QoS guarantee technologies can use local technology to improve global network resource utilization, be easy to project implementation and algorithm is adjustment flexible and scalable. However, traffic flow, especially the traffic flow aggregation model describes traffic uncertainty that is still the nature factor to affect the performance of QoS guarantee technology. Therefore, with the conditions of fuzzy characteristics and violent change of traffic, robust path selection algorithm is a breakthrough in the direction of future research.
引文
[1] J.Postel. Transmission Control Protocol[S]. IETF Internet Standard, RFC 793, Sep. 1981.
    [2]朱宣勇.一种基于节点势能导向的多路由产生机制项目申请书[R].郑州:国家数字交换系统工程技术研究中心,2007.
    [3] N. B. Seitz, D. R. Wortendyke, K. P. Spies. User-Oriented Performance Measurements on the ARPANET [J]. IEEE Communication Magazine, Aug.1983, 21(5):28-34.
    [4] J. Henshall, S. Shaw. OSI Explained: End-to-End Computer Communication Standards [M]. New York, USA: John Wiley & Sons, 1988: 217.
    [5] D. P. Anderson, R. G. Herrtwich, C. Schaefer. SRP: A resource reservation protocol for guaranteed performance communication in the Internet[R]. Berkeley: University of California, 1991.
    [6] IETF Working Group on Integrated Services [EB/OL]. http://datatracker.ietf.org/wg/intserv/ charter/, 2011
    [7] IETF Working Group on Differentiated Services [ EB/OL]. http://datatracker.ietf.org/wg/ diffserv/ charter/,2011.
    [8] R. Braden, D. Clark, S. Shenker. Integrated Services in the Internet Architecture: an Overview[S]. IETF Internet Standard, RFC 1633, Jun.1994.
    [9] S. Shenker, C. Partridge, R. Guerin. Specification of Guaranteed Quality of Service[S]. IETF Internet Standard, RFC 2212, Sep.1997.
    [10] J. Wroclawski. Specification of the Controlled-Load Network Element Service[S]. IETF Internet Standard, RFC 2211, Sep.1997.
    [11] R. Braden, Ed, L. Zhang, S. Berson, S. Herzog, S. Jamin. Resource ReSerVation Protocol (RSVP)-Version 1 Functional Specification[S]. IETF Internet Standard, RFC 2205, Sep.1997.
    [12] R. Braden and L. Zhang. Resource ReSerVation Protocol (RSVP) - Version 1 Message Processing Rules[S]. IETF Internet Standard, RFC 2209, Sep.1997.
    [13] Wikipedia. Weighted Fair Queuing [EB/OL]. http://en.wikipedia.org/wiki/Weighted_fair_ queuing, 2010.
    [14] A. Demers, S. Keshav, S. Shenker. Analysis and Simulation of a Fair Queueing Algorithm[A]. In: H. L. Lawrence. SIGCOMM '89 Symposium Proceedings on Communications Architectures and Protocols[C]. New York, NY, USA: ACM, 1989: 1-12.
    [15] L.Jeng Farn, C. Meng Chang, S. Yeali. WF2Q-M: Worst-case Fair Weighted Fair Queueing with Maximum Rate Control [J]. Computer Networks: The International Journal of Computer and Telecommunications Networking, 2007, 51(6):1403-1420.
    [16] X. Fei, A. Marshall. Delay Optimized Worst Case Fair WFQ (WF2Q) Packet Scheduling[A]. In: J. K. Mark. Proceedings of IEEE International Conference on Communications[C]. New York, NY, USA: IEEE, 2002: 1080- 1085.
    [17] H. Halabian, H. Saidi, R. Changiz. LVT-SCFQ: A Modified Self Clocked Fair Queueing Algorithm for Broadband Networks [A]. In: J. Agbinya. BROADCOM '08 Proceedings ofthe 2008 Third International Conference on Broadband Communications, Information Technology & Biomedical Applications [C]. Washington, DC, USA: IEEE Computer Society, 2008: 175-180.
    [18] S. Blake, D. Black, M. Carlson, et al. An Architecture for Differentiated Services[S]. IETF Internet Standard, RFC 2475, Dec.1998.
