用户名: 密码: 验证码:
超宽带拓展距离通信技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,超宽带系统主要应用于低发射功率的短距离无线互联。但是超宽带技术的发展历史证明,严格的功率谱密度限制并不能保证超宽带通信的电磁兼容性能,相对较低的理论信道容量、较高的处理损耗和严重的频率选择性衰落等因素大大限制了超宽带系统的通信距离和通信速率,高速通信系统的高实现复杂度和高功耗也制约了超宽带技术的推广应用,这种短距离应用的局限性使超宽带技术无法获得足够的市场空间,成为制约超宽带技术发展与实际应用的重要因素。
     为了扩展超宽带技术的应用领域,本文依托国家863计划重点项目“超宽带无线通信系统研发与应用示范”课题“中远距离超宽带跨网连接技术”分课题,国家科技重大专项“载波体制超宽带高速无线通信芯片研发与应用示范”课题“超宽带拓展距离应用示范”分课题,以及新世纪优秀人才支持计划课题,围绕超宽带拓展距离通信技术展开研究。通过对超宽带拓展距离通信的六种系统设计策略和四种网络接入策略的分析,指出了目前超宽带拓展距离通信中所存在的缺乏对链路预算与电磁兼容性能的评价、缺乏适合拓展距离应用的系统设计方案和频谱利用率低等问题,并以此为切入点展开本文的具体研究。本文的主要研究内容如下:
     1.提出了一些新的超宽带拓展距离通信系统的链路预算与电磁兼容性能评估方法。根据现有的测试结果,较为全面地分析了超宽带拓展距离通信系统的链路预算与干扰半径,并与IEEE 802.11a系统进行了比较。在将超宽带信号和其他通信信号等效为高斯白噪声的条件下,提出了基于干扰温度的超宽带拓展距离通信系统的电磁兼容性能评估方法,得出了在共存条件下超宽带系统的信道容量与具有不同带宽的其他通信系统的信道容量的关系,实现了对电磁兼容性能的量化评价。另外,考虑到超宽带拓展距离通信系统往往具有较高的扩频增益,提出了基于时频分析的超宽带拓展距离通信系统的电磁兼容性能评估方法,指出了具有不同时频特征的超宽带扩频信号在电磁兼容性能方面的差异性。在超宽带扩频信号通过AWGN信道时,推导了高斯白噪声超宽带信号干扰以及四种超宽带扩频信号干扰下具有不同带宽的其他通信系统的误比特率与信干比关系的通用表达式,并通过蒙特卡罗仿真验证了理论推导的正确性,为超宽带拓展距离通信系统的电磁兼容性能评价和扩频方案选择提供了重要参考。
     2.分析了超宽带拓展距离通信的关键技术和系统实现方案。建立了超宽带通信系统的实现方案模型,并通过对超宽带通信系统中基带调制、抗多径处理、扩频和载波变频这四类技术的研究和应用场景分析,以通信速率、通信距离、实现复杂度和功耗为主要评价标准,得出了目前典型的超宽带通信系统实现方案的应用场景,为超宽带拓展距离通信系统的实现方案选型和优化设计提供了重要依据。同时,对六种适合拓展距离应用的超宽带通信系统设计方案进行了具体分析。
     3.提出了两种基于Dechirp的超宽带拓展距离通信系统的设计方案。综合考虑拓展距离应用中存在的问题,提出了基于Dechirp和滑动相关的超宽带拓展距离通信系统设计方案。同时,为了节省滑动搜索所需的时间,提升抗多径处理能力,进一步引入了信道化的思想,提出了基于Dechirp和多相滤波的超宽带拓展距离通信系统设计方案。在这两种设计方案中都综合考虑了帧结构设计、信号检测、同步和解调等多方面因素,建立了完整的系统级仿真模型,分析了在使用基于能量检测的OOK解调时系统的误比特率性能,通过蒙特卡罗仿真验证了理论推导的正确性,还进一步评价了该系统在不同传输信道下的性能。目前课题组已经完成了采用这两种方案的超宽带拓展距离通信系统样机的设计与实现,且通过了超过1km传输距离的实际通信测试。
     4.提出了基于共享载波垂直网络转换(Shared Carrier Vertical Network Transformation,SCVNT)的超宽带拓展距离通信的网络接入算法。通过对动态频谱分配、垂直切换和多模基站研究现状的分析,针对不同的优化目标,提出了基于最小总阻塞率(Minimum Total Blocking Probability,MTBP)的SCVNT算法和基于最小冗余信道差值(Minimum Redundant Channel Difference,MRCD)的SCVNT算法。建立了蜂窝系统模型和用户运动模型,并基于网内的固定信道分配和动态信道分配,分析了在不同的用户移动性、用户数分布、网络转换判决周期和冗余信道差值门限条件下SCVNT算法的性能。理论分析与仿真实验表明,SCVNT算法可有效提高异构无线网络的总体频谱利用率,提高资源分配的公平性,并可实现平滑升级,具有很好的适应性和较高的应用价值,为不同超宽带拓展距离通信系统的共用载波组网提供了一种解决思路。
At present, UWB systems are mainly applied to short range wireless communications with low transmission power. However, the history of UWB technology has proved that the strict power spectral density limit can not guarantee the electromagnetic compatibility of UWB communication. Such factors as relatively low theoretical channel capacity, high processing losses and severe frequency selective fading will greatly restrict the communication rate and distance. The high implementation complexity and high power consumption of the high rate communication system also restrict the promotion and application of the UWB technology. Limitations of UWB technology chiefly used for short-range communications have made it impossible to secure sufficient market space, which is becoming an important constraint for the development and application of UWB technology.
