用户名: 密码: 验证码:
星载干涉合成孔径雷达高效高精度处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载干涉合成孔径雷达能够全天时、全天候获取大面积高精度数字高程模型及其它增值产品,在军事侦察、国民经济建设和科学研究中有着极其广泛的应用。本文以星载InSAR数据处理方法研究为主题,以为地面数据处理系统的设计和实现提供算法支撑为目标,系统地研究了InSAR中的数据处理问题。在充分继承前人工作的基础上,针对图像配准、相位滤波与解缠、DEM重建与平差处理、SAR正射影像生成以及产品质量评估等关键环节开展研究,提出了高效高精度的处理方法,显著地改善了处理性能。论文的主要工作和创新点如下:
     第三章研究了干涉SAR图像配准问题。分析了各种配准测度函数的特性,确定了以实、复相关函数作为匹配度量,设计了配准灵敏度准则,实现了配准测度函数的自适应选取。进一步,提出了一种基于联合实、复相关函数的干涉SAR图像配准方法,由于综合了实、复相关函数各自的优点,使得新方法在配准准确度和稳定性上较传统方法有所提高。另外,由于相关运算可以通过快速傅立叶变换实现,新方法还具有较高的效率。
     第四章研究了干涉相位滤波和解缠绕问题。在分析干涉相位的统计特性和信号特征的基础上提出了非线性相位模型概念及非线性相位的自适应提取方法,利用反映地形轮廓的非线性相位模型实现了局部窗口内干涉相位的高精度逼近。然后,研究了非线性相位模型在干涉相位滤波中的应用,与文中其它经典滤波方法相比,非线性相位补偿滤波更加快速有效。最后,研究了如何利用非线性相位模型提高相位解缠性能,给出了改进枝切法和区域生长法的具体实现步骤,实测数据处理结果展示了改进方法能有效地提高相位解缠精度和速度。
     第五章研究了快速高精度DEM重建方法。从DEM重建原理出发,分析揭示了干涉相位与目标点三维坐标映射关系的两个基本特性。在此基础上提出了一种快速DEM重建方法,给出了快速算法的详细步骤及关键参数的取值方法。实测数据处理结果表明在重建精度损失较小的情况下,显著提高了重建速度,验证了方法的高效性和正确性。
     第六章研究了DEM平差方法。从DEM重建的三个方程联立求解的输入参数出发,归纳总结了影响DEM重建精度的误差源。分析了各项误差源的特性及其传递规律,确定了影响DEM重建精度的主要因素,在此基础上给出了DEM平差模型。将DEM平差分为单航带数据集平差和多航带数据集联合平差,分别研究了这两种情况下的高精度平差处理方法,由于引入了观测数据质量加权矩阵,使得平差模型参数估计的抗噪声能力增强。仿真和实测数据处理结果表明本章方法能够有效地提高DEM精度。
     第七章研究了干涉SAR正射影像生成方法。讨论了星载SAR定位几何原理及影响SAR定位精度的误差源,分析了各误差源与定位误差的传递关系。按照定位的解算顺序,分别提出了快速高精度前向、后向正射影像生成方法。针对目前国际上典型的四种SAR卫星——德国TerraSAR-X、意大利COSMO-SkyMed、日本ALOS-PalSAR和加拿大Radarsat-2进行了精度分析,结果表明新方法的精度完全能够满足实际需求。当用于地形校正的DEM数据与SAR影像非同源时,研究了消除二者之间相对系统误差对正射校正影响的方法。TerraSAR-X实测数据处理结果表明新方法在保持极高精度的情况下极大地提高了计算效率。
     第八章研究了干涉SAR系统产品质量评估。讨论了SAR图像配准、干涉相位滤波及解缠处理算法各项评估指标的特点及适用情况。阐述了DEM精度指标定义及其计算公式。研究了基于不同类型参考数据的InSAR DEM产品质量评估方法,包括点状参考数据、线状参考数据和面状参考数据,给出了方法的详细实现步骤。利用TanDEM-X的高精度DEM数据对SRTM和ASTER的DEM产品进行精度评估,实验结果与国际上公开发表文献的结论较为一致。
Spaceborne interferometric synthetic aperture radar can be all-time and all-weather to obtain high-precision digital elevation models and other value-added products over large areas, which has an extremely wide range of applications in military reconnaissance, national economic construction and scientific research. This paper, on the theme of studying data processing methods for spaceborne InSAR and on the purpose of providing algorithms for the design and implementation of ground data processing systems, made a systematic study on InSAR data processing issues. Based on the work of the formers, we studied image coregistration, phase filtering and unwrapping, DEM reconstruction and adjustment, SAR image ortho-rectification, product quality assessments and so on, and then proposed a number of high-efficiency and high-precision processing approaches of which significantly improved the processing performance. The major work and innovations in this paper are as follows:
     The issue of interferometric SAR image coregistration is studied in chapter 3. Here we analyzed the properties of various coregistration measure functions, made the real and complex correlation functions as the matching measures, designed the criterion for coregistration sensitivity, and achieved the adaptive selection of coregistration measure functions. Further, we proposed a coregistration method for interferometric SAR image by jointing the real and multiple correlation functions. Due to the combination of the respective advantages of the real and complex correlation functions, the new method has an improved accuracy and stability for coregistration compared to the traditional ones. In addition, as the correlation calculations can be achieved through the fast Fourier transformation, the new one still has a higher efficiency.
     The issues of interferometric phase filtering and unwrapping are sudied in chapter 4. By analyzing the statistical and signal properties of interferometric phase, we presented the concept of nonlinear phase model and the adaptive extraction method for nonlinear phase, and achieved high-precision approximation for the interferometric phase over a local window by using the nonlinear phase model of reflecting terrain contours. Then the application of nonlinear phase model in the interferometric phase filtering is studied. While the nonlinear phase compensation filtering is more fast and effective compared to other classic filtering methods in this paper. Finally, we do research on how to improve performance of phase unwrapping by using nonlinear phase model, and provide the concrete implementation steps of the improved branch cut method and region growing method. The real data processing results show that the improved methods can increase effectively the accuracy and speed of phase unwrapping.
     A fast and high-precision DEM reconstruction method is presented in chapter 5. Start from DEM reconstruction theory, we analyzed and revealed the two basic characteristics of the mapping relationship between the interferometric phase and the three-dimensional coordinate of target point. Based on this, we proposed a fast DEM reconstruction method, and provided the detailed steps of fast algorithm and the solutions of key parameters. The real data processing results show that the reconstruction speed is significantly improved only with a smaller accuracy loss, thus verifies the high efficiency and correctness of the method.
