用户名: 密码: 验证码:
卫星导航接收机数字波束形成关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干扰和多径是卫星导航接收机面临的两大难题。将数字波束形成技术应用于卫星导航接收机,可根据信号、干扰以及多径的不同空间特征,灵活调整阵列加权以形成指向卫星的主波束以及对准干扰、多径的“零陷”,从而达到增强信号、抑制干扰及多径的目的。卫星导航接收机数字波束形成技术的工程实现涉及多个方面的问题,本文以提高卫星信号的接收质量为根本目标,从以下几个方面展开了研究:
     (1)最优阵列加权准则是数字波束形成技术的核心部分,它是确定阵列加权的理论依据,并决定了天线阵接收机可达到的最佳性能。“最优”是针对某一个优化目标而言的,优化目标不同,最优加权准则的设计结果也不同。卫星导航领域常用的最优准则包括功率倒置准则、最大信干噪比准则、最小均方误差准则等。上述准则对天线阵多径抑制能力的考虑较少,针对卫星导航系统监测站(参考站)典型多径环境,论文提出了一种具有较强多径抑制能力的准则——约束下上比的最小方差(DCMV)准则,仿真结果表明,DCMV准则可在地面反射多径方向形成-20dB或更深的零陷。另外,针对高精度民用接收机对连续波干扰的易感性,论文提出了一种波束/零陷交替控制(SBN)准则,该准则根据不同频率的连续波干扰对接收机的影响程度,交替使用波束控制或零陷控制准则,最大限度地提高了连续波干扰下民用信号的接收质量,实验结果表明,SBN准则下的阵列输出载噪比相比单独使用波束控制准则或零陷控制准则提高了2~5 dB。
     (2)先验信息误差是影响天线阵波束指向以及抗干扰抗多径性能的重要因素。多种阵列权值优化准则均需要接收机先验信息的辅助,如波束控制准则、最大信干噪比准则、DCMV准则、SBN准则等。针对卫星导航系统,天线阵接收机的先验信息包括星历数据、接收机位置、天线阵平台姿态以及各个阵元的相对位置。传统文献多关注各种类型先验信息误差或其组合的校正方法,缺乏针对具体应用背景的误差分析。勿庸置疑,先验信息误差种类越多,校正过程越复杂,所需要的校正环境也越苛刻,给数字波束形成技术的工程实现带来了较大的困难。论文首次针对卫星导航系统天线阵接收机的各项先验信息误差进行了全面定量分析,其中星历数据、接收机位置以及阵列平台姿态造成的信号到达角误差通常小于1o,而阵元位置安装误差通常不到卫星导航信号载波波长的2%,上述误差对天线阵波束指向以及各项阵列性能的影响均很小,可以不予校正,为数字波束形成技术的工程设计提供了理论依据。此外,还研究了利用导航信号测量阵列平台姿态的方法,给出了有利于提高姿态估计精度的阵型和基线选择建议。
     (3)阵列通道失配是数字波束形成技术在工程实现中必须要考虑的问题。论文根据天线和射频前端的实测数据,提出了一种符合实际测量结果特点的通道失配仿真模型,并定义了通道间幅度失配、相位失配以及平均群时延差三个参数,定量分析了通道失配对阵列性能的影响。针对卫星导航天线阵接收机,传统的通道校正技术存在明显缺陷,例如针对射频前端的阵列通道失配校正技术无法解决天线之间频率特性的不一致;而在微波暗室对天线阵通道特性进行测量的方法虽然可以校正包括天线在内的通道失配问题,但校正误差可能随器件老化存在漂移,而且需要严格控制校正过程中可能产生的系统误差。在数字信号处理能力大大提高的条件下,利用导航信号进行在线校正是一种理想的校正方法。校正阵列通道失配的关键在于通道特性的估计,基于空时加权结构的通道特性在线估计方法需要多次改变空时加权系数,在不同的空时加权系数下对接收的导航信号进行相关捕获,计算量大且运算时间较长,本文在其基础上进行了改进,只需要一组空时加权系数,通过在相关峰附近进行多次取值代替测量多组相关峰,进而完成对通道特性的估计,大大减小了校正过程的复杂度,节省了运算时间。
     (4)随着GPS现代化以及Galileo、北斗二号等卫星导航系统的建设,导航用户将会收到更多卫星信号,而接收机的跟踪通道数是有限的,因此选星成为接收机处理的一个重要环节。波束形成下的选星除了需要考虑卫星几何分布对定位解的影响,还需要考虑干扰条件下对卫星信号进行波束增强的可行性。基于上述应用需求,论文提出了一种波束形成下的最优选星方法,以阵列输出信干噪比加权的几何精度因子为选星依据,并针对天线阵接收机的两种结构——单加权网络和多加权网络,提出了最优选星方法的实现流程。基于七阵元天线阵接收机的仿真结果表明:一个宽带干扰时,常规选星方法和本文提出的最优选星方法的定位成功率分别为98.8%和100%;三个宽带干扰时,两种方法的定位成功率分别为91.5%和99.9%,此外,本文提出的方法在100%和99.9%的场景中的平均定位误差与常规选星方法在98.8%和91.5%的场景中的平均定位误差不相上下。可见,波束形成下的最优选星方法既提高了定位成功率,又保证了定位精度。
     本文的研究成果可用于卫星导航系统监测站接收机、卫星导航增强系统参考站接收机以及高精度航空用户接收机等领域。
Interference and multipath are two difficult problems confronted by satellite navigation receivers. While digital beamforming (DBF) technology is implemented in satellite navigation receivers, according to different spatial features of signal, interference and multipath, the array weights are adjusted to form main beams towards satellites and nulls towards interference plus multipath. So the purpose of enhancing signals and suppressing interference plus multipath are reached. The engineering implementation of DBF technology in satellite navigation receivers relates to many aspects. This dissertation studied the following aspects, aiming at improving the quality of the received satellite signals.