     To extend the application field of UWB technology, this dissertation conducts a research on UWB range extension communication technology. The research is supported by the subproject“Medium and long range UWB inter-network connection technology”of the National 863 Key Project of China“Development and application demonstration of the UWB wireless communication system”, the subproject“Application demonstration of UWB range extension”of the National Science and Technology Major Project of China“Development and application demonstration of carrier-based UWB high-speed wireless communications chips”, and the Program for New Century Excellent Talents in University. Through the analyses of the six system design strategies and four network access strategies for UWB range extension communication, we have pointed out that in current UWB range extension communication, there is a lack of link budget assessment, electromagnetic compatibility evaluation and system design strategies for range extension application, and that there exist such problems as low spectrum efficiency. Taking these as starting points, the present research deals with the following issues:
     1. Some novel methods are proposed for evaluating the performance of the link budget and electromagnetic compatibility for UWB range extension communication system. Based on the available test results, the comprehensive analyses are made of the link budget and interference radius in the UWB range extension communication system, while a comparison is conducted with the IEEE 802.11a system. Under the conditions where UWB signal and other communication signals are treated as equivalent to white Gaussian noise, the electromagnetic compatibility assessment approach based on interference temperature is proposed for the UWB range extension communication system. The relationships between the channel capacity of the UWB system and that of other communication systems with different bandwidths are presented, while the quantitative evaluation of electromagnetic compatibility is implemented. Besides, in view of the relatively high spreading gain in the UWB range extension communication system, the electromagnetic compatibility assessment approach based on time-frequency analysis is proposed for the UWB range extension communication system, and the differences are indicated in electromagnetic compatibility between UWB spread spectrum signals with various time-frequency characteristics. Moreover, the general expressions have been deduced of the relationships between the bit error rate and signal-to-interference ratio of other communication systems with different bandwidths under the interference of the UWB signal equivalent to white Gaussian noise and four UWB spread spectrum signals which pass through AWGN channel. The derived expressions are validated by Monte Carlo simulations. The conclusions can be used as important references for the electromagnetic compatibility performance evaluation and the spread spectrum scheme selection of the UWB range extension communication system.
     2. The key technologies and system implementation schemes for UWB range extension communication are analyzed. The implementation model for the UWB communication system is established. Based on the researches and application scenario analysis of baseband modulation, anti-multipath processing, spread spectrum and frequency carrier technologies in the UWB communication system, and taking the communication rate, communication distance, implementation complexity and power consumption as the main evaluation criteria, the application scenarios of typical implementation schemes for the UWB communication system are provided. The researches are significant in the implementation scheme selection and optimized design for the UWB range extension communication system. Meanwhile, the specific analyses are made of six UWB communication system design methods suitable for range extension applications.
     3. Two UWB range extension communication system design methods based on Dechirp are proposed. In view of the problems in the range extension applications, the UWB range extension communication system design method based on Dechirp and sliding correlation is proposed. In order to save time needed for sliding search and enhance the anti-multipath capability, the idea of channelization is introduced, and the UWB range extension communication system design method based on Dechirp and polyphase filter is proposed. In both methods, such factors as the frame structure design, signal detection, synchronization and demodulation are taken into consideration, and the integrated system level simulation models are established. The analyses are made of the bit error rate performance by using OOK demodulation based on energy detection. The Monte Carlo simulation validates the theoretical deduction, and further evaluations are made of the system performance in different transmission channels. Our research group has now completed the design and implementation of the prototypes of the UWB range extension communication systems by means of the two design methods, and they have passed the over 1km distance communication test.
     4. The network access method for UWB range extension communication based on shared carrier vertical network transformation (SCVNT) is proposed. Through the research status analysis of the dynamic spectrum allocation, vertical handoff and multi-mode base stations, aiming at different optimization objectives, the SCVNT algorithm based on minimum total blocking probability (MTBP) and the SCVNT algorithm based on minimum redundant channel difference (MRCD) are proposed. The cellular system model and user mobility model are established, and using fixed channel allocation and dynamic channel allocation in each network, the theoretical analysis and simulation experiments are made in different user mobility conditions, different distribution of the number of users, different network transformation judgment periods and different thresholds of the redundant channel difference. The theoretical analysis and simulation results indicate that SCVNT algorithm can effectively improve the overall spectrum efficiency in heterogeneous wireless networks, enhance fairness in the resource allocation, and make is possible to achieve a smooth upgrade. With good compatibility and high applicability, it can provide a solution for shared carrier networking of different UWB range extension communication systems.
引文
[1] Fontana R. Recent system applications of short-pulse ultra-wideband (UWB) technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(9): 2087-2104.
    [2] Barrett T W. History of ultra wide band (UWB) radar & communications: pioneers and innovators[C]. Proceedings of the Progress In Electromagnetics Research Symposium, 2000: 1-42.
    [3] Win M Z, Dardari D, Molisch A F, et al. History and applications of UWB[J]. Proceedings of the IEEE, 2009, 97(2): 198-204.
    [4] Hirt W. Ultra-wideband radio technology: overview and future research[J]. Computer Communications, 2003, 26(1): 46-52.
    [5] Kshetrimayum R. An introduction to UWB communication systems[J]. IEEE Potentials, 2009, 28(2): 9-13.
    [6] Federal Communications Commission. Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems, first note and order[S]. ET-Docket No.98-153, 2002.
    [7] Fisher R, Kohno R, Mclaughlin M, et al. DS-UWB physical layer submission to 802.15 Task Group 3a[R]. IEEE Document number 802.15-04-0137r3, 2004.
    [8] IEEE Computer Society. IEEE Std 802.15.4a-2007, Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks(WPANs)[S]. 2007.
    [9] ECMA International. ECMA-368 high rate ultra wideband PHY and MAC standard(3rd Edition)[S]. 2008.
    [10]动讯网.动讯解析UWB坎坷路[EB/OL]. 2009. Available: http://www.onewires.com/2009/UWBroad/index.html
    [11] Staccato Communications. Staccato unveils high-performance, single-chip wireless USB host solution for worldwide operation[EB/OL]. Business Wire, November 11th, 2008. Available: http://www.pr-inside.com/staccato-unveils-high-performance-single-chip-r907036.htm
    [12] Hachman M. UWB takes another hit as WiMedia shuts down[EB/OL]. March 17th, 2009. Available: http://www.gearlog.com/2009/03/uwb_takes_another_hit_as_wimed.php
    [13] Merritt R. UWB gone by 2013[EB/OL]. EE Times, May 6th, 2009. Available: http://www.eetindia.co.in/ART_8800571562_1800005_NT_6b806dd1.HTM
    [14] Frenzel L E. Whatever happened to UWB?[EB/OL]. February 1st, 2010. Available: http://electronicdesign.com/article/techview-communications/whatever_happened_to_uwb.aspx
    [15]张跃辉.毕光国:当前超宽带研究有五大重点[J].中国通信, 2007(16): 22-23.
    [16]陈如明. UWB技术的发展前景及其频率规划[J].移动通信, 2009(9): 71-74.
    [17]刘琪,闫丽,周正. UWB的技术特点及其发展方向[J].现代电信科技, 2009(10): 6-18.
    [18] Takada J, Ishigami S, Nakada J, et al. Measurement techniques of emissions from ultra-wideband devices[J]. IEICE Transactions on Fundamentals, 2005, E88-A(9): 2252-2263.
    [19] Chen Y, Zhang J, Jayalath A D S. Multiband-OFDM UWB vs IEEE802.11n: system level design considerations[C]. Proceedings of the IEEE VTC, 2006-Spring, 4: 1972-1976.