     DEM adjustment method is studied in chapter 6. From the input parameters obtained by simultaneously solving the three equations of DEM reconstruction, we summarized the error sources of affecting DEM reconstruction accuracy. By analyzing the characteristics and transferring regularity of various error sources, we concluded the main factors of affecting DEM reconstruction accuracy, and then provided DEM adjustment model. We divided the DEM adjustment into single-orbit data set adjustment and multi-orbit data set combined adjustment, and respectively studied the high-precision adjustment approaches in both cases. Due to the quality weighting matrix is introduced into the observational data, the parameter estimation of the adjustment model has a strong antinoise ability. The processing results from the simulation and real data show that the presented method can effectively improve the DEM accuracy.
     The ortho-rectification method of interferometric SAR image is studied in chapter 7. We discussed the geometric theory of spaceborne SAR geolocation and the error sources of affecting SAR geolocation accuracy, and analyzed the transfer relationship between the error sources and geolocation errors. According to the solution order of geolocation, we proposed the fast and high-precision forward ortho-rectification method and backward ortho-rectification method respectively. We analyzed the accuracy of the current typical four SAR satellites: Germany TerraSAR-X, Italy COSMO-SkyMed, Japan ALOS-PalSAR and Canada Radarsat-2, and the results show that the new method can fully satisfy application requirements for the precision. When the DEM data and SAR image for terrain corrected do not have a same source, we studied the method of eliminating the effect of ortho-rectification caused by relative system error between the two. The TerraSAR-X real data processing results show that the new method not only greatly improved computational efficiency but also maintained extremely high accuracy. The quality evaluation of interferometric SAR system products is studied in chapter 8. We discussed the characteristics of the evaluation indicators and the applicable of the algorithms for SAR image coregistration, interferometric phase filtering and unwrapping. We described the definition and formula for DEM accuracy specification, studied the quality evaluation methods of InSAR DEM products with different reference data, including point reference data, line reference data and surface reference data, and provided the detailed implementation steps of these methods. The high-precision DEM data from TanDEM-X is applied to DEM products of SRTM and ASTER for accuracy evaluation, and the experimental results obtained are in good agreement with the conclusions drawn by the published sources.
引文
[1] C. A.Wiley. Pulsed Doppler Radar Methods and Apparatus [P]. U.S. Patent No. 3, 196436, filed August 1954, 1965.
    [2] C. A. Wiley. Synthetic Aperture Radars: A Paradigm for Technology Evolution [J]. IEEE Transactions on Aerospace and Electronic Systems, 1985, 21(3): 440-443.
    [3] A. W. Love. In Memory of Carl A. Wiley [J]. IEEE Antennas and Propagation Society Newsletter, 1985, 17-18.
    [4] W. E. Brown. Applications of SEASAT SAR Digitally Corrected Imagery for Sea Ice Dynamics [C]. Amer. Geophys Union Spring 1981 Meeting, 1981, 25-29.
    [5] C. Elachi. Spaceborne Imaging Radar: Geologic and Oceanographic Applications [J]. Science, 1980, 209: 1073-1082.
    [6] D. L. Evans, W. Alpers, A. Cazenave, C. Elachi, T. Farr, D. Glackin, B. Holt, L. Jones, W. Timothy Liu, W. McCandless, Y. Menard, R. Moore, Eni Njoku. Seasat-A 25-year legacy of success [J]. Remote sensing of Environment, 2005, 94(3): 384-404.
    [7] C. Elachi. Spaceborne Radar Remote Sensing: Applications and Techniques [M]. New York: IEEE Press, 1988.
    [8] J. C. Curlander, R. N. McDonough. Synthetic Aperture Radar: Systems and Signal Processing [M]. New York: Wiley, 1991.
    [9] F. M. Henderson, A. J. Lewis. Manual of Remote Sensing: Principles and Applications of Imaging Radar [M]. New York: Wiley, 1998.
    [10]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社, 2005.
    [11]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社, 2003.
    [12]王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社, 2002.
    [13]廖明生,林珲.雷达干涉测量——原理与信号处理研究[M].北京:测绘出版社, 2003.
    [14] R. Gens, J. L. van Genderen. SAR interferometry-Issues techniques, applications [J]. Int. J. Remote Sens., 1996, 17: 1803-1835.
    [15] Paul A. Rosen, S. Hensley, et al. Synthetic Aperture Radar Interferometry [C]. Proceedings of the IEEE, 2000, 88(3):333-382.
    [16] R. Bamler, P. Hartl. Synthetic Aperture Radar Interferometry [J]. Inverse Problems, 1998, 14: 1-54.
    [17] R. Hanssen. Radar Interferometry: Data Interpretation and Error Analysis [M]. The Netherlands: Kluwer Academic, 2001.
    [18] L. C. Graham. Synthetic Interferometer Radar for Topographic Mapping [C]. Proceedings of the IEEE, 1974, 62(6): 763-768.
    [19] H. A. Zebker, R. M. Goldstein. Topographic mapping from interferometric SAR observations [J]. J. Geophys. Res., 1986, 91: 4993-5001.
    [20] R. M. Goldstein, H. A. Zebker. Interferometric radar measurement of ocean surface currents [J]. Nature, 1987, 328: 707-709.
    [21] R. M. Goldstein, T. P. Barnett, H. A. Zebker. Remote sensing of ocean currents [J]. Science, 1989, 246: 1282-1285.
    [22] A. L. Gray, P. J. Farris-Manning. Repeat-pass interferometry with airborne synthetic aperture radar [J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31: 180-191.
    [23] R. E. Carande. Estimating ocean coherence time using dual-baseline interferometric synthetic aperture radar [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32: 846-854.
    [24] R. M. Goldstein, H. A. Zebker, C. L. Werner. Satellite radar interferometry: Two-dimensional phase unwrapping [J]. Radio Science, 1988,23(4):713-720.
    [25] A. K. Gabriel, R. M. Goldstein, H. A. Zebker. Mapping small elevation changes over large areas: Differential radar Interferometry [J]. J. Geophys. Res., 1989, 94(9): 9183-9191.
    [26] F. Li, R. Goldstein. Studies of multibaseline spaceborne interferometric synthetic aperture radars [J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1): 88-97.
    [27] H. A. Zebker, J. Villasenor. Decorrelation in interferometric radar echoes [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30: 950-959.
    [28] C. Prati, F. Rocca, A. Monti Guarnieri. SAR interferometry experiments with ERS-1 [C]. Proc. 1st ERS-1 Symp., Cannes, France, 1992, 211-218.
    [29] D. Massonnet, M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, T. Rabaute. The displacement field of the landers earthquake mapped by radar interferometry [J]. Nature, 1993, 364: 138-142.
    [30] R. M. Goldstein, H. Engelhardt, B. Kamb, R. M. Frolich. Satellite radar interferometry for monitoring ice sheet motion: Application to an antarctic ice stream [J]. Science, 1993, 262: 763-768.
    [31] H. A. Zebker, P. A. Rosen, R. M. Goldstein, A. Gabriel, C. L. Werner. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake [J]. J. Geophys. Res., 1994, 99: 19617-19634.