    [19] K. Nichols, S. Blake, F. Baker, D. Black.Definition of the Differentiated Services Field (DS Field)in the IPv4 and IPv6 Headers[S]. IETF Internet Standard, RFC 2474, Dec.1998.
    [20] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski.Assured Forwarding PHB Group[S]. IETF Internet Standard, RFC 2597, Jun.1999.
    [21] R. Guérin, S. Kamat, V. Peris and R. Rajan. Scalable QoS Provision Through Buffer Management [J]. ACM SIGCOMM Computer Communication Review, 1998, 28(4): 29-40.
    [22] S .Rampal, R.Guerin. Flow Grouping For Reducing Reservation Requirements for Guaranteed Delay Service[S]. draft-rampal-flow-delay-service-01.txt, Jul.1997.
    [23] J. Babiarz, K. Chan, F. Baker. Configuration Guidelines for DiffServ Service Classes[S]. IETF Internet Standard, RFC 4594, Aug. 2006.
    [24] E. Crawley, R. Nair, B. Rajagopalan et al. A Framework for QoS-based Routing in the Internet, IETF Internet Standard, RFC2386, Aug.1998.
    [25] S Y Chan, T C Ling, K K Phang. Normal-PI: A Statistical Hop-by-Hop QoS Routing Mechanism [A]. In: Proceedings of International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies[C]. Washington, DC, USA: IEEE Computer Society, 2006: 84-89.
    [26] P. Van Mieghem, F. Kuipers. Concepts of Exact QoS Routing Algorithms[J]. IEEE/ACM Transactions on Networking, 2004, 12(5): 851-864.
    [27] M. Yannuzzi, A. Fonte, X. Masip-Bruin, et al. A Proposal for Inter-domain QoS Routing Based on Distributed Overlay Entities and QBGP[A], In: M. Smirnov. Lecture Notes in Computer Science[C]. Berlin: Springer, 2004: 257-267.
    [28] K. Kar, M. Kodialam, T. V. Lakshman. Minimum Interference Routing of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering Applications[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(12): 2566-2579.
    [29] Y. Cui, K. Xu, J. Wu, M. Xu. Precomputation for Finding Paths with Two Additive Weights[A]. In: Proceedings of IEEE International Conference on Communications[C]. Tokyo, Japan: IEEE, 2003: 636-640.
    [30] A. Orda, Sprintson. A Precomputation Schemes for QoS Routing[J]. IEEE/ACM Transactions on Networking, 2003, 11(4): 578-591.
    [31] J. Shen, J. Shi, J. Crowcroft. Proactive Multi-path Routing[A]. In: Proceedings of the International Workshop on Quality of Future Internet Services(QofIS 2002)[C]. Heidelberg: Springer-Verlag Berlin, 2002: 145- 156.
    [32] Z. Miao, Z. Huiling, O. K. Li Victor, M. Zhengxin. A Stability-Based Link State Updating Mechanism for QoS Routing[A]. In: Proceedings of IEEE International Conference on Communications[C]. Seoul, Korea: IEEE, 2005: 33-37.
    [33] F. Baguenine, A. Mellouk. N-Best Optimal Path Ant Routing Algorithm for State-DependentN Best Quality of Service Routes in IP Networks[A]. In: Proceedings of the 32nd IEEE Conference on Local Computer Networks[C]. Washington, DC, USA: IEEE Computer Society, 2007: 747– 754.
    [34]崔勇,吴建平,徐恪.互联网服务质量路由算法研究综述[J].软件学报, 2002, 13(11): 2065-2075.
    [35]朱慧玲,杭大明,马正新. QoS路由选择:问题与解决方法综述[J].电子学报, 2003, 5(1): 2-13.
    [36] X. Masip Bruin, M. Yannuzzi, J. Domingo-Pascual et al. Research Challenges in QoS Routing[J]. IEEE Computer Communications, 2006, 29(5): 563-581.
    [37] A. K. Parekh, R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: the Single-node Case[J]. IEEE/ACM Transactions on Networking, 1993, 1(3): 344-357.
    [38] D.Stiliadis and A.Varma. Rate-proportional Servers: A Design Methodology for Fair Queueing Algorithms[J]. IEEE/ACM Transactions on Networking, 1998, 6(2): 164-174.