    [20] Harame D L, Wang X, Jagannathan B, et al. Semiconductor technology choices for ultrawide-band (UWB) systems[C]. Proceedings of the IEEE ICUWB, 2005: 725-734.
    [21] Barrett T W. History of ultra wideband communications and radar: Part I, UWB communications[J]. Microwave Journal, 2001, 44(1): 22-54.
    [22] Zhang J Y, Orlik P V, Sahinoglu Z, et al. UWB systems for wireless sensor networks[J]. Proceedings of the IEEE, 2009, 97(2): 313-331.
    [23] Buehrer R M, Ha D, Reed J, et al. Range extension for UWB communications[R]. White Paper, Virginia Tech, May 30, 2002.
    [24] Molisch A F, Cassioli D, Chong C C, et al. A comprehensive standardized model for ultrawideband propagation channels[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(11): 3151-3166.
    [25] Choi J, Kang N G, Sung Y S, et al. Empirical ultra wide band channel model for short range outdoor environments[C]. Proceedings of the IEEE VTC, 2007-Spring: 1579-1583.
    [26] Terada T, Fujiwara R, Ono G, et al. Intermittent operation control scheme for reducing power consumption of UWB-IR receiver[J]. IEEE Journal of Solid-State Circuits, 2009, 44(10): 2702-2710.
    [27] Time Domain Corporation. PulsON 210 (P210) UWB evaluation kit (EVK)[EB/OL]. Available: http://www.timedomain.com/products/P2101EVK.pdf
    [28] Stephan A, Baudais J Y, Helard J F. Range improvement of UWB systems using adaptive multicarrier spread-spectrum and MIMO techniques[J]. European Transactions on Telecommunications, 2008, 19(5): 589-599.
    [29] Yeo S Y, Song H K. Flexible and reliable transmission techniques for scale-free UWB system[J]. IEEE Transactions on Consumer Electronics, 2008, 54(4): 1714-1721.
    [30] Chomiki M. SAW-based solutions for UWB communications[C]. Proceedings of the European Radar Conference, 2005: 263-266.
    [31] Schantz H. Introduction to ultra-wideband antennas[C]. Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, 2003: 1-9.
    [32] Schantz H. The art and science of UWB antennas[M]. Boston, London: Artech House, 2005: 1-74.
    [33] Klemm M, Kovacs I Z, Pedersen G F, et al. Comparison of directional and omni-directional UWB antennas for wireless body area network applications[C]. Proceedings of the International Conference on Applied Electromagnetics and Communications, 2005: 1-4.
    [34] Mokhtaari M, Bornemann J. Directional ultra-wideband antennas in planar technologies[C]. Proceedings of the European Microwave Conference, 2008: 885-888.
    [35] Shujaee K, Ebaid A, George R, et al. Channel modeling and range extension for UWB communications using directional antenna in LOS and NLOS path loss models[C]. Proceedings of the World Automation Congress, 2008: 1-6.
    [36] Muqaibel A H, Johar U M. Directional UWB channel simulator[C]. Proceedings of theWorkshop on Positioning, Navigation and Communication, 2009: 167-169.
    [37] Kaiser T, Sieskul B T. An Introduction to Multiple Antennas for UWB Communication and Localization[C]. Proceedings of the Annual Conference on Information Sciences and Systems, 2006: 638-643.
    [38] Zou Q Y, Tarighat A, Sayed A H. Performance analysis of multiband OFDM UWB communications with application to range improvement[J]. IEEE Transactions on Vehicular Technology, 2007, 56(6): 3864-3878.
    [39] Mucchi L, Puggelli F. Proposal of two new space-time codes for extending the range of UWB systems[C]. Proceedings of the IEEE ICUWB, 2008, 3: 125-129.
    [40] Srinivasan K, Iyengar P, Zhou L, et al. Development of 4×4 annular ring array based digital transceivers for long distance UWB wireless communications[C]. Proceedings of the IEEE Radio and Wireless Symposium, 2008: 479-482.
    [41] Laneman J N, Tse D N C, Wornell G W. Cooperative diversity in wireless networks: efficient protocols and outage behavior[J]. IEEE Transactions on Information Theory, 2004, 50(12): 3062-3080.
    [42] Siriwongpairat W P, Sadek A K, Liu K J R. Bandwidth-efficient OFDM cooperative protocol with applications to UWB communications[C]. Proceedings of the IEEE Wireless Communications and Networking Conference, 2006, 3: 1729-1734.
    [43] Tran L C, Mertins A, Wysocki T A. Cooperative communication in space-time-frequency coded MB-OFDM UWB[C]. Proceedings of the IEEE VTC, 2008-Fall: 1-5.
    [44] Chen Y F, Teo J Q, Lai J C Y, et al. Cooperative communications in ultra-wideband wireless body area networks: channel modeling and system diversity analysis[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(1): 5-16.
    [45] Agbinya J, Gyasi-Agyei A, Vucetic B, et al. Range extension and channel capacity increase in direct short range vehicular UWB communications[C]. Proceedings of the International Conference on Wireless Broadband and Ultra Wideband Communications, 2007: 42-47.
    [46] Zeinalpour-Yazdi Z, Nasiri-Kenari M, Wehinger J, et al. Upper bounds on the ergodic and outage capacities of relay networks using UWB links[C]. Proceedings of the Asilomar Conference on Signals, Systems and Computers, 2006: 646-650.
    [47] Shi Y, Hou Y T, Sherali H D, et al. Optimal routing for UWB-based sensor networks[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(4): 857-863.
    [48] Win M Z, Chrisikos G, Sollenberger N R. Performance of rake reception in dense multipath channels: implications of spreading bandwidth and selection diversity order[J]. IEEE Journal on Selected Areas in Communications, 2000, 18(8): 1516-1525.
    [49] Maichalernnukul K, Kaiser T, Zheng F. Rake fingers versus multiple antennas for UWB relay systems - which one is better?[C]. Proceedings of the IEEE ICUWB, 2008, 1: 63-66.
    [50] Khan M G, Nordberg J, Mohammed A, et al. Performance evaluation of RAKE receiver for UWB systems using measured channels in industrial environments[C]. Proceedings of the International Conference on Wireless Broadband and Ultra Wideband Communications, 2006: 1-6.
    [51] Haneda K, Takada J I, Takizawa K I. Evaluation of signal quality improvement with rakereception using an ultrawideband indoor area propagation measurement[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7: 337-340.
    [52] Fontana R, Ameti A, Richley E, et al. Recent advances in ultra wideband communications systems[C]. Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, 2002: 129-134.
