用户名: 密码: 验证码:
基于码分多址技术的光通信系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着信息技术的发展以及各种新型业务的出现,用户对接入带宽以及数据安全性的要求越来越高。光码分多址(OCDMA)技术因其具有的接入协议简单、高安全性、软容量等优点,近年来得到了广泛的研究,在军用、电子商务以及民用接入网等场合均有广阔的应用前景。本论文在基于FBG的全光OCDMA技术以及电域处理OCDMA技术两个方向上,通过理论分析、系统仿真和系统实验等方法,对这两种OCDMA技术的系统和子系统的设计和实现进行了研究。
     本文在基于FBG的全光OCDMA技术上做了如下研究和创新工作:首先,我们利用非线性偏振旋转效应,提出了一种新型的光阈值器,以消除多用户全光OCDMA系统引起的多用户干扰。我们提出的新型光阈值器具有在整个C波段对波长透明以及不需要定制的带通滤波器等优点。我们应用这种新型的光阈值器,实现了4用户、单用户2.5 Gb/s、传输距离为20 km的相干一维TPC-OCDMA系统。其次,我们提出并实验实现了应用在OCDMA-PON中的一维/二维混合编解码方案。其中二维WHTS-OCDMA链路采用ASE作为光源,采用级联FBG作为编解码器;一维相干TPC-OCDMA链路则采用锁模光纤激光器产生的超短脉冲作为光源,采用码长为127的相移SSFBG作为编解码器。最后,我们通过仿真和实验研究了以系统速率为2.5 Gb/s下设计的相移SSFBG作为编解码器实现的高速(10 Gb/s),长距离(180 km)传输的相干一维TPC-OCDMA系统。仿真和实验的结果均表明,随着速率的升高,系统的接收灵敏度持续下降。在采用工作在2.5 Gb/s的长度为38.1mm,码长为127的相移SSFBG,在速率为10 Gb/s单用户传输180 km时,相对于速率为2.5 Gb/s时,接收灵敏度将下降约6 dB。
     全光OCDMA系统面临着很严重的拍频噪声和多用户干扰的影响。即使采用光阈值器和光门限等技术,系统能达到的用户数仍然非常受限。因此我们提出并研究了一种基于空间编码和副载波复用的电域处理OCDMA系统,从而消除拍频噪声对系统的影响,并且在理想状态下可以消除多用户干扰。我们首先通过仿真和实验实现了15用户、单用户1 Gb/s、传输20 km的CDM/SCM-PON系统。实验结果表明,在15用户同时存在的情况下,各通道的误码性能均在普通前向纠错编码能够纠错的误码率范围内。接着,我们研究了新型CDM/SCM-PON系统在DSB和SSB调制下色散对信号的影响,并针对上述两种调制下色散的影响,提出了色散补偿的方案,并通过仿真验证了我们提出的两种色散补偿方案的可行性。最后,我们通过仿真研究CDM/SCM-PON系统接收端的关键器件,模拟/数字转换器(ADC)的各项指标,包括带宽、分辨率以及前端裁剪滤波器的裁剪率对系统性能的影响。仿真结果表明,ADC在分辨率为5位以上时,带宽在约0.8倍于信号带宽,裁剪滤波器的裁剪率为3-5时,系统的性能可以达到最优。
Due to advances in information technologies and the emerging of various bandwidth consuming services, we are seeing an ever increasing demand for faster and more secure internet connections. Optical code division multiple access (OCDMA) is considered as one of the attractive access technologies in both military and civil applications due to its advantages such as high capacity, simple networking protocol, and the potential of security enhancement for the physical layer. The main topic of this thesis is all optical OCDMA based on FBG en/decoders and electrical processed OCDMA systems and subsystems. Theoretical analysis as well as system simulations and experimentations are carried out.