    [32] J. O. Hagberg, L. M. H. Ulander, J. Askne. Repeat-pass SAR interferometry over forested terrain [J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33: 331-340.
    [33] U. Wegmuller, C. L. Werner. SAR interferometric signatures of forest [J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33: 1153-1163.
    [34] D. Massonnet, P. Briole, A. Arnaud. Deflation of Mount Etna monitored by spaceborne radar interferometry [J]. Nature, 1995, 375: 567-570.
    [35] D. Massonet, T. Holzer, H. Vadon. Land subsidence caused by the East Mesa geothermal field. California, observed using SAR interferometry [J]. Geophys. Res. Lett., 1997, 24: 901-904.
    [36] U. Wegmuller, C. L. Werner. Retrieval of vegetation parameters with SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 18-24.
    [37] P. Dammert, M. Lepparanta, J. Askne. SAR interferometry over Baltic sea ice [J]. Int. J. Remote Sens., 1998, 19: 3019-3037.
    [38] R. N. Treuhaft, S. N. Madsen, M. Moghaddam, et al. Vegetation characteristics and underlying topography from interferometric data [J]. Radio Science, 1996, 1449-1495.
    [39] S. R. Cloude, K. P. Papathanassiou. Polarimetric SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36: 1551-1565.
    [40] A. Ferretti, C. Prati, F. Rocca. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38: 2202-2212.
    [41] J. F. Vesecky, R. H. Stewart. The observation of ocean surface phenomena using imagery from the Seasat synthetic aperture radar: An assessment [J]. Journal of Geophysical Research, 1982, 87: 3397-3430.
    [42] R. L. Jordan. The Seasat-A synthetic aperture radar systems [J]. IEEE Journal of Oceanic Eng., 1980, 154-164.
    [43] J. R. Bennett, I. G. Cumming, R. A. Deane. The Digital Processing of SeaSat Synthetic Aperture Radar Data [C]. Proceedings of the IEEE International Radar Conference, 1980, 168-174.
    [44] E. R. Stofan, D. L. Evans, C. Schmullius, et al. Overview of Results of Spaceborne Imaging Radar-C, X-Band Synthetic Aperture Radar (SIR-C/X-SAR) [J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 817-828.
    [45]王超.利用航天飞机成像雷达干涉数据提取数字高程模型[J].遥感学报, 1997, 1(1): 46-49.
    [46]郭华东.航天多波段全极化干涉雷达的地物探测[J].遥感学报, 1997, 1(1): 32-39.
    [47] G. Duchossois. The ERS-1 Mission Objectives [J]. Magazine ESA Bulletin, 1991, 65: 16-26.
    [48] H. Ege. Industrial Cooperation on ERS-1 [J]. Magazine ESA Bulletin, 1991, 65: 88-94.
    [49] M. Fea. The ERS Ground Segment [J]. Magazine ESA Bulletin, 1991, 65: 49-59.
    [50] M. Fea, S. Bruzzi. How ERS Data Will Flow [J]. Magazine ESA Bulletin, 1991, 65: 60-62.
    [51] D. Andrews, S. J. Dodsworth, M. H. McKay. The Control and Monitoring of ERS-1 [J]. Magazine ESA Bulletin, 1991, 65: 73-79.
    [52] R. Francis, G. Graf, P. G. Edwards, et al. The ERS-1 Spacecraft and Its Payload [J]. Magazine ESA Bulletin, 1991, 65: 27-48.
    [53] M. Werner. Shuttle Radar Topography Mission (SRTM): Mission overview [J]. J. Telecommun, 2001, 55(3): 75-79.
    [54] T. G. Farr, S. Hensley, E. Rodriguez, et al. The Shuttle Radar Topography Mission [R]. CEOS SAR WORKSHOP, 2000, 361-363.
    [55] B. Rabus, M. Eineder, A. Roth, R. Bamler. The Shuttle Radar Topography Mission—A new class of digital elevation models acquired by spaceborne radar [J]. ISPRS J. Photogramm. Remote Sens., 2003, 57(4): 241-262.
    [56] A. Moccia, S. Vetrella. A tethered interferometric synthetic aperture radar (SAR) for a topographic mission [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30: 103-109.
    [57] D. Massonnet. Capabilities and limitations of the interferometric cartwheel [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39: 506-520.
    [58] F. Martinerie, S. Ramongassie, B. Deligny. Interferometric Cartwheel Payload: Development Status and Current Issues [C]. IGARSS’01, 2001, 1: 390-392.
    [59] N. Evans, P. Lee, R. Girard. The RADARSAT-2&3 Topographic Mission [C]. EUSAR’02, Cologne, Germany, 2002, 37-40.
    [60] M. Martin, P. Klupar, S. Kilberg, J. Winter. Techsat21 and Revolutionizing Space Missions using Microsatellite [C]. 15th American Institute of Aeronautics and Astronautics Conference on Small Satellites, Utah, 2001, 1-10.
    [61] Rich Burns, Craig A. McLaughlin, Jesse Leitner, Maurice Matrin. TechSat21: Formation Design, Control and Simulation [C]. IEEE Aerospace Conference, Big Sky, MT, 2000, 19-25.
    [62] A. Moccia, G. Rufino, M. D'Errico, et al. BISSAT: a bistatic SAR for Earth observation [C]. IGARSS’02, 2002, 5: 2628-2630.
    [63] A. Moreira, G. Krieger, I. Hajnsek, M. Werner, D. Hounam, S. Riegger, E. Settelmeyer. TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry [C]. IGARSS’04, Anchorage, AK, 2004, 1000-1003.
    [64] I. Hajnsek, A. Moreira. TanDEM-X: Mission and science exploration [C]. EUSAR’06, Dresden, Germany, May 2006.
    [65] G. Krieger, A. Moreira, H. Fiedler, et al. TanDEM-X: A Satellite Formation forHigh-Resolution SAR Interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317-3341.
    [66] G. Krieger, I. Hajnsek, K. Panagiotis Papathanassiou, et al. Interferometric Synthetic Aperture Radar (SAR) Missions Employing Formation Flying [C]. Proceedings of the IEEE, 2010, 98(5): 816-843.
    [67] B. Schattler. The Joint TerraSAR-X/TanDEM-X Ground Segment [C]. TanDEM-X Science Team Meeting, 2011.
    [68] P. López-Dekker, P. Prats, F. De Zan. TanDEM-X First DEM Acquisition: A Crossing Orbit Experiment [J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(5): 943-947.
    [69] http://www.infoterra-global.com/tdx_first_bistatic_dem_pr.
    [70] National Imagery and Mapping Agency (NIMA). High Resolution Terrain Information (HRTI): Performance Specification [R]. 2000. MIL-PRF-89048.