    [39] L. Berger, D. Gan, G. Swallow et al. RSVP Refresh Overhead Reduction Extensions[S]. IETF Internet Standard, RFC 2961, Apr.2001.
    [40]郭卓.分布式QoS路由算法的研究[D].沈阳:沈阳工业大学, 2007.
    [41] H. Suzuki, F. A. Tobagi. Fast Bandwidth Reservation Scheme with Multi-link and Multi-path Routing in ATM Networks[A]. In: Proceedings of Eleventh Annual Joint Conference of the IEEE Computer and Communications Societies[C]. Florence: IEEE, 1992: 2233 - 2240.
    [42] I. Castineyra, N. Chiappa and M. Steenstrup.The Nimrod Routing Architecture[S]. IETF Internet Standard, RFC 1992, Aug.1996.
    [43] P. Narvaez, K. Y. Siu, H. Y. Tzeng. Efficient Algorithms for Multi-Path Link-State Routing[A]. In: Proceedings of ISCOM'99[C], Kaohsiung, Taiwan, 1999.
    [44] S. Vutukury, J. J. Garcia-Luna-Aceves. A Simple Approximation to Minimum-delay Routing[A]. In: L.Chapin. SIGCOMM '99 Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer[C]. New York, NY, USA: ACM, 1999: 227-238.
    [45] K. Ma, K. M. Sim. Loose-strain Loop-free Conditions for Multiple Path IP Routing[J]. IEE Proceedings- Communications, 2004, 151(3): 243– 250.
    [46] C.Villamizar. OSPF Optimized Multipath (OSPF-OMP)[S]. IETF Internet-draft draft-ietf- ospf-omp-02, Feb.1999.
    [47] S. Vutukury, J. J. Garcia-Luna-Aceves. MDVA: A Distance-vector Multipath Routing Protocol[A]. In: Proceedings of the INFOCOM 2001[C]. Anchorage, AK , USA: IEEE, 2001:557-564.
    [48]陈文平.多下一跳快速自愈路由技术研究[D].郑州:信息工程大学, 2009.
    [49] S Vutukury. Multipath Routing Mechanisms for Traffic Engineering and Quality of Service in the Internet [D]. Santa Cruz: University of California, 2001.
    [50] H. S. Palakurthi. Study of Multipath Routing for QoS Provisioning[A].EECS803-Introduction to Research, Oct.2001:1-6.
    [51] M. M. Akon, S. Asaduzzaman, Md. S. Rahman. Proposal for St-Routing Protocol[J]. Telecommunication Systems, 2004, 25(3-4):287-298.
    [52] K. S. Booth, G. S. Lueker. Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Testing Using PQ-Tree Algorithms[J]. Journal of Computer Systems Science, 1976, 13(3):335-379.
    [53] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis. Graph Drawing [A]. Prentice-Hall, Upper Saddle River, NJ, 1999.
    [54] F. Annexstein, K. Berman. Directional Routing via Generalized St-numberings[J]. SIAM Journal on Discrete Mathematics, 2000, 13(2):268–279.
    [55] B. Bonet, H. Geffner. Learning Depth-First Search: A Unified Approach to Heuristic Search in Determinstic and Non-Determinstic Settings, and Its Application to MDPs[A]. In: Derek Long. Proceedings of the Sixteenth International Conference on Automated Planning and Scheduling [C]. Cumbria, UK: DBLP, 2006:3-23.
    [56] U. Brandes. Eager St-ordering[A]. In: Proceedings of the 10th Annual European Symposium on Algorithms[C]. London, UK: Springer-Verlag, 2002:247-256.
    [57] T. H. Cormen, C. E. Leiserson, R. L. Rivest, et al. Introduction to Algorithms, Second Edition [M]. New York, USA:McGraw-Hill, 2001:436-483.
    [58] A. Medina, C. Fraleigh, N. Taft, S. Bhattacharyya, C. Diot, A Taxonomy of IP Traffic Atrices[A]. In: Proceedings of Scalability and Traffic Control in IP networks II[C]. Boston: SPIE Publishers, 2002: 200-213.
