用户名: 密码: 验证码:
互联网在宏观拓扑结构下传播行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网作为一个典型复杂系统,对其行为进行分析一直是研究的热点问题。近年来,人们广泛开展网络测量,促使网络行为的研究完成了从早期经验假设到客观数据分析的飞跃。然而,网络规模膨胀的加剧以及拓扑结构复杂程度的日渐提高,导致现有网络行为测量分析暴露出越来越多的弊端。面对庞大且复杂的互联网,过于强调局部特性及优化控制的传统研究方法阻碍了人们从宏观上对网络整体行为的把握,同时也阻碍了网络进一步的发展建设。将互联网视为一个相互关联的整体,从大规模范围对网络实施测量,进而揭示互联网在宏观拓扑结构下的整体行为和演化趋势,可以为网络业务和资源的优化与调度、安全防范以及大规模网络的设计提供有参考价值的新思想和新方法,因此必然具有重要的意义。
     针对网络当前发展需要,本文根据复杂网络理论,充分利用CAIDA提供的海量实测样本数据对网络的传播行为进行分析。网络传播行为在表征互联网在宏观拓扑结构下的整体行为特征方面起着重要作用,为此本文以空间为主线统计了一个测量周期内网络传播的整体行为特征,以时间为主线预测了网络在长时间跨度下传播行为的整体演化趋势,其根本目的是为了揭示互联网在宏观拓扑结构下传播行为特征规律。在明确的研究目标下,本文研究工作主要从样本数据获取、特征度量统计以及演化行为预测三个方面展开。
     根据工作重点,本文首先从CAIDA Skitter监测点探测到的原始样本中提取适于分析的有效样本数据,借鉴复杂网络中的物理特征量,同时结合互联网自身的传播行为特点,在IP层定义了能够表征网络传播行为的物理特征量——访问时间和访问直径。以所得的有效样本数据分别从整体和局部样本上对访问时间和访问直径进行分析,分析结果表明访问直径和访问时间之间的Pearson相关系数仅为0.346,说明两者之间为低度相关,并且主要表现为相近的访问直径其访问时间相差较大。为解释访问直径对访问时间影响较小的原因,本文针对网络的动态复杂性提出修正算法,从有效样本数据中提取网络链路延迟。对链路延迟样本数据的统计结果表明,超过90%以上的路径其最大的链路延迟消耗了访问时间的1/4以上,说明数据包在网络传播过程中,存在对传播行为有重要影响的链路延迟,并以此定义了IP层上的支配延迟。
     其次,考虑到支配延迟对网络的传播行为有较大影响,本文进一步研究了支配延迟的行为特征。比较了网络在不同访问时间区间上传播行为,发现访问时间相差较大的路径,其支配延迟对访问时间的比例相近,说明支配延迟对网络传播行为的影响与访问时间本身并没有必然联系,但是由于支配延迟本身在数值上相差较大,导致相近访问直径的路径其传播行为有着较大的差异,并直接表现为访问时间呈现出多峰分布特征。之后,讨论了AS自治域上的支配延迟行为特征。通过将IP级节点映射到AS自治域上,结果表明支配延迟更多地出现在AS自治域内部,并从AS自治域上的传播行为解释了支配延迟较少出现在AS自治域之间的原因。通过将产生支配延迟的IP节点对映射到实际地理位置,对支配延迟产生的主要原因进行了讨论,结果表明链路长度主要影响支配延迟的大小。
     最后,本文从长时间跨度上描述了网络整体的传播行为演化趋势。首先给出了基于演化的网络访问时间的定义,据此整理了近几年访问时间的样本数据,并论证了演化样本的稳定性。在此基础上,以非线性时间序列分析方法计算了访问时间演化序列的混沌特征量,分析结果表明演化序列具有混沌特征。在此基础上,通过对混沌系统中典型的Logistic模型加以改进,提出了一种基于Logistic模型的、带衰减因子的正余弦函数组合模拟振荡涨落的数学模型,以描述网络延迟的演化态势。根据实际的访问时间演化趋势,以微粒群算法分别从算法收敛性、模型拟合准确度及预测准确度等方面对备选模型参数选优。实验结果表明,最终优选模型在结构选择上比较合理,能够在短期内准确预测网络整体的传播行为。
Internet is a classical instance of complex system, the analysis on its characteristic behavior has become a hot issue at present. Recently, network measurements have been widely carried out, which promotes the researches of Internet behavior to be changed from the early hypothetical phase to subjective data analysis phase. However, the increasing scale and complexity of Internet and its topological structure reveal the shortcomings of the present measurement technology. Facing the huge and complex Internet, the traditional research methods which emphasize partial characteristic and optimize control hinder people's understanding of the Internet behaviors from a macroscopic perspective, and hinder the further development of Internet as well. To view Internet as a correlated single unit and carry out the network measurement macroscopically further demonstrate the behavioral characteristics and evolvement trend of Internet under the macro-topological structure. This in turn optimizes the Internet service and resources allotment, and provides valuable solution for the security and design of large-scale network.