    [71] M. Stangl, R. Werninghaus, B. Schweizer, C. Fischer, M. Brandfass, J. Mittermayer, H. Breit. TerraSAR-X technologies and first results [C]. Proc. Inst. Electr. Eng. Radar, Sonar Navig, 2006, 153(2): 86-95.
    [72] E. Rodriguez, J. M. Martin. Theory and design of interferometric synthetic aperture radars [C]. IEE Proceedings of Radar and Signal Processing, 1992, 139(2): 147-159.
    [73] F. Gatelli, A. Monti-Guarnieri. The wavenumber shift in SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 855-865.
    [74] D. Just, R. Bamler. Phase statistics of interferograms with applications to synthetic aperture radar [J]. Applied Optics. 1994, 33(2): 4361-4368.
    [75]王磊.干涉合成孔径雷达信号处理的研究[D].中国科学院电子学研究所博士学位论文, 2001.
    [76]张秋玲.基于分布式卫星的InSAR技术研究[D].中国科学院电子学研究所博士学位论文, 2005.
    [77]杨震.合成孔径雷达干涉与极化干涉技术研究[D].中国科学院电子学研究所博士学位论文, 2003.
    [78]陶鹍.干涉合成孔径雷达数据处理及仿真研究[D].中国科学院电子学研究所博士学位论文, 2003.
    [79]赵志伟.星载扫描干涉合成孔径雷达系统及信号处理技术[D].中国科学院电子学研究所博士学位论文, 2007.
    [80]申艳.星载干涉合成孔径雷达信号处理研究[D].中国科学院电子学研究所博士学位论文, 2007.
    [81]向茂生.干涉雷达相位处理中的若干问题研究[D].中国科学院遥感应用研究所博士学位论文, 2002.
    [82]张红. D-InSAR与POLinSAR的方法及应用研究[D].中国科学院遥感应用研究所博士学位论文, 2002.
    [83]李新武.极化干涉SAR信息提取方法及其应用研究[D].中国科学院遥感应用研究所博士学位论文, 2002.
    [84]穆冬.干涉合成孔径雷达成像技术研究[D].南京航空航天大学博士学位论文, 2001.
    [85]郭春生. InSAR成像算法研究[D].南京航空航天大学博士学位论文, 2002.
    [86]朱岱寅,朱兆达,谢秋成.一种基于局部频率估计的地形自适应干涉图滤波器[J].电子学报, 2002, 30(12): 1853-1856.
    [87]朱岱寅,朱兆达.利用线性相位模型提高干涉SAR图像相干性及改进相干性估计[J].电子学报, 2005, 33(9): 1594-1598.
    [88]查显杰. InSAR形变测量及其在地震学中应用的研究[D].中国科学技术大学博士学位论文, 2007.
    [89]李品. InSAR系统的定标方法研究[D].中国科学技术大学博士学位论文, 2008.
    [90]刘智.航天合成孔径雷达数据干涉处理及DEM生成的研究[D].解放军信息工程大学博士学位论文, 1999.
    [91]靳国旺. InSAR获取高精度DEM关键处理技术研究[D].解放军信息工程大学博士学位论文, 2007.
    [92]楼良盛.基于卫星编队InSAR数据处理技术[D].解放军信息工程大学博士学位论文, 2007.
    [93]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安电子科技大学博士学位论文, 2006.
    [94]刘楠.多发多收干涉合成孔径雷达高程测量关键技术研究[D].西安电子科技大学博士学位论文, 2009.
    [95]索志勇.垂直航迹/沿航迹干涉合成孔径雷达信号处理技术研究[D].西安电子科技大学博士学位论文, 2008.
    [96]毛志杰.干涉合成孔径雷达信号处理方法研究[D].西安电子科技大学博士学位论文, 2009.
    [97]李海.干涉合成孔径雷达信号处理若干关键问题研究[D].西安电子科技大学博士学位论文, 2008.
    [98]刘宝泉.干涉合成孔径雷达测量关键技术研究[D].西安电子科技大学博士学位论文, 2008.
    [99]武楠.干涉合成孔径雷达信号处理技术研究[D].西安电子科技大学博士学位论文, 2007.
    [100]毛建旭.合成孔径雷达干涉(INSAR)三维成像处理技术研究[D].湖南大学博士学位论文, 2002.
    [101]彭曙蓉.高分辨率合成孔径雷达干涉测量技术及其应用研究[D].湖南大学博士学位论文, 2009.
    [102]汪鲁才.星载合成孔径雷达干涉成像的信息处理方法研究[D].湖南大学博士学位论文, 2005.
    [103]何儒云.星载合成孔径雷达干涉测量处理技术研究.湖南大学博士学位论文, 2007.
    [104]舒宁.雷达影像干涉测量原理[M].武汉:武汉大学出版社, 2003.
    [105]杨杰.星载SAR影像定位和从星载InSAR影像自动提取高程信息的研究[D].武汉大学博士学位论文, 2004.
    [106]蒋廷臣.星载宽幅合成孔径雷达干涉测量形变监测理论与应用研究[D].武汉大学博士学位论文, 2010.
    [107]周春霞.星载SAR干涉测量技术及其在南极冰貌地形研究中的应用[D].武汉大学博士学位论文, 2004.
    [108]魏志强.星载干涉合成孔径雷达若干关键技术的算法研究[D].复旦大学博士学位论文, 2008.
    [109]熊涛.极化干涉合成孔径雷达应用的关键技术研究[D].清华大学博士学位论文, 2009.
    [110]胡俊,李志伟,朱建军,任小冲,丁晓利.融合升降轨SAR干涉相位和幅度信息揭示地表三维形变场的研究[J].中国科学, 2010, 307-318.
    [111] Huaping Xu, Changhui Kang. Equivalence Analysis of Accuracy of Geolocation Models for Spaceborne InSAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48: 480-490.
    [112]黄海风.分布式星载SAR干涉测高系统技术研究[D].国防科技大学博士学位论文, 2005.
    [113]杨夏. ESPI与InSAR干涉条纹图的自适应等值线窗口处理方法[D].国防科学技术大学博士学位论文, 2007.
    [114]谷德峰.分布式InSAR卫星系统空间状态的测量与估计[D].国防科学技术大学博士学位论文, 2009.
    [115]伏思华.电子散斑与合成孔径雷达干涉测量中的等值线相关干涉法[D].国防科学技术大学博士学位论文, 2006.
    [116]路兴强.天基分布式InSAR系统建模与仿真研究[D].国防科学技术大学博士学位论文, 2006.
    [117]孙造宇.星载分布式InSAR信号仿真与处理研究[D].国防科学技术大学博士学位论文, 2007.
    [118]张永胜.星载分布式InSAR概念系统结构与误差研究[D].国防科学技术大学博士学位论文, 2007.
    [119]蔡斌.分布式星载InSAR与SAR-GMTI信号处理研究[D].国防科学技术大学博士学位论文, 2009.
    [120]张永俊.星载分布式InSAR系统误差理论与优化设计方法研究[D].国防科学技术大学博士学位论文, 2011.