     (1) Optimal weighting criterion is the key part of DBF technology. It constructs the theoretical foundation of computing the array weights, and decides the optimal performance of an array receiver.“Optimal”refers to certain optimization target. While the optimization target differs, the designing result of the optimal array criterion is also different. Optimal criteria mostly used in satellite navigation systems include Power Inversion, Maximum Signal-to-Interference-plus-Noise Ratio, Minimum Mean Square Error, etc. Those criteria considered few aspects of suppressing multipath. According to the typical multipath environment of monitoring stations (reference stations) in satellite navigation systems, this dissertation proposed an optimal criterion to mitigate multipath, which is named Down-up-ratio Constrained Minimum Variance (DCMV) criterion. Simulation results showed that DCMV criterion could form a -20dB or even deeper null in the direction of multipath reflected from the ground. Since high precision civil receivers are vulnerable to continuous wave interference, this dissertation also proposed a criterion named Switchable Beam-steering/ Null-steering (SBN) criterion. It switches Beam Steering criterion to Null Steering criterion or inversely according to the impact of the continuous wave interference under different frequency. This criterion can extremely improve the quality of the received civil signals interfered by continuous wave. Experiment results showed that the array output carrier-to-noise-ratio under SBN criterion got 2~5 dB improvement compared to the one under Beam Steering criterion or Null Steering criterion separately.
     (2) The error of prior information is an important factor which affects the beam direction of the antenna array and the performance of suppressing interference and multipath. Many optimal criteria need the aid of prior information, such as Beam Steering, Maximum Signal-to-Interference-plus-Noise Ratio, DCMV, SBN, etc. In satellite navigation systems, the prior information of antenna array receivers includes the ephemeris data, the location of the receiver, and the platform attitude of the antenna array plus the relative positions of the array elements. Traditional literature usually focused on the calibration of one kind or the combined errors of the prior information, but neglected the error range of the prior information based on the application. Inevitably, the more the types of prior information are, the more complicated the calibrating procedure is, and the stricter the calibrating environment is needed, which may cause many difficulties in the implementation of DBF technology. This dissertation analyzed the error range of each type of the prior information in satellite navigation antenna array receivers for the first time. The estimation error of the signal arriving angle caused by errors from the ephemeris data, the location of the receiver and the platform attitude of the antenna array is less than 1 degree; Position errors of the array elements are usually less than 2% of the signal carrier wave length. The above errors have little impact on the beam direction and other array performance, and need no calibration. This conclusion provides the theoretical reference to the engineering implementation of DBF technology. Also, the platform attitude calibration with navigation signals was studied, and the suggestion about array configuration and baseline selection were given.