     A large part of this work on all optical OCDMA systems and sub-systems based on FBG en/decoders is devoted to experimental demonstration and analysis. First, a novel optical thresholder based on nonlinear polarization rotation is proposed. Our proposed optical thresholder has the advantage of colorless operation over C-band without the utilization of custom-designed band-pass filters, which is crucial in the design of large-scale and cost-effective OCDMA-PON systems. A 4x2.5 Gb/s TPC-OCDMA system based on our proposed optical thresholder is experimentally demonstrated. Then, a hybrid 1D/2D en/decoding architecture is proposed and experimentally demonstrated for the first time. An ASE source is used for 2D WHTS-OCDMA link using cascaded FBG en/decoders, while ultra-short pulses from an mode-locked fiber laser is used as the source for the 1D TPC-OCDMA link with 127-code SSFBG en/decoders. After that, we analyze the performance of 10 Gb/s TPC-OCDMA systems using SSFBGs designed for 2.5 Gb/s applications, as the fabrication process poses a limitation on high-speed (short grating length),long-code SSFBGs. We show through simulation and experimentation that a~6-dB power penalty is expected when using 2.5 Gb/s (38.1 mm) SSFBGs in single user 10 Gb/s, and 180 km TPC-OCDMA systems.
     All optical OCDMA systems suffer from severe beat noise and multiple access interference (MAI). Additionally, practical deployment of all-optical OCDMA systems typically faces the challenges of high system costs due to the adoption of expensive optical units. To address these problems, we propose a novel CDM/SCM-PON based on spatial coding and subcarrier multiplexing, with code division multiplexing in electrical domain. We first demonstrate a 15×1 Gb/s CDM/SCM-PON with 20 km of standard single mode fiber transmission, through both simulation and experimentation. We show that error free operation assuming forward error correction (FEC) can be achieved when 15 simultaneous users are present. We then address the chromatic dispersion induced signal distortion for both DSB and SSB modulated CDM/SCM-PON systems, using electrical post chromatic dispersion compensation for SSB modulated systems, and electrical chromatic dispersion pre-compensation for DSB modulated systems. Both proposed schemes have been verified using VP1 and matlab co-simulation. In our last work, we analyzed the ADC impact on CDM/SCM-PON systems. Through system simulation we find that the system performance can be optimized using an ADC with at least 5-bits resolution, with a bandwidth of around 0.8 times signal bandwidth, and with a clipping ratio of around 3-5.
引文
[1]C. Lam, Passive optical networks.2007, Elsevier/Academic Press:London, UK.
    [2]R. Ramaswami, K. Sivarajan, and G. Sasaki, Optical networks:a practical perspective. Burlington.2009, Morgan Kaufmann Pub:MA, USA.
    [3]T. Hirooka, M. Okazaki, T. Hirano, P. Guan, M. Nakazawa, and S. Nakamura, All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch. Photonics Technology Letters, IEEE,2009, vol. 21, no.20, pp.1574-1576.
    [4]G. Michael, M. Hans Christian Hansen, H. Hao, O. Leif Katsuo, A. Fausto Gomez, W. Cedric, E. Didier, C. Anders Thomas, and J. Palle,650 Gbit/s OTDM Transmission over 80 km SSMF Incorporating Clock Recovery, Channel Identification and Demultiplexing in a Polarisation Insensitive Receiver. OFC'2010,2010, p. OWO3.
    [5]G. Michael. M. Hans Christian Hansen, O. Leif Katsuo, H. Hao, P. Evarist, C. Anders Thomas, and J. Palle, Generation and Detection of 2.56 Tbit/s OTDM Data Using DPSK and Polarisation Multiplexing. OFC'2010,2010, p. OThV2.
    [6]H. Toshihiko, Recent Progress on OTDM Terabit/s Transmission and Their Future. OFC'2010,2010, p.OWM5.
    [7]D. V. Trung, H. Hao, G. Michael, P. Evarist, X. Jing, K. O. Leif, J. M. Steven, Y. C. Duk, A. B. Douglas, D. P. Mark, S. Jochen, L.-D. Barry, and J. E. Benjamin, Photonic Chip Based 1.28 Tbaud Transmitter Optimization and Receiver OTDM Demultiplexing. OFC'2010,2010, p. PDPC5.
    [8]S. Akihide, M. Hiroji, K. Takayuki, F. Masamichi,H. Kengo, Y. Eiji, M. Yutaka, M. Munehiro, M. Masato, Y. Hiroshi, S. Yohei, and I. Hiroyuki,69.1-Tb/s (432 x 171-Gb/s) C-and Extended L-Band Transmission over 240 Km Using PDM-16-OAM Modulation and Digital Coherent Detection. OFC'2010, 2010, p. PDPB7.
    [9]Z. Xiang, Y. Jianjun, H. Ming-Fang, S. Yin, W. Ting, N. Lynn, M. Peter, B. Martin, P. I. Borel, D. W. Peckham, and L. Robert,64-Tb/s (640x107-Gb/s) PDM-36QAM Transmission over 320km Using Both Pre-and Post-Transmission Digital Equalization. OFC'2010,2010, p. PDPB9.