     In order to meet the needs of network development, this dissertation uses complex network theory to analyze the network transmission behavior on the base of the giant sample data authorized by CAIDA. Since the transmission behavior of Internet has its irreplaceable typical character in the aspect of indicating the overall behavioral characteristic of network, this dissertation analyzes the overall behavioral characteristic of it within one measurement cycle with space the main clue, and forecasts its overall evolvement trend of a long period with time the main clue. The purpose is to reveal Internet transmission behavior under macroscopic topology. This research is carried out from three aspects:the collection of sample data, the statistic of network characteristic property and the forecast of network evolvement.
     This dissertation first uses the data from the CAIDA Skitter monitors to obtain the valid samples fitted for statistic analysis. Then two physical properties-traveling time and traveling diameter which can indicate network transmission behavior are defined on the IP level on basis of the transmission characteristic of Internet and the physical characteristic property in the complex network. Then the sample data is analyzed from both the overall and partial perspectives. It is found that the traveling times of similar traveling diameters differ a lot. The result shows that the Pearson coefficient between traveling time and traveling diameter is 0.346, which indicates that there is a low correlation between the two parameters. In order to explain the reason why the influence of traveling diameter to traveling time is not significant, this dissertation proposes a revising algorithm focusing on the dynamic complexity of network and gets link delay from the giant sample data. The statistical analysis of link delay sample data shows that the biggest link delay of more than 90% paths takes more than 1/4 of the traveling time, and the dominating delay of IP level is defined on this theory.
     Second, the dissertation further studies the behavior characteristic of dominant delay, because of its great influence on network transmission behavior. The detailed investigation of dominant delay reveals that the ratios of the dominant delay to the traveling time are similar among paths whose traveling time varies greatly. It indicates that there is no necessary relation between the dominant delay's influence and traveling time. But because the dominant delays themselves differ greatly on numerical values, it causes great difference among the similar diameter's traveling time and this is directly manifested in the multi-modal distribution of Internet traveling time. Then, a further analysis of dominant delay on AS autonomous domain is taken and it explains the reason why dominant delays seldom occur between the AS autonomous domains. By mapping the nodes from IP level to AS autonomous domain, the dissertation analyzes the transmission behavior of AS autonomous domains on topological structure and discovers that dominant delay tends to appear inside the AS autonomous domain. In addition, the dissertation discusses the main reason which causes the dominant delay by mapping the IP node to its geographical location. The results show that the length of the linking path mainly affects the scale of the dominant delay.
     Finally, this dissertation describes the evolving trend of transmission behavior of the whole network from great time scale. The definition of traveling time based on evolution was provided and the stability of evolving samples was proved. Basing on this, the saturated correlative dimension of chaotic attractor of Internet traveling time with phase space reconstruction and G-P algorithm are calculated, which approves that the evolvement of Internet traveling time has the characteristic of chaos. A revised logistic model with sine and cosine functions was proposed to describe the evolvement state of network transmission behavior. Moreover, particle swarm optimization (PSO) algorithm is adopted for the parameters estimation of the revised model, which is evaluated from the perspective of convergence, fitting accuracy and forecasting accuracy. The result indicates that the structure of the optimized model is reasonable and is able to reflect the movement of network transmission behavior accurately.