    [121]李延伟.单/双基地极化干涉SAR信号建模、检测及参数反演方法研究[D].国防科学技术大学博士学位论文, 2010.
    [122]刘国祥,丁晓利,李志林,陈永奇,章国宝.星载SAR复数图像的配准[J].测绘学报, 2001, 30(1): 60-65.
    [123] A. K. Gabriel, R. M. Goldstein. Crossed Orbit Interferometry: Theroy and Experimental Results From SIR-B [J]. Int. J. Remote Sensing, 1988, 9(5): 857-872.
    [124]赵志伟,杨汝良,祁海明.一种改进的星载干涉SAR复图像最大频谱配准算法[J].测绘学报, 2008, 37(1): 64-69.
    [125] Q. Lin, J. F. Vesecky, H. A. Zebker. New Approaches in interfeometric SAR DATA Processin [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(3): 560-567.
    [126] M. Migliaccio, F. Bruno. A New Interpolation Kernel for SAR Interferometric Registration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5): 1105-1110.
    [127] R. Scheiber, A. Moreira. Coregistration of Interferometric SAR Images Using Spectral Diversity [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2179-2191.
    [128] C. Prati, F. Rocca. Seismic Migration for SAR focusing: interferometrical applications [J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4): 627-640.
    [129] H. S. Stone, M. T. Orchard, E. C. Chang, et al. A fast direct Fourier-based algorithm for subpixel registration of images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(10): 2235-2243.
    [130]曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用[J].测绘学报, 2004, 33(2): 127-131.
    [131] K. K. Leong, C. C. Ee, C. A. H. Wang, et al. DTM Generation from 35-day repeat pass ERS-1 interferometry [C]. IGARSS’94, 1994, 4: 2288-2290.
    [132] G. Fornaro, G. Franceschetti. Image registration in interferometric SARprocessing [C]. IEE Proceedings of Radar, Sonar and Navigation, 1995, 142(6): 313-320.
    [133] E. Sansosti, P. Berardino, M. Manunta, et al. Geometrical SAR Image Registration [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2861-2870.
    [134] D. O. Nitti, R. F. Hanssen, A. Refice, et al. Impact of DEM-Assisted Coregistration on High-Resolution SAR Interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1127-1143.
    [135]石晓进,张云华.基于Fourier-Mellin变换和相干系数法的重复轨道干涉SAR图像配准新方法[J].电子与信息学报, 2009, 31(4): 803-807.
    [136] Zou Wei-bao, Li Yan, Li Zhi-lin, et al. Improvement of the Accuracy of InSAR Image Co-Registration Based On Tie Points–A Review [J]. Sensors, 2009, 9: 1259-1281.
    [137]汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法[J].测绘学报, 2003, 32(4): 320-324.
    [138] N. Yague-Martinez, M. Eineder, R. Brcic, et al. TanDEM-X Mission: SAR Image Coregistration Aspects [C]. EUSAR’10, 2010, 576-579.
    [139] P. H. Eichel, D. C. Ghiglia, et al. Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection [R]. Sandia National Labs Tech. Report, 1993.
    [140] R. Lanari. Generation of digital elevation models by using SIR-C&X-SAR multifrequency two-pass Interferometry: the Etna case study [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1097-1114.
    [141] R. M. Goldstein, L. Charles, Werner. Radar interferogram filtering for geophysical applications [J]. Geophys. Res. Lett., 1998, 25(21): 4035-4038.
    [142] I. Baran, M. P. Stewart, Kampes, et al. A modification to the Goldstein radar interferogram filter [J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41: 2114-2118.
    [143] J. S. Lee, K. P. Papathanassiou. A new technique for noise filtering of SAR interferometric phase images [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465.
    [144] Qifeng Yu, Xia Yang, Sihua Fu, et al. An Adaptive Contoured Window Filter for Interferometric Synthetic Aperture Radar [J]. IEEE Geoscience and Remote Sensing Letters, 2007, 23-26.
    [145]于起峰,伏思华.基于条纹方向和条纹等值线的ESPI与InSAR干涉条纹图处理方法[M].北京:科学出版社, 2007.
    [146] U. Spagnolini. 2-D phase unwrapping and instantaneous frequency estimation [J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(3): 579-589.
    [147] E. Trouvé, M. Caramma, H. Maitre. Fringe detection in noisy complex interferograms [J]. Appl. Opt., 1996, 35(20): 3799-3806.
    [148] E. Trouvé, J. M. Nicolas, H. Maitre. Improving phase unwrapping techniques by the use of local frequency estimates [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(6): 1963-1972.
    [149] Bin Cai, Diannong Liang, Zhen Dong. A New Adaptive multiresolution Noise Filtering Approach for SAR Interferometric Phase Images [J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2): 266-270.
    [150]廖明生,林珲,张祖勋等. INSAR干涉条纹图的复数空间自适应滤波[J].遥感学报, 2003, 7(2): 98-105.
    [151]靳国旺,徐青,张燕等. InSAR干涉图的零中频矢量滤波算法[J].测绘学报, 2006, 35(1): 24-29.
    [152] Zhenfang Li, Zheng Bao, Hai Li, et al. Image Auto-Coregistration and InSAR Interferogram Estimation Using Joint Subspace Projection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44: 288-297.
    [153] Li Hai, Liao Guisheng. An Estimation Method for InSAR Interferometric Phase Based on MMSE Criterion [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1457-1469.
    [154] C. Lòpez, X. Fàbregas, O. J. Mallorquì, et al. Noise filtering of SAR interferometric phase based on wavelet transform [C]. IGARSS’01, 2001, 2928-2930.
    [155]何儒云,王耀南.一种基于小波变换的InSAR干涉图滤波方法[J].测绘学报, 2006, 35(2): 128-131.
    [156] G. Ferraiuolo, G. Poggi. A Bayesian filtering technique for SAR interferometric phase fields [J]. IEEE Transactions on Image Processing, 2004, 13(10): 1368-1378.
    [157] J. M. Huntley. Noise-immune phase unwrapping algorithm [J]. Applied Optics, 1989, 28(15): 3268-3270.
    [158] J. R. Buckland, J. M. Huntley, S. R. E. Turner. Unwrapping noisy phase maps by use of a minimum cost matching algorithm [J]. Applied Optics, 1995, 34(23): 5100-5108.
    [159] T. J. Flynn. Consistent 2-D phase unwrapping guided by a quality map [C]. IGARSS’96, 1996, 2057-2059.
    [160] W. Xu, I. Cumming. A region-growing algorithm for InSAR phase unwrapping [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 124-134.
    [161] H. Takajo, T. Takahashi. Noniterative methods for obtaining the exact solution for the normal equation in Least-Squares phase estimation for the phase difference[J]. J. Opt. Soc. Am, 1988, 5(11): 1818-1827.