    [10]C. Jin-Xing, C. Yi, D. Carl, F. Dmitri, L. Alan, S. Oleg, P. Will, P. Alexei, M. Georg, and B. Neal, Transmission of 96x100G Pre-Filtered PDM-RZ-QPSK Channels with 300% Spectral Efficiency over 10,608km and 400% Spectral Efficiency over 4,368km. OFC'2010,2010, p. PDPB10.
    [11]J. Fabrega, A. El Mardini, V. Polo, J. Lazaro, E. Lopez, R. Soila, and J. Prat, Deployment analysis of TDM/WDM single fiber PON with colourless ONU operating at 2.5 Gbps subcarrier multiplexed downstream and 1.25 Gbps upstream. OFC'2010,2010, pp.1-3.
    [12]L. Giorgi, F. Cavaliere, P. Ghiggino, F. Ponzini, A. Bianchi, and A. D'Errico, Characterization of a High Capacity Multi-User Optical Access Network Using 1 Gb/s 16 QAM Subcarrier Multiplexing. IEEE/OSA Journal of Lightwave Technology,2009, vol.27, no.9, pp.1203-1211.
    [13]R. Hui, B. Zhu, R. Huang, C. Allen, K. Demarest, and D. Richards, Subcarrier multiplexing for high-speed optical transmission. IEEE/OSA Journal of Lightwave Technology,2002, vol.20, no.3, p.417.
    [14]S. Jansen, I. Morita, T. Schenk, and H. Tanaka,121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF. IEEE/OSA Journal of Lightwave Technology,2009. vol.27, no.3, pp.177-188.
    [15]P. Prucnal, Optical code division multiple access:Fundamentals and applications.2006, CRC press:Boca Raton, FL
    [16]P. Prucnal, M. Santoro, and T. Fan, Spread spectrum fiber-optic local area network using optical processing. IEEE/OSA Journal of Lightwave Technology,1986, vol.4, no.5, pp.547-554.
    [17]A. Weiner, J. Heritage, and J. Salehi, Encoding and decoding of femtosecond pulses. Optics letters,1988, vol.13, no.4, p.300.
    [18]A. Gelman and D. Schilling, A fiber optic CDMA network for real-time communication, INFOCOM'88,1988, pp.62-69.
    [19]J. Salehi, Code division multiple-access techniques in optical fiber networks. I. Fundamental principles. IEEE Transactions on Communications,1989, vol. 37, no.8. pp.824-833.
    [20]S. Wan and Y. Hu, Two-dimensional optical CDMA differential system with prime/OOC codes. IEEE Photonics Technology Letters,2002, vol.13, no.12, pp.1373-1375.
    [21]G. Yang and W. Kwong, Prime codes with applications to CDMA optical and wireless networks.2002, Artech House Publishers:Norwood, MA,
    [22]J. Zhang, W. Kwong, and A. Sharma, Effective design of optical fiber code-division multiple access networks using the modified prime codes and optical processing. Communication Technology Proceedings,2000, pp.392-397.
    [23]W. Kwong and G. Yang, Extended carrier-hopping prime codes for wavelength-time optical code-division multiple access. IEEE Transactions on Communications,2004, vol.52, no.7, pp.1084-1091.
    [24]P. Petropoulos, N. Wada, P. Teh, M. Ibsen, W. Chujo, K. Kitayama, and D. Richardson, Demonstration of a 64-chip OCDMA system using superstructured fiber gratings and time-gating detection. IEEE Photonics Technology Letters,2002, vol.13, no.11, pp.1239-1241.
    [25]A. Weiner, D. Leaird, J. Patel, and J. Wullert, Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator. IEEE Journal of Quantum Electronics,2002, vol.28, no.4, pp. 908-920.
    [26]X. Wang, K. Matsushima, K. Kitayama, A. Nishiki, N. Wada, and F. Kubota, High-performance optical code generation and recognition by use of a 511-chip,640-Gchip/s phase-shifted super structured fiber Bragg grating. Optics letters,2005, vol.30, no.4, pp.355-357.