    [59] Y. Vardi. Network Tomography: Estimating Source-destination Traffic Intensities from Link Data[J]. Journal of the American Statistical Association, 1996,.91(433):365-377.
    [60] R. Callon. Use of OSI IS-IS for Routing in TCP/IP and Dual Environments[S]. IETF Internet Standard, RFC1195, Dec 1990.
    [61]朱宣勇,王晶,郭云飞等.一种实现分组交换网络业务传输QoS保证的方法及系统[P].中国: 200910118639.9, 2009.
    [62]谢希仁,计算机网络(第四版)[M],北京:电子工业出版社,2003: 457.
    [63] D. Grossman. New Terminology for DiffServ[S]. draft-ietf-diffserv-new-terms-01.txt, Oct.1999.
    [64] K. Ramakrishan, S. Floyd. A Proposal to Add Explicit Congestion Notification(ECN) to IP[S]. IETF Internet Standard, RFC 2481, Jan.1999.
    [65] R. Steinmetz and K. Nahrstedt. Multimedia Fundamentals: Medai Coding and Content Processing[M]. New Jersey: Prentice-Hall, 2002: 304.
    [66] R. Steinmetz and K. Nahrstedt. Multimedia Systems, First Edition[M]. Berlin, Germany: Springer Verlag, 2004.
    [67] R. L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation[J]. IEEE Transactions on Information Theory, 1991,37(1): 114-131.
    [68] A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single-node Case[J]. IEEE/ACM Transactions on Networking, 1993, 1:344-357.
    [69] L. Lin, J. Lo, F. Ou. A Generic Traffic Conditioner[S]. IETF Internet Draft draft-lin-diffserv-gtc-01.txt, Aug.1999.
    [70]扈红超,伊鹏,郭云飞,高性能交换与调度仿真平台的设计与实现[J].软件学报, 2008, 19(4): 1036-1050.
    [71]樊平毅,冯重熙.现代通信理论基础[M].北京:清华大学出版社2007: 100-135.
    [72] M. Jain and C. Dovrolis. Pathload: A Measurement Tool for End-to-end Available Bandwidth Estimation Tools[A]. In: Proceedings of Passive and Active Measurements(PAM) Workshop 2002[C]. 2002:14-25.
    [73] B. Melander, M. Bjorkman and P. Gunningberg. A New End-to-end Probing and Analysis Method for Estimation Bandwidth Bottlenecks[A]. In: Proceedings of IEEE GLOBECOM 2000, New Jersey: IEEE, 2000: 415-420.
    [74] J. Strauss, D. Katabi, F. Kaashoek. A Measurement Study of Available Bandwidth Estimation Tools[A]. In: Proceedings of ACM SIGCOMM Conference on Internet Measurement[C]. New York, USA: ACM, 2003: 39-44.
    [75] V. Ribeiro, R. Riedi, R. Baraniuk, et al. Pathchirp: Efficient Available Bandwidth Estimation for Network Paths[A]. In: Proceedings of Passive and Active Measurements(PAM) Workshop 2003[C]. San Diego, 2003.
    [76] V. J. Ribeiro, M. Coates, R. Riedi, et al. Multifractal Cross-traffic Estimation[A]. In: Proceedings of ITC Specialist Seminar on IP Traffic Measurement [C]. Monterey, CA: ITC, 2000:1-10.
    [77] N. Hu, P. Steenkiste. Evaluation and Characterization of Available Bandwidth Probing Techniques[J]. IEEE Journal on Selected Areas in Communications, Aug,2003, 21(6): 879-894.
    [78] J. Kleinberg, Y. Rabani andé.Tardos. Fairness in Routing and Load Balancing[J]. Journal of Computer and System Sciences, 2001, 63(1):568-578.
    [79] K. Gopalan, C. Tzi-cker and L. Yow-Jian. Network-wide Load Balancing Routing with Performance Guarantees[A], In: Proceedings of IEEE International Conference on Communications, Istanbul, TURKEY: IEEE, 2006: 943-948.
    [80] P. Wang, B. C. Chen, X. M. Gu, et al. Multi-constraint Quality of Service Routing Algorithm for Dynamic Topology Networks[J]. Journal of Systems Engineering and Electronics, 2008, 19(1):58-64.