     (3) Array channel mismatch must be considered in the engineering implementation of DBF technology. This dissertation proposed a channel mismatch model according to the measured data of antennas and RF front ends, then defined three parameters: the amplitude mismatch, the phase mismatch, the difference between averaged group delays. And the affect of channel mismatch on array performance were analyzed in quantity. For antenna array satellite navigation receivers, traditional channel mismatch calibration has obvious disadvantages, for example, it is not able to solve the mismatch between antennas; the method of calibrating antenna array channel mismatch in anechoic chambers is able to calibrate mismatches between antennas, but the calibrating error may float when the hardware gets old, also the system error in the calibrating procedure should be controlled strictly. Nowadays, digital signal processing ability has been improved extremely, online calibrating with satellite signal is an ideal method. The key part of calibrating channel mismatch is to estimate the channel characteristic. Based on the space-time structure, the channel characteristic estimation has to change the space-time weights and capture the correlation peaks under each group of space-time weights; which costs large computation and time. This dissertation improves the online calibrating method, which only needs one group of space-time weights. The proposed method measures several values near the correlation peak, instead of measuring several correlation peaks, and then estimates the channel characteristic. The proposed method reduced the complexity of calibration, and also saved the computation time.
     (4) Along with the construction of the modern GPS, Galileo and Compass II, GNSS users will receive more satellite signals, but the amount of tracking channels of the receiver is limited. Therefore, satellite selection becomes an important step in receiver’s processing. Satellite selection under DBF needs to consider not only the impact of satellite geometry, but also the feasibility of enhancing satellite signals with array beams. According to the above requirement, this dissertation proposed the optimal satellite selecting method for beamforming. Satellites are selected according to the geometry dilution of precision weighted by the array output signal to interference-plus-noise ratio. Based on the single-weight structure and the multi-weights structure of the antenna array receivers, the flow charts of the optimal satellite selecting procedure are suggested. Simulations are conducted to compare the performance of the conventional method and the proposed method. It shows that for typical seven-element antenna array receivers, the positioning success ratio is 98.8% and 100% respectively when there is one broadband interference; and the positioning success ratio is 91.5% and 99.9% when there are three broadband interference. Besides, the average positioning error of the proposed method in the 100% and 99.9% scenarios is almost the same with that of the conventional method in the 98.8% and 91.5% scenarios. It can be seen that the optimal satellite selecting method for beamforming improves the positioning success ratio, and at the mean time guarantees the positioning accuracy.
     The technique studied in this dissertation can be applied in the monitoring receivers of satellite navigation systems, the reference receivers of satellite navigation augmentation systems and the receivers for high-precision aerospace users.
引文
[1]吴广华,张杏谷.卫星导航[M].北京:人民交通出版社, 1998.
    [2]钱天爵,瞿学林. GPS全球定位系统及其应用[M].北京:海潮出版社, 1993.
    [3] Kaplan E D著,寇艳红译. GPS原理与应用(第二版) [M].北京:电子工业出版社, 2007.
    [4]谭述森.卫星导航定位工程(第二版) [M].北京:国防工业出版社, 2010.
    [5] Pratap Misra, Per Enge著,罗鸣,曹冲,肖雄兵等译.全球定位系统——信号、测量与性能(第二版) [M].北京:电子工业出版社, 2008.
    [6]干国强,邱致和.导航与定位-现代战争的北斗星[M].北京:国防工业出版社, 2000.
    [7] Balaei A T, Motella B, Dempster A G. GPS Interference Detected in Sydney Australia [C]. IGNSS Symposium, 2007: paper 74.
    [8]谭显裕. GPS在导航战中的作用及其干扰对抗研究[J].现代防御技术, 2001, 29(3): 42-47.
    [9]杨志勇.美军打响“导航战”[EB/OL]. http://202.84.17.11/mil/htm/20001113 /214233.htm
    [10]邱致和,王万义.国外导航战技术的发展[EB/OL]. http://www.cast.ac.cn/ oldweb/xxfw/dzqk/ wxyyjb/2000/1601.htm
    [11]曾祥华,王飞雪,孙广富等.北斗卫星导航系统干扰现状浅析[C].中国卫星导航学术论坛:导航系统安全与导航战专题研讨会, 2009: 277-284.