    [27]A. Agarwal, P. Toliver, R. Menendez, S. Etemad, J. Jackel, J. Young, T. Banwell, B. Little, S. Chu, and W. Chen, Fully programmable ring-resonator-based integrated photonic circuit for phase coherent applications. IEEE/OS A Journal of Lightwave Technology,2006, vol.24, no.1, pp.77-87.
    [28]X. Wang, N. Wada, N. Kataoka, T. Miyazaki, G. Cincotti, and K. Kitayama, 100 km Field Trial of 1.24 Tbit/s, Spectral Efficient Asynchronous 5 WDM× 25 DPSK-OCDMA using One Set of 50 × 50 Ports Large Scale En/Decoder. OFC'2007,2007, p. PDP14.
    [29]L. Tancevski and I. Andonovic, Wavelength hopping/time spreading code division multiple access systems. Electronics Letters,1994, vol.30, no.17, pp. 1388-1390.
    [30]T. Pfeiffer, B. Deppisch, M. Witte, and R. Heidemann, Optical CDMA transmission for robust realization of complex and flexible multiple access networks. OFC Technical Digest,2002, pp.344-346.
    [31]P. Teh, M. Ibsen, L. Fu, J. Lee, Z. Yusoff, and D. Richardson, A 16-channel OCDMA system (4 OCDMA x 4 WDM) based on 16-chip,20 Gchip/s superstructure fibre Bragg gratings and DFB fibre laser transmitters. OFC Technical Digest,2002, pp.600-601.
    [32]Z. Jiang, D. Seo, S. Yang, D. Leaird, R. Roussev, C. Langrock, M. Fejer, and A. Weiner, Four-user 10-Gb/s spectrally phase-coded O-CDMA system operating at 30 fJ/bit. IEEE Photonics Technology Letters,2005, vol.17, no. 3. pp.705-707.
    [33]X. Wang, N. Wada, T. Hamanaka, J. Kitayama, and A. Nishiki,10-user, truly-asynchronous OCDMA experiment with 511-chip SSFBG en/decoder and SC-based optical thresholder. OFC Technical Digest,2005, p. PDP33.
    [34]W. Cong, C. Yang, R. Scott, V. Hernandez, N. Fontaine, B. Kolner, J. Heritage, and S. Yoo, Demonstration of 160-and 320-Gb/s SPECTS O-CDMA network testbeds. IEEE Photonics Technology Letters,2006, vol.18, no.15, pp.1567-1569.
    [35]R. Scott, V. Hernandez, N. Fontaine, F. Soares, R. Broeke, K. Perry, G. Nowak, C. Yang, W. Cong, and K. Okamoto,80.8-km BOSSNET SPECTS O-CDMA field trial using subpicosecond pulses and a fully integrated, compact AWG-based encoder/decoder. IEEE Journal of Selected Topics in Quantum Electronics,2007, vol.13, no.5, pp.1455-1462.
    [36]X. Wang, N. Wada, T. Miyazaki, G. Cincotti, and K. Kitayama, Field Trial of 3-WDM× 10-OCDMA× 10.71-Gb/s Asynchronous WDM/DPSK-OCDMA Using Hybrid E/D Without FEC and Optical Thresholding. IEEE/OSA Journal of Lightwave Technology,2007, vol.25, no.1, pp.207-215.
    [37]C. Guo, X. Hong, and S. He, Elimination of Multiple Access Interference in Ultrashort Pulse OCDMA Through Nonlinear Polarization Rotation., IEEE Photonics Technology Letters,2009, vol.21, no.20, pp.1484-1486.
    [38]H. Shalaby, Synchronous fiber-optic CDMA systems with interference estimators. IEEE/OSA Journal of Lightwave Technology,1999, vol.17, no. 11, p.2268.
    [39]H. Fathallah, L. Rusch, and S. LaRochelle, Optical frequency-hop multiple access communications system. IEEE International Conference on Communications,1998, pp.1269-1273.
    [40]X. Hong, D. Wang, L. Xu, and S. He, Demonstration of optical steganography transmission using temporal phase coded optical signals with spectral notch filtering. Optics Express,2010, vol.18,no.12, pp.12415-12420.
    [41]Z. Gao, X. Wang, N. Kataoka, and N. Wada, Stealth transmission of time domain spectral phase encoded OCDMA signal over WDM system. OFC Technical Digest,2010, p.OThW5.
    [42]P. Prucnal, M. Fok, K. Kravtsov, and Z. Wang, Optical steganography for data hiding in optical networks.16th International Conference on Digital Signal Processing,2009, pp.1-6.