    [81] Moy J. OSPF Version 2[S], IETF Internet Standard, RFC 2328, Apr. 1998.
    [82] R. J. Gibbens, F. P. Kelley and P. B. Key. Dynamic Alternative Routing-Modelling and Behaviour[A]. In: Proceedings of the 12th International Teletraffic Congress[C]. Elsevier 1988: 1019–1025.
    [83] R. Banner and A. Orda. Multipath Routing Algorithms for Congestion Minimization[J]. IEEE/ACM Transactions on Networking, 2007, 15(2): 413-424.
    [84] G. Li-An, W. Bin-Qiang, Z. Xuan-Yong, et al. A Distributed Algorithm Based on Available Multi-nexthop in IP Network[A]. In: Proceedings of 1st International Conference on Future Information Networks[C], Beijing, China: IEEE, 2010:70-75.
    [85] R. G. Gallager. A Minimum Delay Routing Algorithm Using Distributed Computation[J].IEEE Transactions on Communications, 1977, 25(1): 73-85.
    [86] E. L. Hahne. Routing-robin Scheduling for Max-min Fairness in Data Networks[J]. IEEE Journal on Selected Areas in Communications, 1991, 9(7):1024-1039.
    [87] H. Shi and H. Sethu. Greedy Fair Queuing: A Goal-oriented Strategy for Fair Real-time Packet Scheculing[A]. In: Proceedings of 24th IEEE Real-Time Systems Symposium[C]. Cancun, Mexico: IEEE, 2003:345-356.
    [88] Z. Cao, Z. Wang, E. Zegura. Performance of Hashing-based Schemes for Internet Load Balancing[A]. In: Proceedings of IEEE Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies[C]. New Jersey: IEEE.2000: 332-341.
    [89] T. W. Chim, K. L. Yeung. Traffic Distribution over Equal-cost-multi-paths[A]. In: Proceedings of IEEE International Conference on Communications[C]. New Jersey: IEEE, 2004:1207-1211.
    [90]吕航.支持生存性的QoS体系研究[D].天津:天津大学, 2003.
    [91] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, et al. Characterization of Failures in an IP Backbone[A]. In: Proceedings of IEEE INFOCOMM’04. Hong Kong: IEEE, 2004: 2307-2317.
    [92] G. Iannaccone, S. Bhattacharyya, C. Chuah, et al. Analysis of Link.Failures in an IP Backbone[A]. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement[C]. New York: ACM, 2002: 237-242.
    [93] N. Feamster, D. G. Andersen, H. Balakrishnan, M. F. Kaashoek. Measuring the Effects of Internet Path Faults on Reactive Routing[A]. In: Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems[C]. New York: ACM, 2003:126–137.
    [94]王东霞,窦文华.支持高速网络生存性的资源管理机制[J].计算机工程, 1999, 25(1): 22-23.
    [95]王东霞,窦文华.高速网络生存性[J].计算机工程与科学, 1999, 21(5): 5-8.
    [96]隆克平,杨丰瑞,宽带传输网络的生存性技术及其设计方法的研究[J].重庆邮电学院学报, 1997, 9(3): 10-15.
    [97] W. Lai, D. Mcdysan. Network Hierarchy and Multilayer Survivability[S]. IETF Internet Standard, RFC 3386, Jul.2002.
    [98] A. Autenrieth and A. Kirstadter. Fault-Tolerance and Resilience Issues in IP-Based Networks[A]. In: Proceedings of Second International Workshop on the Design of Reliable Communication Networks(DRCN 2000)[C]. Munich, Germany, 2000.
    [99] K. Owens, V. Sharma, M. Oommen. Network Survivability Considerations for Traffic Engineered IP Networks[S], IETF Internet Draft, draft-owens-te-network-survivability- 03.txt, May.2002.
    [100] D. Goderis, S. V. D. Bosch, Y. T'joens et al. Service Level Specification Semantics and Parameters[S], IETF Internet Draft, draft-tequila-sls-02.txt, Feb.2002.
    [101]王滨.基于主动策略的抗毁路由协议研究[D].郑州:信息工程大学, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700