    [53] Ameti A, Fontana R, Knight E, et al. Ultra wideband technology for aircraft wireless intercommunications systems (AWICS) design[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(7): 14-18.
    [54] Kelly D, Reinhardt S, Stanley R, et al. PulsON second generation timing chip: enabling UWB through precise timing[C]. Proceedings of the IEEE Conference on Ultra Wideband Systems and Technologies, 2002: 117-122.
    [55] He Y, Wang Y S, Zuo X Y, et al. Ultra wideband technology for Micro Air Vehicles data links systems[C]. Proceedings of the International Conference on Microwave and Millimeter Wave Technology, 2008, 1: 108-111.
    [56] Federal Communications Commission. Spectrum policy task force[R]. ET-Docket No. 02-135, 2002.
    [57] Federal Communications Commission. Notice of inquiry and notice of proposed rule making[R]. ET Docket No. 03-237, 2003.
    [58] Haykin S. Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
    [59] Granelli F, Zhang H G, Zhou X F, et al. Research advances in cognitive ultra wide band radio and their application to sensor networks[J]. Mobile Networks and Applications, 2006, 11(4): 487-499.
    [60] Kadhim D J, Liu W, Cheng W Q. Ultra wideband cognitive network objective issues[C]. Proceedings of the International Conference on Future Computer and Communication, 2009: 35-38.
    [61]郑红伟.超宽带无线电技术及其在军事上的应用[J].国防科技, 2005, 1: 28-30.
    [62]中华人民共和国工业和信息化部.中华人民共和国无线电频率划分规定[S], 2010.
    [63]翁木云.频谱管理与监测[M].北京:电子工业出版社, 2010: 1-122.
    [64] Mishra S M, Brodersen R W, Brink S T, et al. Detect and avoid: an ultra-wideband/WiMAX coexistence mechanism[J]. IEEE Communications Magazine, 2007, 45(6): 68-75.
    [65] Tani A, Fantacci R. A low-complexity cyclostationary-based spectrum sensing for UWB and WiMAX coexistence with noise uncertainty[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 2940-2950.
    [66] Arslan H, Sahin M E. Cognitive UWB-OFDM: pushing ultra-wideband beyond its limit via opportunistic spectrum usage[J]. Journal of Communications and Networks, 2006, 8(2): 1-7.
    [67] Krenik B. Clearing interference for cognitive radio[EB/OL]. EETimes, 2004. Available: http://www.eetimes.com/showArticle.jhtml?articleID=29100649
    [68] Zasowski T, Wittneben A. Performance of UWB receivers with partial CSI using a simple body area network channel model[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(1): 17-26.
    [69] Nascimento J, Nikookar H. On the range-data rate performance of outdoor UWB communication[C]. Proceedings of the IEEE International Conference on Wireless Broadband and Ultra Wideband Communications, 2007: 72-77.
    [70] Thiagarajah S, Ali B M, Ismail M. Empirical UWB path loss models for typical office environments[C]. Proceedings of the IEEE International Conference on Networks, 2005, 2: 1023-1028.
    [71] Renzo M D, Graziosi F, Minutolo R, et al. The ultra-wide bandwidth outdoor channel: from measurement campaign to statistical modelling[J]. Mobile Networks and Applications, 2006, 11(4): 451-467.
    [72] Molisch A F. Ultra-wide-band propagation channels[J]. Proceedings of the IEEE, 2009, 97(2): 353-371.
    [73] Cassioli D, Durantini A. Measurements, modeling and simulations of the UWB propagation channel based on direct-sequence channel sounding[J]. Wireless Communications and Mobile Computing, 2005, 5(5): 513-523.
    [74] Ghassemzadeh S S, Tarokh V. The Ultra-wideband Indoor Path Loss Model[R]. IEEE P802.15-02/277r1-SG3a, 2002.
    [75] Ghassemzadeh S S, Jana R, Rice C W, et al. Measurement and modeling of an ultra-wide bandwidth indoor channel[J]. IEEE Transactions on Communications, 2004, 52(10): 1786-1796.
    [76] Arslan H, Chen Z N, Benedetto M G D. Ultra Wideband Wireless Communication[M]. New York: John Wiley & Sons, 2006: 11-178.
    [77] IEEE Computer Society. IEEE Std 802.11a-1999 (R2003), Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer in the 5 GHz band[S]. 2003.
    [78] ITU-R TG1/8. Report of the work of the UWB spectrum management framework correspondence group[R]. May 18th, 2005. Available: http://www.itu.int/md/R03-TG1.8-C/e
    [79]张邦宁,魏安全,郭道省等.通信抗干扰技术[M].北京:机械工业出版社, 2007: 62-63.
    [80] Rogers A E E, Salah J E, Smythe D L, et al. Interference temperature measurements from 70 to 1500 MHz in suburban and rural environments of the Northeast[C]. Proceedings of the IEEE DySPAN, 2005: 119-123.
    [81] Bater J, Tan H P, Brown K N, et al. Modeling interference temperature constraints for spectrum access in cognitive radio networks[C]. Proceedings of the IEEE ICC, 2007, 6493-6498.
    [82] Nekoogar F. Ultra-Wideband Communications: Fundamentals and Applications[M]. London: Prentice Hall, 2005: 1-83.
    [83] Mittelbach M, Muller C, Ferger D, et al. Study of coexistence between UWB and narrowband cellular systems[C]. Proceedings of the International Workshop on JointUWBST & IWUWBS, 2004: 40-44.
    [84] Chiani M, Giorgetti A. Coexistence between UWB and narrow-band wireless communication systems[J]. Proceedings of the IEEE, 2009, 97(2): 231-254.
    [85] Manzi G, Feliziani M, Beeckman P A, et al. Coexistence between ultra-wideband radio and narrow-band wireless LAN communication systems—Part I: modeling and measurement of UWB radio signals in frequency and time[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(2): 372-381.
    [86] Manzi G, Feliziani M, Beeckman P A, et al. Coexistence between ultra-wideband radio and narrow-band wireless LAN communication systems—Part II: EMI evaluation[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(2): 382-390.
    [87] Pasya I, Tomiki A, Kobayashi T. Simulation of interference effects from UWB sources to a digital narrowband transmission system[C]. Proceedings of the IEEE ICACT, 2006: 1452-1457.
    [88] Giuliano R, Mazzenga F. On the coexistence of power-controlled ultrawide-band systems with UMTS, GPS, DCS1800, and fixed wireless systems[J]. IEEE Transactions on Vehicular Technology, 2005, 54(1): 62-81.