    [43]B. Wu, A. Agrawal, I. Glesk, E. Narimanov, S. Etemad, and P. Prucnal, Steganographic fiber-optic transmission using coherent spectral-phase-encoded optical CDMA. CLEO'2008,2008, p. CFF5.
    [44]D. Zaccarin and M Kavehrad, An optical CDMA system based on spectral encoding of LED. IEEE Photonics Technology Letters,2002, vol.5, no.4, pp. 479-482.
    [45]T. Pfeiffer, B. Deppisch, M. Witte, and R. Heidemann, Operational stability of a spectrally encoded optical CDMA system using inexpensive transmitters without spectral control. IEEE Photonics Technology Letters,2002, vol.11, no.7, pp.916-918.
    [46]C. Bres, Y. Huang, I. Glesk, and P. Prucnal, Scalable asynchronous incoherent optical CDMA [Invited]. Journal of Optical Networking,2007, vol.6, no.6, pp.599-615.
    [47]B. Chen, C. Guo, J. Chen, L. Zhang, Q. Jiang, and S. He, Add/drop multiplexing and TDM signal transmission in an optical CDMA ring network. Journal of Optical Networking,2007, vol.6, no.8, pp.969-974.
    [48]S. Kim, M. Kang, S. Park, Y. Choi, and S. Han, Incoherent bidirectional fiber-optic code division multiple access networks. IEEE Photonics Technology Letters,2002, vol.12, no.7, pp.921-923.
    [49]X. Wang, N. Wada, T. Miyazaki, and K. Kitayama, Coherent OCDMA system using DPSK data format with balanced detection. IEEE Photonics Technology Letters,2006, vol.18, no.7, pp.826-828.
    [50]V. Hernandez, Y. Du, W. Cong, R. Scott, K. Li, J. Heritage, Z. Ding, B. Kolner, and S. Yoo, Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple access for terabit optical access networks. IEEE/OSA Journal of Lightwave Technology,2004, vol.22, no.11, pp.2671-2679.
    [51]M. Shirasaki, Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Optics letters,1996, vol. 21, no.5, pp.366-368.
    [52]S. Galli, R. Menendez, P. Toliver, T. Banwell, J. Jackel, J. Young, and S. Etemad, DWDM-compatible spectrally phase encoded optical CDMA. Global Tele-communications Conference,2004, pp.1888-1894.
    [53]X. Wang, N. Wada, and K. Kitayama, Enabling techniques for asynchronous coherent OCDMA. Asia Pacific Optical Communications Conference (APOC), Shanghai,2005, p.60212Z.
    [54]C. Guo, J. Chen, D. Wang, M. Jiang, and B. Chen, Experimental demonstration of a hybrid 1/2-dimensional en/decoding optical code division multiple access system. Asia Pacific Optical Communications Conference, Hangzhou,2008, p.713611.
    [55]F. Yamamoto and T. Sugie, Reduction of optical beat interference in passive optical networks using CDMA technique. IEEE Photonics Technology Letters, 2000, vol.12, no.12, pp.1710-1712.
    [56]B. Ahn and Y. Park, A symmetric-structure CDMA-PON system and its implementation. IEEE Photonics Technology Letters,2002, vol.14, no.9, pp. 1381-1383.
    [57]M. Kavehrad, F. Khaleghi, and G. Bodeep, An experiment on a CDM subcarrier multiplexed optical-fiber local area network. IEEE Photonics Technology Letters,1992, vol.4, no.7, pp.793-796.
    [58]G. Gupta, M. Kashima, H. Iwamura, H. Tamai, T. Ushikubo, and T. Kamijoh, A simple one-system solution COF-PON for metro/access networks. IEEE/OSA Journal of Lightwave Technology,2007, vol.25, no.1, pp.193-200.
    [59]J. Rosas-Fernandez, J. Ingham, R. Penty, and I. White,18 Gchips/s Electronically-Processed OCDMA Spread Spectrum for Access Networks. Optical Fiber Communications Conference (OFC), San Diago, CA,2008, p. PDP30.
    [60]J. Rosas-Fernandez, J. Ingham, R. Penty, and I. White,18 Gchips/s electronic CDMA for low-cost optical access networks.IEEE/OSA Journal of Lightwave Technology,2009, vol.27, no.3, pp.306-313.