    [162] D. G. Ghiglia. Robust two-dimensional weighted weighted and unweighted phase unwrapping that uses fast transforms and iterative methods [J]. J. Opt. Soc. Am, 1994, 11(11): 107-117.
    [163] M. D. Pritt. Phase unwrapping by means of multigrid techniques for interferometric SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 728-738.
    [164] M. Costantini. A phase unwrapping method based on network programming [C]. Proceedings of Fringe’96 Workshop, Zurich, Switzerland, 1996, 261-272.
    [165] M. Costantini. A novel phase unwrapping method based on Network programming [J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 813-831.
    [166] Yu Yong, Wang Chao, Zhang Hong, Liu Zhi, Gao Xin. A Phase Unwrapping Method Based on Minimum Cost Flows Method in Irregular Network. IGARSS’02, 2002, 1726-1728.
    [167] G. F. Carballo, P. W. Fieguth. Probabilistic Cost Functions for Network Flow Phase Unwrapping [J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2192-2201.
    [168] C. W. Chen, H. A. Zebker. Phase Unwrapping for Large SAR Interferograms Statistical Segmentation and Generalized Network Models [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(8): 1709-1719.
    [169] M. Eineder, M. Hubig, B. Milcke. Unwrapping large interferograms using the minimum cost flowalgorithm [C]. IGARSS’98, 1998, 83-87.
    [170] S. Suchandt, M. Eineder. Experiences with SRTM/X-SAR Phase Unwrapping using the Minimum Cost Flow Method [C]. 2003, 4380-4382.
    [171] M. Lachaise, R. Bamler. Minimum Cost Flow phase unwrapping supported by multibaseline unwrapped gradient [C]. EUSAR’10, 2010, 16-19.
    [172] W. Goblirsch. The exact solution of imaging equations for crosstrack interferometers [C]. IGARSS’97, 1997, 439-441.
    [173] Zheng Xiang, Kaizhi Wang, Xingzhao Liu. A new DEM reconstruction method based on an accurate flattening algorithm in inter-ferometric SAR [C]. ICASSP’08, 2008, 1093-1096.
    [174] O. Mora, O. Agusti, M. Bara, et al. Direct Geocoding for Generation of Precise Wide-Area Elevation Models with ERS SAR Data [R]. ESA Special Publication, 2000, 449-455.
    [175] E. Sansosti. A Simple and Exact Solution for the Interferometric and Stereo SAR Geolocation Problem [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42: 1625-1634.
    [176] P. Chen, I. J. Dowman. A weighted least squares solution for space intersection ofspaceborne stereo SAR data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39: 233-240.
    [177] G. Nico. Exact closed-form geolocation for SAR interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40: 220-222.
    [178]谷德峰,易东云,朱炬波,孙蕾.分布式InSAR三维定位的闭合形式解及其精度分析[J].电子学报, 2007, 35(6): 1026-1031.
    [179]王彦平,彭海良.干涉合成孔径雷达目标的三维重建[J].电子与信息学报, 2003, 25(9): 1187-1193.
    [180] M. Schwabisch. A fast and efficient technique for SAR interferogram geocoding [C]. IGARSS’98, 1998, 1100-1102.
    [181]孙造宇,梁甸农,张永胜.星载InSAR系统DEM重建及其误差分析[J].电子与信息学报, 2008, 30(6): 1336-1340.
    [182] Mingsheng Liao, Teng Wang, Lijun Lu, et al. Reconstruction of DEMs from ERS-1/2 Tandem Data in Mountainous Area Facilitated by SRTM Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45: 2325-2335.
    [183] M. Eineder, N. Adam. A Maximum-Likelihood Estimator to Simultaneously Unwrap, Geocode, and Fuse SAR Interferograms from Different Viewing Geometries Into One Digital Elevation Model [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43: 24-36.
    [184] Wu Hongan, Zhang Hong, Wang Chao, et al. A high resolution InSAR topographic height reconstruction algorithm in rugged terrain based on SRTM DEM [J]. Journal of Remote Sensing, 2009, 13(1): 145-151.
    [185] A. Ferreti, C. Prati, F. Rocca. Multibaseline InSAR DEM reconstruction: The wavelet approach [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37: 705-715.
    [186] A. Parizzi, D. Perissin, C. Prati. Accurate DEM Reconstruction from Permanent Scatterers and Multi-baseline Interferometry [C]. IGARSS’06, 2006, 157-160.
    [187] G. Ferraiuolo, F. Meglio, V. Pascazio, et al. DEM Reconstruction Accuracy in MultiChannel SAR Interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47: 191-201.
    [188] M. Eineder, G. Krieger. Interferometric Digital Elevation Model Reconstruction - Experiences from SRTM and Multi Channel Approaches for Future Missions [C]. IGARSS’05, 2005, 2664-2667.
    [189] R. Lanari, G. Fornaro, D. Riccio, et al. Generation of digital elevation models by using SIR-C/X-SAR multifrequency two-pass inter-ferometry: The Etna case study [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34: 1097-1114.
    [190] D. Geudtner, M. Zink. Interferometric calibration of the X-SAR system on theShuttle Radar Topography Mission (SRTM/X-SAR) [C]. Proc. 21st Can. Remote Sens. Symp., 1999, 558-565.
    [191] S. Slob, F. Kervyn, J. Lavreau, et al. InSAR DEM Calibration for Topographic Mapping in Eastern Uganda [J]. International Archives of Photogrammetry and Remote Sensing, 2000, 1011-1018.
    [192] H. Ohkura. Calibration of an Airborne X-Band Interferometric SAR System with Fine DEM [J]. adv. Space Res., 2001, 28(1): 109-116.
    [193] M. Crosetto. Calibration and validation of SAR interferometry for DEM generation [J]. ISPRS Journal of Photogrammetry & Remote Sensing 2002, 57: 213-227.
    [194] M. A. TimbóElmiro, L.V. Dutra, J.C. Mura. Calibration of Interferometric Synthetic Aperture Radar Digital Elevation Models (DEM) Using Error Surface Interpolation Methods [J]. 2006.
    [195] Y. Tsutomu, D. Koichiro, S. Kazuo. Combined use of InSAR and ICESat/GLAS data for high accuracy DEM generation on Antarctica [C]. IGARSS’07, 2007, 3: 1229-1231.
    [196] J. Dll. Cross-calibration of interferometric SAR data [C]. IEE Proc. Radar Sonar Navig., 2003, 150(3): 177-183.
    [197] M. Eineder, H. Breit, N. Adam, et al. SRTM X-SAR Calibration Results [C]. IGARSS’01, 2001, 2: 748-750.
    [198] B. Wessel, A. Gruber, J. H. Gonzalez. TanDEM-X: DEM Calibration Concept [C]. IGARSS’08, 2008, 111-114.