    [12]夏林元. GPS观测值中的多径效应理论研究及数值结果[D].武汉:武汉大学, 2001.
    [13]金育兵,蒋谢彬. GPS系统多径干扰分析及消除技术[J].无线电通信技术, 2001, 27(3): 33-34.
    [14]殷海涛,熊永良. GPS测量中多路径效应的研究[J],铁路航测, 2003, 3:12-14.
    [15]刘荟萃.卫星导航系统中的多径误差分析与抑制技术研究[D].长沙:国防科学技术大学研究生院, 2010.
    [16]石镇.自适应天线原理[M].北京:国防工业出版社, 1991.
    [17]桑怀胜.卫星定位接收机全局最优空时抗干扰技术研究[D].长沙:国防科学技术大学研究生院, 2003.
    [18] Chang C L, Juang J C. A New Pre-processing Approach Against Array Uncertainty for GNSS [C]. Proceedings of ION PLANS, 2008: 892-897.
    [19]龚耀寰.自适应滤波(第二版) [M].北京:电子工业出版社, 2003.
    [20]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社, 2000.
    [21]王瑛.卫星导航天线阵抗干扰关键技术研究[D].长沙:国防科学技术大学研究生院, 2008.
    [22]谭述森,周兵,郭盛桃等.我国全球卫星导航信号设计研究[C].第一届中国卫星导航学术年会, 2010: 1-7.
    [23]民航总局空中交通管理局.国际民航组织第十一次航行会议综述[J].世界民航业, 2003,第11期: 54-57.
    [24] Lorenzo D S, Rife J, Enge P, etc. Navigation Accuracy and Interference Rejection for an Adaptive GPS Antenna Array [C]. Proceedings of ION GNSS, 2006: 763-773.
    [25] Compton R T. The Power-Inversion Adaptive Array: Concept and Performance [J]. IEEE Transactions on Areospace and Electronics Systems, 1979, 15(6): 803-814.
    [26] Krim H, Viberg M. Two Decades of Array Signal Processing Research - The Parametric Approach [J]. IEEE Signal Processing Magazine, 1996, July: 67-94.
    [27] Brown A. Performance and Jamming Test Results of a Digital Beamforming GPS Receiver [C]. Proceedings of Joint Navigation Conference, 2002.
    [28] Trinkle M, Gray D A. GPS Interference Mitigation: Overview and Experimental Results [C]. The 5th International Symposium on Satellite Navigation Technology & Applications, 2001, July: 1-14.
    [29] Li M, Dempster A G, Balaei A T, etc. Switchable Beam Steering/Null Steering Algorithm for CW Interference Mitigation in GPS C/A Code Receivers [J]. IEEE Transactions on Areospace and Electronics Systems. To be published on the issue of 2011, July.
    [30] Applebaum S P. Adaptive Arrays [J]. IEEE Transactions on Antennas and Propagation, 1976, 24(5): 585-598.
    [31] Widrow B, et al. Adaptive Antenna Systems [J]. Proceedings of IEEE, 1967, 55(12): 2143-2159.
    [32] Frost O L. An Algorithm for Linearly Constrained Adaptive Array Processing [J]. Proceedings of IEEE, 1962, 60(8): 926-935.
    [33] Lorenzo D.S. De, Gautier J, Rife J, Enge P, Akos D M. Adaptive Array Processing for GPS Interference Rejection [C]. Proceedings of ION GNSS, 2005: 618-627.
    [34] Brown A, Silva R. A GPS Digital Phased Array Antenna and Receiver [C]. Proceedings of IEEE Phased Array symposium, 2000: 153-156.
    [35] Chanf L, Yeh C C. Effect of pointing error on the performance of the projection beamformer [J]. IEEE Transactions on Antennas and Propagation. 1993, 41(8):1045-1056.
    [36]武思军,张锦中.存在指向误差时的稳健自适应波束形成算法[J].哈尔滨工程大学学报, 2005, 26(4): 531-535.
    [37] Weiss A J, Friedlander B. Array Shape Calibration Using Sources in Unknown Locations– A Maximum Likelihood Approach [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1998, 37(12): 1928-1966.
    [38]王鼎,林四川,李长胜.一种新的阵元位置误差有源校正算法[J].雷达科学与技术, 2008, 6(3): 226-230.