    [61]S. Kaneko, H. Suzuki, N. Miki, H. Kimura, and K. Kumozaki, Beat-noise-free OCDM technique employing spectral M-ary ASK based on electrical-domain spatial Code Spreading. Optical Fiber Communications Conference (OFC), San Diego, CA,2009, p. OThI5.
    [62]F. Chung, J. Salehi, and V. K. Wei, Optical orthogonal codes:Design, analysis and applications. IEEE Transactions on Information Theory,2002, vol.35, no. 3, pp.595-604.
    [63]X. Li, Construction of optimal optical orthogonal signature patterns for high throughput optical code division multiple access image transmission. IET International Conference on Wireless, Mobile and Multimedia Networks, Hangzhou,2006, pp.1-4.
    [64]E. Titlebaum, Time-frequency hop signals.I-Coding based upon the theory of linear congruences. IEEE Transactions on Aerospace Electronic Systems, 1981, vol.17, pp.490-493.
    [65]R. Gold, Optimal binary sequences for spread spectrum multiplexing (Corresp.). IEEE Transactions on Information Theory,2002, vol.13, no.4, pp. 619-621.
    [66]K. Hill, Y. Fujii, D. Johnson, and B. Kawasaki, Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication. Applied Physics Letters,2009, vol.32, no.10, pp.647-649.
    [67]T. Erdogan. Fiber grating spectra, IEEE/OSA Journal of Lightwave Technology,2002, vol.15, no.8, pp.1277-1294.
    [68]P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, Phase encoding and decoding of short pulses at 10 Gb/s using super structured fiber Bragg gratings. IEEE Photonics Technology Letters,2002, vol.13, no.2, pp.154-156.
    [69]A. Gnauck and P. Winzer, Optical phase-shift-keyed transmission. Journal of Lightwave Technology,2005, vol.23, no.1, p.115.
    [70]X. Wang and K. Kitayama, Analysis of beat noise in coherent and incoherent time-spreading OCDMA. IEEE/OSA Journal of Lightwave Technology,2004, vol.22, no.10, p.2226.
    [71]C. F. Lam, To spread or not to spread:The myths of optical CDMA. IEEE LEOS Annual Meeting,2001, pp.810-811.
    [72]K. Kitayama, H. Sotobayashi, and N. Wada, Optical Code Division Multiplexing(OCDM) and its applications to photonic networks.IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,1999, vol.82, pp.2616-2626.
    [73]J. Sokoloff, P. Prucnal, I. Glesk, and M. Kane, A terahertz optical asymmetric demultiplexer (TOAD). IEEE Photonics Technology Letters,2002, vol.5, no. 7, pp.787-790.
    [74]G. Agrawal, Nonlinear fiber optics.4th ed.,2007, Acadamic Press/Elsevier: London, UK.
    [75]J. Lee, P. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement. IEEE Photonics Technology Letters,2002, vol.14, no.6, pp.876-878.
    [76]Z. Jiang, D. Seo, S. D. Yang, D. Leaird, R. Roussev, C. Langrock, M. Fejer, and A. Weiner, Four-user,2.5-Gb/s, spectrally coded OCDMA system demonstration using low-power nonlinear processing. Journal of Lightwave Technology,2005, vol.23, no.1, pp.143-158.
    [77]J. Lee, P. Teh, P. Petropoulos, M. Ibsen, and D. Richardson, High performance,64-chip,160 Gchip/s fiber grating based OCDMA receiver incorporating a nonlinear optical loop mirror. Optical Fiber Communications Conference (OFC),2001, p. ThH4.
    [78]X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system. Optics Express,2005, vol.13, no.14, pp.5499-5505.
    [79]V. J. Hernandez, Y. Du, W. Cong, R. P. Scott, K. Li, J. P. Heritage, Z. Ding, B. H. Kolner, and S. J. B. Yoo, Spectral phase-encoded time-spreading (SPECTS) optical code-division multiple access for terabit optical access networks. Journal of Lightwave Technology,2004, vol.22, no.11, pp.2671-2679.
    [80]J. Turkiewicz, G. Khoe, and H. De Waardt, All-optical 1310 to 1550 nm wavelength conversion by utilising nonlinear polarisation rotation in semiconductor optical amplifier. Electronics Letters,2005, vol.41, no.1, pp. 29-30.