    [199] B. Wessel, A. Gruber, M. Huber, A. Roth. TanDEM-X: Block Adjustment of Interferometric Height Models [C]. ISPRS High Resolution Earth Imaging for Geospatial Information Hannover, 2009, 2-7.
    [200] B. Wessel, U. Marschalk, A. Gruber, et al. Design of the DEM Mosaicking and Calibration Processor for TanDEM-X [C]. EUSAR’08, 2008, 111-114.
    [201] J. H. Gonzalez, M. Bachmann, R. Scheiber, et al. TanDEM-X DEM Calibration and Processing Experriments with E-SAR [C]. IGARSS’08, 2008, 115-118.
    [202] J. H. Gonzalez, M. Bachmann, G. Krieger, H. Fiedler. Development of the TanDEM-X Calibration Concept: Analysis of Systematic Errors [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 716-726.
    [203] J. H. Gonzalez, M. Bachmann, R. Scheiber, et al. Definition of ICESat Selection Criteria for Their Use as Height References for TanDEM-X [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(6): 2750-2757.
    [204]陈尔学.星载合成孔径雷达影像正射校正方法研究[D].中国林业科学研究院博士学位论文, 2004.
    [205] F. Leberl. Radargrammetry for Image Interpretation [R]. ITC Technical Report,1978.
    [206] T. Toutin. An Integrated Method to Rectify Airborne Radar Imagery Using DEM [J]. Photogrammetric Engineering&Remote Sensing, 1992, 58(4): 417-422.
    [207] T. Toutin, Y. Carbonneau. MOS and SEASAT Image Geometric Corrections [J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(3): 604-609.
    [208] T. Toutin. Opposite Side ERS-1 SAR Stereo Mapping Over Rolling Topography [J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 543-549.
    [209] B. Guindon, J.W. E. Harris, P.M. Teillet, et al. Integration of MSS and SAR Data for Forested Regions in Mountainous Terrain [C]. Proceedings of the Fourtheenth International Symposium on Remote Sensing of Environment, 1980, 1673-1690.
    [210] B. Guindon. Aspects of Digital Elevation Data Requirements for Operational Geocoding of RADARSAT Imagery [J]. Canadian Journal of Remote Sensing, 1993, 19(2): 131-139.
    [211] B. Guindon. Performance Evaluation of Real-simulated Image Matching Techniques in the Acquisition of Ground Control for ERS-1 Image Geocoding [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1995, 50(1): 2-11.
    [212] W. E. Brown. Applications of SEASAT SAR Digitally Correlated Imagery for Sea Ice Dynamics [C]. Amer. Geophys. Union Spring 1981 Meeting, 1981, 25-29.
    [213] J. C. Curlander. Location of Spaceborne SAR Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 1982, 20(3): 359-364.
    [214] J. C. Curlander. Utilization of Spaceborne SAR Data for Mapping [J]. IEEE Transactions on Geoscience and Remote Sensing, 1984, 22(2): 106-112.
    [215] J. C. Curlander. Perfonnance of the SIR-B Digital Image Processing Subsystem [J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(4): 649-652.
    [216] G. Schreier. SAR geocoding: data and systems [M]. Wichmann, 1993.
    [217] A. Roth, M. Huber, D. Kosmann. Geocoding of TerraSAR-X Data [R]. DLR TerraSAR-X Tech. Report, 2005.
    [218] F. K. Li, W. T. Johoson. Ambiguities in Spaceborne Synthetic Aperture Radar Systems [J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 389-396.
    [219]傅文学,郭小方,田庆久.星载SAR距离-多普勒定位算法中地球模型的修正[J].测绘学报, 2008, 37(1): 59-63.
    [220]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社, 2003.
    [221]袁孝康.星载合成孔径雷达的目标定位方法[J].上海航天, 1997, 14(6): 51-57.
    [222] A. Roth, D. Kosmann, Matschke M, et al. Experiences in Multi-Sensoral SAR Geocoding [C]. IGARSS’96, 1996, 27-31.
    [223] X. K. Liu, H. Ma, W. Sun. Study on the Geolocation Algorithm of Space-Borne SAR Image [C]. IWICPAS’06, 2006, 270-280.
    [224]周金萍,唐伶俐,李传荣.星载SAR图像的两种实用化R-D定位模型及其精度比较[J].遥感学报, 2001, 5(3):191-197.
    [225]张永红,林宗坚,张继贤等. SAR影像几何校正[J].测绘学报, 2002, 31(2): 134-138.
    [226]陈尔学,李增元.分析法和数值解算法相结合的星载SAR直接定位算法[J].中国图象图形学报, 2006, 11(8): 1105-1109.
    [227]张过,李德仁,秦绪文,祝小勇.基于RPC模型的高分辨率SAR影像正射纠正[J].遥感学报, 2008, 12(6): 942-948.
    [228] I. Pétillot, E. Trouvé, P. Bolon, et al. Radar-Coding and Geocoding Lookup Tables for the Fusion of GIS and SAR Data in Mountain Areas [J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 309-313.
    [229] C. Moncton. An Investigation into the Spatial Structure of Error in Digital Elevation Data [M]. London: Taylor and Francis, 1994.
    [230] D. B. Kidner. High-order Interpolation of Regular Grid Digital Elevation Model [J]. International Journal of Remove Sensing, 2003, 21(14): 2981-2987.
    [231] Tang Guoan, Gong Jianya, et al. A Simulation on the Accuracy of DEM Terrain Representation [J]. Acta Geodaetica et Cartographica Sinica, 2001, 30(4): 361-365.
    [232] Li Xinwu, Guo Huadong, Li Zhen. DEM generation and accuracy analysis on rugged terrain using ENVISAT/ASAR multi-angle InSAR data [J]. Journal of Remote Sensing, 2009, 276-281.
    [233]丁琼,刘国祥,蔡国林,马德英. InSAR DEM精度与地形特征的关系分析[J].测绘科学, 2009, 34(1): 147-148.
    [234]单新建,宋晓宇,柳稼航,王长林.星载INSAR技术在不同地形地貌区域的DEM提取及其应用评价[J].科学通报, 2001, 46(24): 2074-2079.
    [235] A. Koch, C. heipke. Quality assessn1el1t of digital surface models derived from the Shuttle Radar Topography Mission (SRTM) [C]. IGARSS’01, 2001.
    [236] G. Sun, K. J. Ranson, V. I. Kharuk, et al. Validation of surface height from Shuttle Radar Topography Mission using shuttle laser altimeter [J]. Remote Sensing of Environment, 2003, 401-411.
    [237] C. G. Brown, J. K. Sarabandi, L. E. Pierce. Validation of the Shuttle Radar Topography Mission Height Data [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8): 1707-l715.
    [238] G. C. Miliaresis, C. V. Paraschou. Vertical accuracy of the SRTM DTED level 1 of Crete [J]. International Journal of Applied Earth Observation and Geoinformation, 2005, 49-59.