    [39]于斌,黄祯东.一种新的阵元位置误差校正方法[J].探测与控制学报, 2006, 28(5): 46-50.
    [40]林敏,刘云飞,龚铮权.存在阵元位置误差时的信号DOA估计[J].南京理工大学学报, 2003, 27(4): 381-384.
    [41]王鼎,李长胜,吴瑛.基于辅助阵元的阵元位置误差和信源方位联合估计算法[J].数据采集与处理, 2009, 24(5): 567-575.
    [42] Weiss A J, Friedlander B. DOA and steering vector estimation using a partially calibrated array [J]. IEEE Transactions on Areospace and Electronics Systems, 1996, 32(3): 1047-1057.
    [43] Er M H, Ng B C. Simple and effective approach to array beamforming in presence of steering error [J]. Electronics letters. 1992, 28(4):413-414.
    [44] Yang C, Lin D M. Joint Estimation of Channel Biases and Angles of Arrival for a Small GPS Array Antenna [C]. Proceedings of ION GPS/GNSS 2003: 1898-1907.
    [45] Ng B P. A Practical Simple Geometry and GainPhase Calibration Technique for Antenna Array Processing [J]. IEEE Transactions on Antenna and propagation. 2009, 57: 1963-1972.
    [46]贾永康,保铮,吴洹.一种阵列天线阵元位置、幅度及相位误差的有源校正方法[J].电子学报, 1996, 24(3): 47-51.
    [47]于斌,尹成友,黄冶.阵列天线互耦、阵元位置误差和通道不一致性的校正[J].微波学报, 2008, 24(4): 56-59.
    [48]章宏,陈荆花,周希朗.阵列天线阵元位置误差、通道不一致性和互耦的校正[J].上海交通大学学报, 2002, 36(9): 1284-1290.
    [49] Teitelbaum K. A Flexible Processor for a Digital Adaptive Array Radar [J]. IEEE Areospace and Electronic Systems Magazine, 1991, 6(5):18-22.
    [50] Monzingo R A, Miller T W. Introduction to Adaptive Arrays [M]. New York: John Wiley & Sons, 1980.
    [51] Zhu C, Yuan N C. Antenna Array Measurement Using Multiport VNA [C]. Proceedings of Asia-Pacific Microwave Conference, 2005.
    [52] Kim U S, De Lorenzo D S, Gautier J, etc. Phase Effects Analysis of Patch Antenna CRPAs for JPALS [C]. Proceedings of ION GNSS, 2004: 1531-1538.
    [53] Kim U S. Analysis of Carrier Phase and Group Delay Biases Introduced by CRPAHardware [C]. Proceedings of ION GNSS, 2005: 635-642.
    [54]王瑛,王飞雪.一种新的通道失配仿真模型[J].电子与信息学报, 2005, 27(11): 1845-1848.
    [55]李琼.阵列信号处理中的校准技术[D].合肥:中国科学技术大学. 2003.
    [56] Church C, Gupta I. Calibration of GNSS Adaptive Antennas [C]. Proceedings of ION GNSS, 2009: 344-350.
    [57]卓宁.一种新的GPS星座选择算法[J].宇航计测技术, 2009, 29(2): 54-56.
    [58]李敏,刘小汇,王瑛等.新的GPS自适应阵的选星方法[J].通信学报, 2007, 28(6): 127-132.
    [59] Yang Y, Miao L J. GDOP Results in All-in-view Positioning and in Four Optimum Satellites Positioning with GPS PRN Codes Ranging [C]. IEEE Position, Location and Navigation Symposium, 2004: 723-727.
    [60] Kihara M . A Satellite Selection Method and Accuracy for the Global Positioning System [J]. The Journal of the Institute of Navigation, 1984, 31(l): 8-20.
    [61] Levanon N. Lowest GDOP in 2-D Scenarios [C]. IEEE Proceedings of Radar Sonar Navigation, 2000, 147(3): 149-155.
    [62]王军,张华海.卫星几何分布对GPS相对定位精度的影响[J].测绘科学, 2004, 29(2): 53-54.
    [63]宋茂忠,王永澄.卫星导航中的五星单频定位方法[J].空间科学学报, 1994, 14(3) : 244-248.