    [81]L. Yuhua, L. Caiyun, W. Jian, W. Boyu, and G. Yizhi, Novel method to simultaneously compress pulses and suppress supermode noise in actively mode-locked fiber ring laser. IEEE Photonics Technology Letters,2002, vol. 10, no.9, pp.1250-1252.
    [82]B. Nikolaus, D. Grischkowsky, and A. Balant, Optical pulse reshaping based on the nonlinear birefringence of single-mode optical fibers. Optics letters, 1983, vol.8, no.3, pp.189-191.
    [83]H. Dorren, D. Lenstra, Y. Liu, M. T. Hill, and G. D. Khoe, Nonlinear polarization rotation in semiconductor optical amplifiers:Theory and application to all-optical flip-flop memories. IEEE Journal of Quantum Electronics,2003, vol.39, no.1, pp.141-148.
    [84]Y Deng, M. Fok, I. Glesk, and P. Prucnal, Miniaturization of 2-D Wavelength-Hopping Time-Spreading Incoherent Optical CDMA Network by Pulse Carving of CW Laser Source. IEEE Sarnoff Symposium,2008, pp.1-3.
    [85]C. S. Bres, Y. K. Huang, I. Glesk, and P. R. Prucnal, Scalable asynchronous incoherent optical CDMA [Invited]. Journal of Optical Networking,2007, vol. 6, no.6, pp.599-615.
    [86]B. Chen, C. Guo, J. Chen, L. Zhang, Q. Jiang, and S. He, Add/drop multiplexing and TDM signal transmission in an optical CDMA ring network. J. Opt. Netw,2007, vol.6, no.8, pp.969-974.
    [87]K. Kravtsov and P. R. Prucnal, Ultrashort optical pulse detection for high-speed asynchronous optical CDMA networks. IEEE/OSA Journal of Lightwave Technology,2009, vol.27, no.18, pp.4069-4075.
    [88]D. K. Mynbaev and L. L. Scheiner, Fiber-optic communications technology. 2001, Prentice Hall:New Jersey, USA.
    [89]G. Smith, D. Novak, and Z. Ahmed, Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems. Electronics Letters, 1997, vol.33, no.1, pp.74-75.
    [90]G. H. Smith, D. Novak, and Z. Ahmed, Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Transactions on Microwave Theory and Techniques,1997, vol.45, no.8, pp. 1410-1415.
    [91]L. Giorgi, F. Cavaliere, P. Ghiggino, F. Ponzini, A. Bianchi, and A. D'Errico, Characterization of a High Capacity Multi-User Optical Access Network Using 1 Gb/s 16 QAM Subcarrier Multiplexing. IEEE/OSA Journal of Lightwave Technology,2009, vol.27, no.9, pp.1203-1211.
    [92]H. Rohde, S. Smolorz, E. Gottwald, and K. Kloppe, Next generation optical access:1 Gbit/s for everyone. in FSAN Workshop on NGPON2, Biwako. Japan,2009, pp.1-3.
    [93]Making Sense of Effective Bits in Oscilloscope Measurements. Tektronix Technical Brief,2009, no.55W-23761-0,
    [94]F. Kschischang and B. P. Smith, Forward Error Correction (FEC) in Optical Communication. CLEO'2010,2010, p. CThDDl.
    [95]R. Prasad and S. Hara, An overview of multi-carrier CDMA. in 4th International Symposium on Spread Spectrum Techniques and Applications Proceedings,1997, vol. 1,pp.107-114.
    [96]S. J. Savory, Digital filters for coherent optical receivers. Optics Express, 2008, vol.16, no.2, pp.804-817.
    [97]H. Sotobayashi and K. Kitayama, Cancellation of the signal fading for 60 GHz subcarrier multiplexed optical DSB signal transmission in nondispersion shifted fiber using midway optical phase conjugation. IEEE/OSA Journal of Lightwave Technology,1999, vol.17, no.12, p.2488.
    [98]B. Hraimel, X. Zhang, M. Mohamed, and K. Wu, Precompensated Optical Double-Sideband Subcarrier Modulation Immune to Fiber Chromatic-Dispersion-Induced Radio Frequency Power Fading. IEEE/OSA Journal of Optical Communications and Networking,2009, vol.1, no.4, pp.331-342.
    [99]B. Hraimel, X. Zhang, M. Mohamed, and K. Wu, Electrical compensation of fiber chromatic dispersion induced RF power fading in optical double-sideband subcarrier modulation. OFC'2009,2009, p. JWA55.