    [89] Hamalainen M, Saloranta J, Makela J P. Ultra-wideband signal impact on the performances of IEEE 802.11b and Bluetooth networks[J]. International Journal of Wireless Information Networks, 2003, 10(4): 201-210.
    [90] Rahim A, Zeisberg S, Finger A. Coexistence study between UWB and WiMax at 3.5 GHz band[C]. Proceedings of the IEEE ICUWB, 2007: 915-920.
    [91] Taha-Ahmed B, Calvo-Ramon M, Haro-Ariet L. On the impact of ultra wide band (UWB) on macrocell downlink of CDMA-PCS system[J]. Wireless Personal Communications, 2007, 43(2): 355-367.
    [92] IEEE P802.15 Working Group for Wireless Personal Area Networks. Channel Modeling Sub-committee Report Final[R]. IEEE P802.15-02/490r1-SG3a, 2005.
    [93] Auger F, Flandrin P, Goncalves P, et al. Time-frequency toolbox reference guide[M]. CNRS (France) and Rice University (USA), 2005: 104-105.
    [94] Amin M G. Interference mitigation in spread spectrum communication systems using time-frequency distributions[J]. IEEE Transactions on Signal Processing, 1997, 45(1): 90-101.
    [95]栗苹,赵国庆,杨小牛等.信息对抗技术[M].北京:清华大学出版社, 2008: 220-232.
    [96]齐丽娜,干宗良,朱洪波.存在CDMA干扰时超宽带系统性能分析[J].微波学报, 2009, 25(3): 92-96.
    [97] Sodeyama K, Ishibashi K, Kohno R. An analysis of interference mitigation capability of low duty-cycle UWB communications in the presence of wideband OFDM system[J]. Wireless Personal Communications, 2010, 54(1): 39-52.
    [98] Li Y M, Rabaey J M, Sangiovanni-Vincentelli A. Analysis of interference effects in MB-OFDM UWB systems[C]. Proceedings of the IEEE WCNC, 2008: 165-170.
    [99] Toftegaard T S. Next generation wireless infrastructure[J]. Wireless PersonalCommunications, 2010, 53(3): 465-479.
    [100] Chen H H, Guizani M. Next Generation Wireless Systems and Networks[M]. New York: John Wiley & Sons, 2006: 1-236.
    [101] Wheat J, Hiser R, Tucker J, et al. Designing a Wireless Network[M]. Rockland: Syngress, 2001: 115-336.
    [102] Rahayu Y, Rahman T A, Ngah R, et al. Ultra wideband technology and its applications[C]. Proceedings of the IEEE and IFIP International Conference on Wireless and Optical Communications Networks, 2008: 1-5.
    [103] Martigne P. UWB for low data rate applications: technology overview and regulatory aspects[C]. Proceedings of the IEEE International Symposium on Circuits and Systems, 2006: 2425-2428.
    [104] Ghavami M, Michael L B, Kohno R. Ultra Wideband Signals and Systems in Communication Engineering(Second Edition)[M]. New York: John Wiley & Sons, 2007: 25-160.
    [105] Guvenc I, Arslan H. On the modulation options for UWB systems[C]. Proceedings of the IEEE MILCOM, 2003, 2: 892-897.
    [106] Yang L Q, Giannakis G B. Ultra-wideband communications: an idea whose time has come[J]. IEEE Signal Processing Magazine, 2004, 21(6): 26-54.
    [107] Zhang J, Hu H Y, Liu L K, et al. Code-orthogonalized transmitted-reference ultra-wideband (UWB) wireless communication system[C]. Proceedings of the IEEE WiCOM, 2007: 528-532.
    [108] Waheed U B, Abdullah W, Siddiqui S A, et al. Comparison of time domain and frequency domain equalizers for indoor UWB systems[C]. Proceedings of the IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, 2008: 440-443.
    [109] Zhang P, Liu H. An ultra-wide band system with chirp spread spectrum transmission technique[C]. Proceedings of the International Conference on ITS Telecommunications, 2006: 294-297.
    [110] Wu W W, Wang W D, Yin H R. Carrier-less, single and multi-carrier UWB radio technology[C]. Proceedings of the International Workshop on Joint UWBST & IWUWBS, 2004: 192-196.
    [111]朱亮,肖振宇,葛宁等. MBOK超宽带系统的信道频域均衡算法[J].清华大学学报(自然科学版), 2010, 50(1): 140-144.
    [112] Witrisal K, Leus G, Janssen G, et al. Noncoherent ultra-wideband systems[J]. IEEE Signal Processing Magzine, 2009, 26(4): 48-66.
    [113]邹卫霞,房玉东,周正.跳时超宽带无线电的性能分析[J].电路与系统学报, 2005, 10(6): 69-72.
    [114] Casu M R, Durisi G. Implementation aspects of a transmitted-reference UWB receiver[J]. Wireless Communications and Mobile Computing, 2005, 5(5): 537-549.
    [115] Goeckel D L, Zhang Q. Slightly frequency-shifted reference ultra-wideband (UWB)radio[J]. IEEE Transactions on Communications, 2007, 55(3): 508-519.
    [116] Zhang J, Hu H Y, Zhang Z Y. Timing acquisition for code-orthogonalized transmitted-reference ultra-wideband (UWB) wireless communication system[C]. Proceedings of the IEEE International Workshop on RFIT, 2007: 50-53.
    [117] Kamoun M, Mazet L, Courville M, et al. A multicode approach for high data rate UWB system design[J]. IEEE Transactions on Communications, 2009, 57(2): 553-561.
    [118] Razzell C, Yang J, Birru D. Approaches and considerations for evolution of OFDM-based UWB PHY solutions beyond 1Gbps[C]. Proceedings of the IEEE ICUWB, 2007: 405-410.
    [119] Sampei S, Harada H. System design issues and performance evaluations for adaptive modulation in new wireless access systems[J]. Proceedings of the IEEE, 2007, 95(12): 2456-2471.
    [120] Digital Horizon. DVB-T技术手册[EB/OL]. Available: http://www.dh-tv.com
    [121] Ahmadian Z, Lampe L. Performance analysis of the IEEE 802.15.4a UWB system[J]. IEEE Transactions on Communications, 2009, 57(5): 1474-1485.
    [122] Zhang Y, Brown A K. Complex multipath effects in UWB communication channels[J]. IEE Proceedings-Communications, 2006, 153(1): 120-126.
    [123] Gong H L, Nie H, Chen Z Z. Performance of UWB systems with suboptimal receivers under IEEE 802.15.4a industrial environments[C]. Proceedings of the Annual Conference on Communication Networks and Services Research, 2007: 283-286.