    [64]宋茂忠.用加权几何精度因子选星的GPS抗多径定位方法[J].南京航空航天大学学报, 2000, 32(5): 510-515.
    [65] Karaboga N, Guney K, Akdagli A. Null Steering of Linear Antenna Arrays with Use of Modified Touring Ant Colony Optimization Algorithm [J]. International Journal of RF and Microwave, 2002, No.12: 375–383.
    [66] Vescovo R. Null Synthesis by Phase Control for Antenna Array [J]. Electronics Letters, 2000, 36(33): 198-199.
    [67] Steyskal H. Synthesis of Antenna Pattern with Prescribed Nulls [J]. IEEE Transactions on Antennas and Propagation, 1982, No.31: 273–279.
    [68] Moelker D J, Ness Y B. An Optimal Array Processor for GPS Interference Cancellation [C]. 15th AIAA/IEEE Digital Avionics Systems Conference, 1996: 285-290.
    [69] Van Trees H L. Optimum Array Processing: Detection, Estimation and Modulation Theory [M]. New York: Jon Wiley & Sons, 2002.
    [70]王瑛.卫星定位接收机空域抗干扰关键技术研究[D].长沙:国防科学技术大学研究生院, 2004.
    [71]张勇虎.卫星导航系统中的测量型天线技术研究[D].长沙:国防科学技术大学研究生院, 2006.
    [72] NAVSYS Corporation. High Gain Advanced GPS Receiver [EB/OL]. http:// www .navsys.com/products/hagr.htm, September 2002.
    [73] Gold K, Brown A, Stolk K. Bistatic Sensing and Multipath Mitigation with a 109-Element GPS Antenna Array and Digital Beam Steering Receiver [C]. Proceedings of ION National Technical Meeting, 2005:849-857.
    [74] Compton R T. Adaptive Antenna: Concepts and Performance [M]. Englewood Cliffs, NJ, Prentice-Hall, 1988.
    [75]韩方景.自适应天线抗干扰技术[D].长沙:国防科学技术大学研究生院, 2002.
    [76] Philippov V. Sutiagin I, Ashjaee J. Measured Characteristics of Dual Depth Dual Frequency Choke Ring for Multipath Rejection in GPS Receivers [C]. Proceedings of ION GPS, 1999: 793-796.
    [77]数学手册编写组.数学手册[M].北京:高等教育出版社, 1979.
    [78] Poor H V, Rusch L A. Narrowband Interference Suppression in Spread Spectrum CDMA [J]. IEEE Transactions on Communications, 1998, 46(8): 1076-1087.
    [79] Capozza P, Holl B J, Hopkinson T M, Landrau R L. A Single-chip Narrowband Frequency-domain Excisor for Global Positioning System (GPS) Receivers [J]. IEEE Journal of Solid-State Circuits, 2000, 35(3): 401-411.
    [80] Balaei A T, Barnes J, Dempster A G. Characterization of Interference Effects on GPS Signal Carrier Phase Error [C]. Proceedings of Spatial Intelligence, Innovation and Praxis: The National Biennial Conference of the Spatial Science Institute, 2005: 1323-1331.
    [81] Zoltowski M D, Gecan A S. Advanced Adaptive Null Steering Concepts for GPS [C]. Military Communications Conference, 1995: 1214-1218.
    [82] Amin M G, Sun W. A Novel Interference Suppression Scheme for Global Navigation Satellite Systems Using Antenna Array [J]. IEEE Journal on Selected Areas in Communications, 2005: 999-1012.
    [83] Wikipedia. Geodetic system [EB/OL]. http://en.wikipedia.org/wiki/File:ECEF_ ENU_longitude_Latitude_relationships.svg, 25 June 2010.
    [84]黄立人,高砚龙,任立生.关于NEU(ENU)坐标系统[J].大地测量与地球动力学, 2006, 26(1): 97-99.
    [85] Lupash Consulting. MATLAB GPS Software Toolbox User's Guide and Reference Manual [EB/OL]. http://weku.baidu.com/view/a889a8bfc77da26925c5 b04a.html, November 24, 2010.
    [86]周善石,王解先. GPS广播星历与历书的精度比较[J].工程勘察, 2006,第9期: 72-74.