    [100]A. Willner, K. M. Feng, S. Lee, J. Peng, and H. Sun, Tunable compensation of channel degrading effects using nonlinearly chirped passive fiber Bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics,1999, vol. 5, no.5, pp.1298-1311.
    [101]H. Sun, M. Cardakli, K. M. Feng, J. X. Cai, H. Long, M. Hayee, and A. Willner, Tunable RF-power-fading compensation of multiple-channel double-sideband SCM transmission using a nonlinearly chirped FBG. IEEE Photonics Technology Letters,2000, vol.12, no.5, pp.546-548.
    [102]V. J. Urick and F. Bucholtz, Compensation of arbitrary chromatic dispersion in analog links using a modulation-diversity receiver. IEEE Photonics Technology Letters,2005, vol.17, no.4, pp.893-895.
    [103]J. Lee, J. Weiner, and Y. K. Chen, A 20-GS/s 5-b SiGe ADC for 40-Gb/s coherent optical links. IEEE Transactions on Circuits and Systems I:Regular Papers,2010, vol.57, no.10, pp.2665-2674.
    [104]P. Schvan, J. Bach, C. Falt, P. Flemke, R. Gibbins, Y. Greshishchev, N. Ben-Hamida, D. Pollex, J. Sitch, and S. C. Wang, A 24GS/s 6b ADC in 90nm CMOS. in IEEE International Solid-State Circuits Conference, San Francisco, CA 2008, pp.544-545.
    [105]A. Carena, V. Curri, P. Poggiolini, G. Bosco, and F. Forghieri, Impact of ADC Sampling Speed and Resolution on Uncompensated Long-Haul 111-Gb/s WDM PM-OPSK Systems. Photonics Technology Letters, IEEE,2009, vol.21. no.20, pp.1514-1516.
    [106]R. H. Walden, Analog-to-digital converter survey and analysis. IEEE Journal on Selected Areas in Communications,1999, vol.17, no.4, pp.539-550.
    [107]C. T. Lin and W. R. Wu, Clipping ratio estimation for OFDM receivers. IEEE 61st Vehicular Technology Conference,2005, vol.2, pp.797-800.
    [108]D. Guel and J. Palicot, Analysis and comparison of clipping techniques for OFDM peak-to-average power ratio reduction.16th International Conference on Digital Signal Processing,2009, pp.1-6.
    [109]M. Y. Frankel and R. D. Esman, Optical single-sideband suppressed-carrier modulator for wide-band signal processing. IEEE/OSA Journal of Lightwave Technology,1998, vol.16, no.5, pp.859-863.
    [110]A. Loayssa, D. Benito, and M. Garde, Single-sideband suppressed-carrier modulation using a single-electrode electrooptic modulator. IEEE Photonics Technology Letters,2001, vol.13, no.8. pp.869-871.
    [111]R. Montgomery and R. DeSalvo, A novel technique for double sideband suppressed carrier modulation of optical fields. IEEE Photonics Technology Letters,1995, vol.7, no.4, pp.434-436.
    [112]J. H. Lee, L. K. Oxenlwe, M. Ibsen, K. S. Berg, A. T. Clausen, D. J. Richardson, and P. Jeppesen, All-optical TDM data demultiplexing at 80 Gb/s with significant timing jitter tolerance using a fiber Bragg grating based rectangular pulse switching technology, J. Lightw. Technol.,2003, vol.21, no. 11, pp.2518-2523.
    [113]R. Slavik, L. K. Oxenlowe, M. Galili, H. C. H. Mulvad, Y. Park, J. Azana, and P. Jeppesen, Demultiplexing of 320-Gb/s OTDM data using ultrashort flat-top pulses, IEEE Photon. Technol. Lett.,2007, vol.19, no.22, pp.1855-1857.
    [114]L. K. Oxenl(?)we, R. Slavik, M. Galili, H. C. H. Mulvad, Y. Park, J. Azana, and P. Jeppesen, Flat-top pulse enabling 640 Gb/s OTDM demultiplexing, in Proc. CLEO/Europe IQEC 2007 Conf. Digest,2007, paper C18_1.
    [115]Changjian Guo, Michael Nix, Scott S.-H. Yam, and Sailing He, Picosecond and sub-picosecond flat-top pulse shaping using abrupt taper interferometers, IEEE Journal of Lightwave technology,2010, vol.28, no.6, pp.876-881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700