    [124] Perez-Duenas J, Wanguemert-Perez J G, Molina-Fernandez I. Novel modulation scheme and six-port based RAKE receiver for DS-UWB[J]. IEEE Transactions on Wireless Communications, 2009, 8(7): 3628-3633.
    [125] Geng C H, Pei Y K, Ge N. An iterative multipath interference canceller with linear equalization for ultra high data rate DS-UWB system[C]. Proceedings of the IEEE ICUWB, 2009: 93-97.
    [126]闻武杰,裴玉奎,葛宁.单载波超宽带下判决反馈均衡器芯片优化设计[J].清华大学学报(自然科学版), 2010, 50(4): 577-580.
    [127] McCorkle J. Ultra wide bandwidth (UWB): gigabit wireless communications for battery operated consumer applications[C]. Proceedings of the Symposium on VLSI Circuits - Digest of Technical Papers, 2005: 6-9.
    [128] Sahin M E, Arslan H. Inter-symbol interference in high data rate UWB communications using energy detector receivers[C]. Proceedings of the IEEE ICUWB, 2005: 176-179.
    [129] Batra A, Balakrishnan J, Aiello G R. Design of a multiband OFDM system for realistic UWB channel environments[J]. IEEE Transactions on Microwave Theory and Techniques, 2004, 52(9): 2123-2138.
    [130] Liu H Y, Lee C Y. A low-complexity synchronizer for OFDM-based UWB system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2006, 53(11): 1269-1273.
    [131] Yak C W, Lei Z D, Chattong S, et al. Timing synchronization and frequency offset estimation for ultra-wideband (UWB) multi-band OFDM systems[C]. Proceedings of the IEEE PIMRC, 2005, 1: 471-475.
    [132]田玲,朱红兵,洪伟.超宽带射频接收机的研制[J].电子学报, 2007, 35(10): 1838-1842.
    [133]张士兵,张力军,徐晨.基于多带OFDM的超宽带通信系统[J].通信学报, 2006, 27(3): 79-85.
    [134]徐斌,毕光国. UWB_OFDM系统的实现结构[J].电子学报, 2004, 32(12A): 157-160.
    [135] Wang Y, Dong X D. Frequency-domain channel estimation for SC-FDE in UWB communications[J]. IEEE Transactions on Communications, 2006, 54(12): 2155-2163.
    [136]阙蔚,张新跃,张平等.一种降低UWB系统符号间干扰的方法[J].北京邮电大学学报, 2005, 28(5): 74-76.
    [137] Sato H, Ohtsuki T. Frequency domain channel estimation and equalization for direct sequence ultra wideband (DS-UWB) system[J]. IEE Proceedings Communications, 2006, 153(1): 93-98.
    [138] Yeh P L, Wen K A. Low complexity and high performance equalizer design for UWB[C]. Proceedings of the IEEE Wireless Communications and Networking Conference, 2008: 124-129.
    [139] Koyama A, Iwami H, Mizoguchi Y, et al. A DSSS UWB digital PHY/MAC transceiver for wireless ad hoc mesh networks with distributed control[C]. Proceedings of the IEEE ISSCC, 2006: 992-1001.
    [140] Gueguen E, Crussiere M, Helard J F. Combination of OFDM and spread spectrum for high data rate UWB: optimization of the spreading length[C]. Proceedings of the IEEE ICUWB, 2007: 889-894.
    [141]王江,毕光国,张在琛.直扩超宽带系统自适应同步方案[J].电波科学学报, 2006, 21(2): 215-219.
    [142] Park Y B, Kim C S, Cho K K, et al. Performance of UWB DS-CDMA/OFDM/MC-CDMA system[C]. Proceedings of the Midwest Symposium on Circuits and Systems, 2004, 1: 37-40.
    [143] Chandrakasan A P, Lee F S, Wentzloff D D, et al. Low-power impulse UWB architectures and circuits[J]. Proceedings of the IEEE, 2009, 97(2): 332-352.
    [144] Emami S, Corral C, Rasor G. Peak-to-average power ratio (PAPR), fractional bandwidth and processing gain of UWB schemes[C]. Proceedings of the IEEE International Symposium on Spread Spectrum Techniques and Applications, 2004: 929-933.
    [145] Nanotron Technologies. nanoNET Chirp Based Wireless Networks, V1.04[R]. Berlin, Germany, 2007.
    [146] Pinkley J. Low complexity indoor wireless data links using chirp spread spectrum[D]. PhD Thesis, Department of Electrical and Computer Engineering, University of Calgary, Alberta, Canada, 2003.
    [147] Liu H P. Multicode ultra-wideband scheme using chirp waveforms[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(4): 885-891.
    [148] Gallagher D R, Malocha D C. Ultra wide band SAW correlators using dual orthogonal frequency coded transducers[C]. Proceedings of the IEEE International Frequency ControlSymposium Joint with the European Frequency and Time Forum, 2009: 24-27.
    [149]张剑,胡捍英,汪涛等.有源频谱压缩的正交码发送参考Chirp超宽带系统[J].北京邮电大学学报, 2010, 33(6): 107-111.
    [150] Stephan A, Baudais J Y, Helard J F. Adaptive spread spectrum multicarrier multiple-access for UWB systems[C]. Proceedings of the IEEE VTC, 2007-Spring: 2926-2930.
    [151] Schoo K, Tervonen J. Prompt rate adaptation in WiMedia considering time variant UWB channels[C]. Proceedings of the IEEE PIMRC, 2007: 1-5.
    [152] Troesch F, Steiner C, Zasowski T, et al. Hardware aware optimization of an ultra low power UWB communication system[C]. Proceedings of the IEEE ICUWB, 2007: 174–179.
    [153] Zheng Y J, Tong Y, Ang C W. A CMOS carrier-less UWB transceiver for WPAN applications[C]. Proceedings of the IEEE ISSCC, 2006: 378-387.
    [154] Qin B, Chen H Y, Wang X, et al. An ultra low-power FCC-compliant 5th-derivative Gaussian pulse generator for IR-UWB transceiver[J]. Chinese Journal of Electronics, 2009, 18(4): 605-609.
    [155] Benedetto M G, Vojcic B R. Ultra wide band wireless communications: a tutorial[J]. Journal of Communication and networks, 2003, 5(4): 290-302.
    [156] Miri R, Zhou L, Heydari P. Timing synchronization in impulse-radio UWB: trends and challenges[C]. Proceedings of the Joint International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, 2008: 221-224.