    [87] Cohen C E. Attitude Determination. Global Positioning System, Theory andApplication [M]. Progress in Astronautics and Aeronautics (Vol. II), AIAA, Washington, DC, 1996, Vol. 164: 519-538.
    [88]田湘. GPS多基线姿态系统研究与实现[D].南京:南京航空航天大学, 2007.
    [89] Bar-Itzhack I Y and Harman R R. Optimized TRIAD Algorithm for Attitude Determination [J]. Journal of Guidance and Control, 1997, 20(1): 208–211.
    [90] Shuster M D. The Optimization of TRIAD [J]. Journal of the Astronautical Sciences, 2007, 55(2): 245-257.
    [91] Shuster M D and Oh S D. Three-Axis Attitude Determination from Vector Observations [J]. Journal of Guidance and Control, 1981, 4(1): 70–77.
    [92] Kuylen L V, Boon F, Simsky A. Attitude Determination Methods Used in the PolaRx2 @ Multi-antenna GPS Receiver [C]. Proceedings of ION GNSS 2005: 125-135.
    [93]黎湧,吴宏鑫,刘良栋.融合TRIAD算法用于GPS姿态确定[J].中国空间科学技术, 2000年4月,第2期: 30-37.
    [94]刘根友,欧吉坤. GPS单历元定向和测姿算法及其精度分析[J].武汉大学学报, 2003, 28(6): 732-735.
    [95]王立红,郝继平,汤云.基于最小二乘法的GPS多天线测姿及精度分析[J].测试技术学报, 2007, 21(1): 1-5.
    [96]徐绍铨,张华海,杨志强等. GPS测量原理及应用(第三版) [M].武汉大学出版社. 2008.
    [97]杨维,陈俊仕等.移动通信中的阵列天线技术[M].北京:清华大学出版社,北京交通大学出版社, 2005.
    [98] Hua Y B, Sarkar T K. Weiner D D. An L-shaped Array for Estimating 2-D Directions of Wave Arrival [J]. IEEE Transactions on Antennas and Propagation, 1991, 39(2): 143-146.
    [99] Nizar T, Hyuck M K. L-shaped 2-Dimensional Arrival Angle Estimation with Propagator Method [J]. IEEE Transactions on Antennas and Propagation, 2005, 53(5): 1622-1630.
    [100]杨继波,陈客松,胡进峰等.球面阵列的阵元分布及副瓣特性分析[J].中国电子科学研究院学报, 2009, 4(6): 584-588.
    [101] Fante R L, Fitzgibbons M P, McDonald K F. Effect of Adaptive Array Processing on GPS Signal Cross correlation [C]. Proceedings of ION GNSS, 2004: 579-583.
    [102]杨恒,李立萍,李云志.阵列信号幅相一致性校正及FPGA实现[J].微计算机信息. 2009, 25(6): 229-231.
    [103]赵红梅,王华力,牟善祥等.宽带DBF系统多通道校正及性能分析[J].无线电通信技术, 2008, 34(2): 48-50.
    [104]王峰,傅有光,孟兵等.基于傅里叶变换的雷达通道均衡算法性能分析及改进[J].电子学报, 2006, 34(9): 1677-1680.
    [105] Sta?an Backen, Dennis M. Akos. Antenna Array Calibration Using Live GNSS Signals [C]. Proceedings of the 3rd ESA Workshop on Satellite Navigation User Equipment Technologies, 2006: 53-66.
    [106] L. Liou, J. Tsui, D. Lin, S. Osman, C. Burneka, J. Shaw, and J. Valentine. Phase calibration of 2 by 2 GPS antenna array using real and simulated global positioning system (GPS) signals [R]. Air Force Research Laboratory, 2002.
    [107] Lorenzo D S, Gautier J, Enge P, etc. GPS Receiver Architecture Effects on Controlled Reception Pattern Antennas for JPALS [C]. Proceedings of ION GNSS, 2004: 2011-2020.
    [108]李柏渝,李彩华,周力等.通道非理性特性对导航接收机载波相位测量精度的影响分析[J].信息工程大学学报, 2010, 12(1): 48-54.
    [109]李敏.卫星导航接收机自适应天线阵时延影响分析与补偿[D].长沙:国防科学技术大学研究生院, 2007.
    [110]王梦丽.现代化GNSS接收机信息处理技术研究[D].长沙:国防科学技术大学研究生院, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700