    [239] R. Ludwig, P. Schneider. Validation of digital elevation models from SRTM X-SAR for applications in hydrologic modeling [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 339-358.
    [240]詹蕾. SRTM DEM的精度评价及其适用性研究——以在陕西省的实验为例[D].南京师范大学硕士学位论文, 2008.
    [241]卢华兴. DEM误差模型研究[D].南京师范大学博士学位论文, 2008.
    [242] K. J. Bhang, F. W. Schwartz, Alexander Braun. Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 36-43.
    [243] E. Rodriguez, C. S. Morris, J. Belz, et al. An Assessment of the SRTM Topographic Products [R]. Jet Propulsion Laboratory Technical Report, 2005.
    [244] E. Rodriguez, C. S. Morris, J. Belz. A Global Assessment of the SRTM Performance [J]. Photogrammetric Engineering & Remote Sensing, 2006, 72(3): 249-260.
    [245] M. Huber, B. Wessel, D. Kosmann, et al. Ensuring globally the TanDEM-X height accuracy: Analysis of the reference data sets ICESat, SRTM and KGPS-Tracks [C]. IGARSS’09, 2009, 769-772.
    [246] K. Ramm, V. Schwieger. Requirements on Kinematic GPS-Measurements for the Evaluation of Height Accuracy within the TanDEM-X Project [R]. DLR TanDEMX Ground Segment Document TD-PGS-TN-3061, 2007.
    [247] V. Schwieger, I. Schwieger. Evaluation of Exemplary Kinematic GPS Measurements Using Different Methods [R]. DLR TanDEM-X Ground Segment Document TD-PGS-TN-3097, 2008.
    [248] V. Schwieger, J. Schweitzer, D. Kosmann. GPS Precise Point Positioning as a Method to Evaluate Global TanDEM-X Digital Elevation Model [C]. 7th FIG Regional Conference, 2009.
    [249] D. Kosmann, B. Wessel, V. Schwieger. Global Digital Elevation Model from the TanDEM-X and the Calibration/Validation with worldwide kinematic GPS-Tracks [C]. FIG Congress, 2010.
    [250] T. Fritz, H. Breit, U. Balss, et al. Processing of Interferometric TanDEM-X Data [C]. EUSAR2010, 2010, 412-415.
    [251] R. Bamler. Interferometric Stereo Radar-grammetry: Absolute Height Determination from ERS-ENVISAT Interferograms [C]. IGARSS’00, 2000, 2: 742-745.
    [252] R. Touzi, A. Lopes, J. Bruniquel. Coherence estimation for SAR imaginery [J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149.
    [253] A. M. Guarnieri, C. Prati. SAR interferometry: A“quick and dirty”coherence estimator for data browsing [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 660- 669.
    [254] R. J. A. Tough, D. Blacknell, S. Quegan. A statistical description of polarimetric and interferometric synthetic aperture radar [C]. Proceeding of the Royal Society, 1995, 449: 567-589.
    [255]郭华东,李新武.新一代SAR对地观测技术特点与应用拓展[J].科学通报, 2011, 56(15): 1155-1168.
    [256] A. Freeman, P. Rosen, R. Jordan, et al. DESDynI—A NASA mission for ecosystems, solid earth, and cryosphere science [C]. 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, 2009.
    [257] M. Davidson, P. Snoeij, E. Attema, et al. Sentinel-1 mission overview [C]. EUSAR’10, 2010, 284-287.
    [258] A. Moreira, I. Hajnsek, G. Krieger, et al. TANDEM-L: Monitoring the earth’s dynamics with InSAR and Pol-InSAR [C]. 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, 2009.
    [259] G. Seguin. Radarsat constellation preliminary design [C]. EUSAR’10, 2010, 514-515.
    [260] M. Shimada. Advance land-observation satellite (alos) and its follow-on satellite, ALOS-2 [C]. 4th International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, 2009.
    [261] M. D. Pritt, J. S. Shipman. Least Squares Two dimensional Phase Unwrapping Using FFT [J].IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 704-708.
    [262] D. C. Ghiglia, M. D. Pritt. Two Dimensional Phase Unwrapping: Theory, Algorithms, and Software [M]. New York: John Wiley & Sons, 1998.
    [263] C. Rossi, M. Eineder, T. Fritz. TanDEM-X Mission: Raw DEM Generation [C]. EUSAR’10, 2010.
    [264] J. S. Lee, K. W. Hoppel, S. A. Mango. Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017-1027.
    [265] Y. T. Yoon, M. Eineder, N. Yague-Martinez, et al. TerraSAR-X precise trajectory estimation and quality assessment [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1859-1868.
    [266] A. Jaggi, H. Bock, R. Konig, et al. Inter-agency comparison of TerraSAR-X andTanDEM-X baseline solutions [C]. European Geophysical Union Meeting, 2011.
    [267]王青松.天基InSAR理想干涉量的仿真与应用研究[D].国防科学技术大学硕士学位论文, 2008.
    [268]孟智勇.分布式卫星InSAR系统性能分析与仿真技术研究[D].国防科学技术大学硕士学位论文, 2010.
    [269]熊涛,陈亦伦,杨健,张卫杰,彭应宁.基于变相位技术的相位解缠方法[J].中国科学:信息科学, 2010, 40: 445-457
    [270]王紫燕,袁运斌.一种组合的InSAR数据的相位解缠算法[J].自然科学进展, 2008, 18(7): 833-835.
    [271]唐新明,林宗坚,吴岚.基于等高线和高程点建立DEM的精度评价方法探讨[J].遥感信息, 1999, 7-10.
    [272] Hannes I. Reuter, Andrew Nelson, Peter Strobl, et al. A first assessment of aster gdem tiles for absolute accuracy, relative accuracy and terrain parameters [C]. IGARSS’09, 2009, 240-243.
    [273] Hiroyuki Fujisada, G. Bryan Bailey, Glenn G. Kelly, et al. ASTER DEM Performance [J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(12): 2707-2714.
    [274] A. Schubert, M. Jehle, D. Small, et al. Influence of Atmospheric Path Delay on the Absolute Geolocation Accuracy of TerraSAR-X High-Resolution Products [J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 751-758.
    [275] D. J. Weydahl, K. Eldhuset. Geolocation accuracy of TSX spotlight image data [C]. EUSAR’10, 2010, 544-547.
    [276] H. P. William, A. T. Saul, T. V. William, et al. Numerical Recipes in C: The Art of Scientific Computing (Second Edition) [M]. London: Cambridge University Press, 1992.
    [277] C. L. Miller, R. A. Laflamme. The Digital Terrain Model: Theory and Application [J]. Phogrammetric Engineering and Remote Sensing, 1958, 24: 422-433.
    [278] A. Gruber, M. Huber, B. Wessel, M. Breunig. Accuracy Assessment of First Calibrated TanDEM-X DEM [C]. IGARSS’11, 2011, 114-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700