    [157] Ryckaert J, Badaroglu M, Desset C, et al. Carrier-based UWB impulse radio: simplicity, flexibility, and pulser implementation in 0.18-micron CMOS[C]. Proceedings of the IEEE ICUWB, 2005: 432-437.
    [158] Wang Y, Dong X D. Comparison of frequency offset and timing offset effects on the performance of SC-FDE and OFDM over UWB channels[J]. IEEE Transactions on Vehicular Technology, 2009, 58(1): 242-250.
    [159] Mittelbach M, Moorfeld R, Finger A. Performance of a multiband impulse radio UWB architecture[C]. Proceedings of the ACM International Conference on Mobile Technology, Applications and Systems, 2006: 1-6.
    [160] Xu H L, Yang L Q. Differential UWB communications with digital multicarrier modulation[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 284-295.
    [161] Crepaldi M, Li C, Dronson K, et al. An ultra-low-power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation[C]. Proceedings of the IEEE ISSCC, 2010: 226-227.
    [162] Harma S, Plessky V P, Li X Y, et al. Feasibility of ultra-wideband SAW RFID tags meeting FCC rules[J]. IEEE Ultrasonics, Ferroelectrics and Frequency Control, 2009, 56(4): 812-820.
    [163] Malocha D, Kozlovski N, Santos B, et al. Ultra wide band surface acoustic wave (SAW) RF ID tag and sensor[C]. Proceedings of the IEEE MILCOM, 2009: 1-7.
    [164] Lachartre D, Denis B, Morche D, et al. A 1.1nJ/b 802.15.4a-compliant fully integratedUWB transceiver in 0.13μm CMOS[C]. Proceedings of the IEEE ISSCC, 2009: 312-313, 313a.
    [165] Cavallaro M, Sapone G, Giarrizzo G, et al. A 3–5-GHz UWB front-end for low-data rate WPANs in 90-nm CMOS[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(4): 854-865.
    [166] Iida S, Tanaka K, Suzuki H, et al. A 3.1 to 5 GHz CMOS DSSS UWB transceiver for WPANs[C]. Proceedings of the IEEE ISSCC, 2005: 214-215.
    [167] Novakov E, Fournier J M. An ultra-wideband impulse-radio communication method and transceiver[C]. Proceedings of the IEEE GLOBECOM, 2009: 1-5.
    [168] Leenaerts D, Beek R V D, Bergervoet J, et al. A 65 nm CMOS inductorless triple band group WiMedia UWB PHY[J]. IEEE Journal of Solid-State Circuits, 2009, 44(12): 3499-3510.
    [169] Zheng H, Lou S Z, Lu D T, et al. A 3.1 GHz–8.0 GHz single-chip transceiver for MB-OFDM UWB in 0.18-μm CMOS process[J]. IEEE Journal of Solid-State Circuits, 2009, 44(2): 414-426.
    [170] Tanaka A, Numata K, Kodama H, et al. A 2.88Gb/s digital hopping UWB transceiver[C]. Proceedings of the IEEE ISSCC, 2009: 318-319, 319a.
    [171] Edwards M C. Design of a continuous-wave synthetic aperture radar system with analog dechirp[D]. M.S. thesis, Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, USA, 2009.
    [172] de Witt J J, Nel W A J. Range Doppler dynamic range considerations for dechirp on receive radar[C]. Proceedings of the European Radar Conference, 2008: 136-139.
    [173] Wang P, Li H B, Djurovic I, et al. Integrated cubic phase function for linear FM signal analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 963-977.
    [174] Zhang J, Hu H Y, and Kang R Z, et al.. Transmitted-reference chirp ultra-wideband (UWB) wireless communication system[C]. Proceedings of the International Conference on Future Computer and Communication, 2010, 2: 674-680.
    [175] Humblet P A, Azizoglu M. On the bit error rate of lightwave systems with optical amplifiers[J]. Journal of Lightwave Technology, 1991, 9(11): 1576-1582.
    [176] Wu J J, Liang Q L, and Xiang H G. Analysis of weighted non-coherent receiver for UWB-OOK signal in multipath channels[J]. Journal of Electronics (China), 2008, 25(1): 32-38.
    [177] Sahin M E, Guvenc I, Arslan H. Optimization of energy detector receivers for UWB systems. Proceedings of the IEEE VTC, 2005-Spring, 2: 1386-1390.
    [178] Mustafa E S, Ismail G, Hüseyin A. Joint parameter estimation for UWB energy detectors using OOK. Wireless Personal Communications, 2007, 40(4): 579-591.
    [179]杨志华,张钦宇,王野.非相干能量检测UWB接收机误码率性能优化[J].电子学报, 2009, 37(5): 951-956.
    [180] Cheng X T, Guan Y L. Effects of synchronization errors on energy detection of UWB signals[C]. Proceedings of the IEEE ICUWB, 2008, 1: 161-164.
    [181] Iwabuchi M, Sakaguchi K, and Araki K. Study on multi-channel receiver based on polyphase filter bank[C]. Proceedings of the International Conference on Signal Processing and Communication Systems, 2008: 1-7.
    [182] Harris F, Dick C, and Rice M. Digital receivers and transmitters using polyphase filter banks for wireless communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2003, 51(4): 1395-1412.
    [183] Akyildiz I F, Mohanty S, Xie J. A ubiquitous mobile communication architecture for next-generation heterogeneous wireless systems[J]. IEEE Communications Magazine, 2005, 43(6): 29-36.
    [184] Munasinghe K S, Jamalipour A. Interworked WiMAX-3G cellular data networks: an architecture for mobility management and performance evaluation[J]. IEEE Transactions on Wireless Communications, 2009, 8(4): 1847-1853.
    [185] ETSI. Universal Mobile Telecommunications System (UMTS); Evolution of 3GPP system[R]. ETSI TR 121 902 V9.0.0, 2010.
    [186] Bhargava V, Hussain E. Cognitive Wireless Communication Networks[M]. New York: Springer, 2007: 1-44.
    [187] Luo J J, Huang X M. Planning future heterogeneous wireless networks[C]. Proceedings of the Progress In Electromagnetics Research Symposium, 2005: 381-385.
    [188] Sarakis L, Kormentzas G, Guirao F M. Seamless service provision for multi heterogeneous access[J]. IEEE Wireless Communications, 2009, 16(5): 32-40.
    [189] Mitola J. Cognitive radio architecture evolution[J]. Proceedings of the IEEE, 2009, 97(4): 626-641.
    [190] Granelli F, Pawelczak P, Prasad R V, et al. Standardization and research in cognitive and dynamic spectrum access networks: IEEE SCC41 efforts and other activities[J]. IEEE Communications Magazine, 2010, 48(1): 71-79.
    [191] IEEE Communications Society. IEEE Standard Definitions and Concepts for Dynamic Spectrum Access: Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum Management[S]. IEEE Std 1900.1-2008.
    [192] IEEE Communications Society. IEEE Standard for Architectural Building Blocks Enabling Network-Device Distributed Decision Making for Optimized Radio Resource Usage in Heterogeneous Wireless Access Networks[S]. IEEE Std 1900.4-2009.
    [193] Buljore S, Harada H, Filin S, et al. Architecture and enablers for optimized radio resource usage in heterogeneous wireless access networks: the IEEE 1900.4 working group[J]. IEEE Communications Magazine, 2009, 47(1): 122-129.
    [194] Mody A N, Sherman M J, Martinez R. Survey of IEEE standards supporting cognitive radio and dynamic spectrum access[C]. Proceedings of the IEEE MILCOM, 2008: 1-7.
    [195] ETSI. Reconfigurable Radio Systems (RRS); Cognitive Radio System Concept[R]. ETSI TR 102 802 V1.1.1, 2010.
    [196] Zhao Q, Sadler B M. A survey of dynamic spectrum access[J]. IEEE Signal Processing Magazine, 2007, 24(3): 79-89.
    [197] Houze P, Ruiz D, Jemaa S B, et al. Dynamic spectrum allocation algorithm for cognitivenetworks[C]. Proceedings of the IEEE ICWMC, 2007: 25-29.
    [198] Xing Y P, Chandramouli R, Mangold S, et al. Dynamic spectrum access in open spectrum wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2006, 24(3): 626-637.
    [199] Subramanian A P, Al-Ayyoub M, Gupta H, et al. Near-optimal dynamic spectrum allocation in cellular networks[C]. Proceedings of the IEEE DySPAN, 2008: 1-11.
    [200] Thilakawardana D, Moessner K. A genetic approach to cell-by-cell dynamic spectrum allocation for optimising spectral efficiency in wireless mobile systems[C]. Proceedings of the IEEE CrownCom, 2007: 367-372.
    [201] Thilakawardana D, Moessner K, Tafazolli R. Darwinian approach for dynamic spectrum allocation in next generation systems[J]. IET Communications, 2008, 2(6): 827-836.
    [202] Chung Y L, Tsai Z. Performance evaluation of dynamic spectrum sharing for two wireless communication networks[J]. IET Communications, 2010, 4(4): 452-462.
    [203] Lee S, Sriram K, Kim K, et al. Vertical handoff decision algorithms for providing optimized performance in heterogeneous wireless networks[J]. IEEE Transactions on Vehicular Technology, 2009, 58(2): 865-881.
    [204] Liu M, Li Z C, Guo X B, et al. Performance analysis and optimization of handoff algorithms in heterogeneous wireless networks[J]. IEEE Transactions on Mobile Computing, 2008, 7(7): 846-857.
    [205]贺昕,李斌.异构无线网络切换技术[M].北京:北京邮电大学出版社, 2008: 246-287.
    [206] Wu Y, Yang K, Zhao L, et al. Congestion-aware proactive vertical handoff algorithm in heterogeneous wireless networks[J]. IET Communications, 2009, 3(7): 1103-1114.
    [207] Zhou S D, Zhao M, Xu X B, et al. Distributed wireless communication system: a new architecture for future public wireless access[J]. IEEE Communications Magazine, 2003, 41(3): 108-113.
    [208] Pirinen P. Cellular topology and outage evaluation for DS-UWB system with correlated lognormal multipath fading[C]. Proceedings of the IEEE PIMRC, 2006: 1-5.
    [209] Llorente R, Cartaxo A, Uguen B, et al. Management of UWB picocell clusters: UCELLS project approach[C]. Proceedings of the IEEE ICUWB, 2008: 139-142.
    [210] Llorente R, Morant M, Duplicy J, et al. Sensing and fingerprinting of ultra-wide band radio in UCELLS project[C]. Proceedings of the Future Network & Mobile Summit, 2010: 1-8.
    [211] Llorente R. Ultra-wide band real-time interference monitoring and CELLular management Strategies[EB/OL]. ICT-UCELLS, March 2008. Available: ftp://ftp.cordis.europa.eu/pub/fp7/ict/docs/future-networks/projects-ucells-project-factsheet_en.pdf
    [212] Ganz A, Ganz Z, Wongthavarawat K. Multimedia wireless networks: technologies, standards, and QoS[M]. London: Prentice Hall, 2003: 19-31.
    [213] Ruby R, Liu Y Y, Pan J P. Evaluating video streaming over UWB wireless networks[C]. Proceedings of the ACM WMuNep, 2008: 1-8.
    [214] Zander J, Kim S L, Almgren M, et al. Radio Resource Management for Wireless Networks[M]. Boston, London: Artech House, 2001: 187-208.
    [215] Harada H, Prasad R. Simulation and Software Radio for Mobile Communications[M].Boston, London: Artech House, 2002: 335-380.
    [216] Hasib A, Fapojuwo A O. Mobility model for heterogeneous wireless networks and its application in common radio resource management[J]. IET Communications, 2008, 2(9): 1186-1195.
    [217] Boggia G, Camarda P. Modeling dynamic channel allocation in multicellular communication networks[J]. IEEE Journal on Selected Areas in Communications, 2001, 19(11): 2233-2242.
    [218] Argyropoulos Y, Jordan S, Kumar S P R. Dynamic channel allocation in interference-limited cellular systems with uneven traffic distribution[J]. IEEE Transactions on Vehicular Technology, 1999, 48(1): 224-232.
    [219] Bublin M, Konegger M, Slanina P. A cost-function-based dynamic channel allocation and its limits[J]. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2286-2295.
    [220] Vassilakis V G, Logothetis M D. The wireless Engset multi-rate loss model for the handoff traffic analysis in W-CDMA networks[C]. Proceedings of the IEEE PIMRC, 2008: 1-6.
    [221]唐应辉,唐小我.排队论——基础与分析技术[M].北京:科学出版社, 2006: 29-69.
    [222] Gross D, Harris C M. Fundamentals of Queueing Theory (3rd edition)[M]. New York: John Wiley and Sons, 1998: 82-101.
    [223] Rajaratnam M, Takawira F. Hand-off traffic characterisation in cellular networks under Engset new call arrivals and generalised service times[C]. Proceedings of the IEEE WCNC, 1999, 1: 423-427.
    [224] Arora S, Barak B. Computational Complexity: A Modern Approach[M]. Cambridge: Cambridge University Press, 2009: 106-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700