引文
1 中国互联网络信息中心(CNNIC),《第18次中国互联网络发展状况统计报告》,2006年7月19日
    2 戴汝为,操龙兵. Internet—一个开放的复杂巨系统[J].中国科学,2003,33(4):289-296
    3 张宏莉,方滨兴,胡铭曾.Internet测量与分析综述[J].软件学报,2003,14(1):110-116
    4 高汉中.论下一代网络[J].电信科学,2003,19(2):1-7
    5 Miller N, Steenkiste P. Collecting network status information for nework-aware applications [C]. In:Proc IEEE INFORCOM 2000,2:641-650
    6 Radoslavov P, Govindan R, Estrin D. Topology-informed Internet replica placement [J]. Computer Communications,2002,25(4):384-392
    7 Subramanian L, Agarwal S, Rexford J, Katz R H. Characterizing the Internet hierarchy from multiple vantage points [C]. In:Proc IEEE INFOCOM 2002,2:618-627
    8 Krioukov D, Yang K X. Compact routing on internet-like graphs [C]. In:Proc IEEE INFOCOM 2004,1:208-219
    9 Staniford S, Paxson V, Weaver N. How to own the Internet in your spare time [C]. In: Proc the 11th USENIX Security Symposium,2002,149-167
    10 Zou C C, Towsley D, Gong W B. Email virus propagation modeling and analysis [C]. Technical Report TR-CSE-03-04, University of Massachusetts, Amherst 2003
    11 Balthrop J, Forrest S, Newman M E J, Williamson M M. Technological networks and the spread of computer viruses [J]. Science,2004,304:527-529
    12 Jaim M, Dovrolis C. End-to-end available bandwidth:measurement methodology, dynamics and relation with TCP throughput [J]. IEEE/ACM Transactions on Networking. 2003,11(4):537-549
    13 Hu N N, Steenkiste P. Evaluation and characterization of available bandwidth probing techniques [J]. IEEE Journal on Selected Areas in Communications.2003,21(6):879-894
    14 Ribeiro V J, Riedi R H, Baraniuk R G. Locating available bandwidth bottlenecks [J]. IEEE Internet Computing,2004,8(5):34-41
    15 Alderson D, Willinger W. A contrasting look at self-organization in the Internet and next-generation communication networks [J]. IEEE Communications Magazine,2005, 43(7):94-100
    16 Toward mathematically rigorous next-generation routing protocols for realistic network topologies [EB/OL].2006. http://www.caida.org/projects/nets-nr/
    17 Floyd S, Paxson V. Difficulties in simulating the Internet[J]. IEEE/ACM Trans. on Networking,2001,9(4):392-403.
    18张宇,张宏莉,方滨兴Internet拓扑建模综述[J].软件学报,2004,15(8):1220-1226
    19 Waxman BM. Routing of multipoint connections. IEEE Journal on Selected Areas in Communications,1988,6(9):1617-1622.
    20 Doar MB. A better model for generating test networks. In:Proc. of the GLOBECOM'96. London:IEEE,1996.86-93.
    21 Zegura EW, Calvert KL, Donahoo MJ. A quantitative comparison of graph-based models for Internet topology. IEEE/ACM Trans.on Networking,1997,5(6):770-783
    22 Faloutsos M, Faloutsos P, Faloutsos C. On power-law relationships of the Internet topology. ACM SIGCOMM Computer Communication Review,1999,29(4):251-262.
    23张国强,张国清. Internet网络的关联性研究[J].软件学报,2006,17(3):490-497
    24姜誉,方滨兴,胡铭曾.多点测量Internet路由级拓扑[J].电信科学,2004,20(9):12-17
    25周晋,路海明,李衍达.用small world设计无组织P2P系统的路由算法[J].软件学报,2004,25(6):915-923
    26王嫚,徐惠民.基于小世界聚类的网格资源查找算法[J].北京邮电大学学报,2006,29(1):17-21
    27 Vern Paxson. An Architecture for Large-Scale Internet Measurement [J], IEEE Communications,1998,36(8):48-54
    28 Tony MeGrego. The NLANR Network Analysis Infrastructure, IEEE Communication Magazine,2000,38(5):122-128
    29 Sunil Kalidindi,Matthew. Surveyor:An Infrastructure for Internet Performance Measurements,http://telesto.advanced.org/-kalidindi/papers/INET/inet99.html.
    30 CAIDA Skitter Project. [EB/OL]http://www.caida.org.
    31毕经平,吴起,李忠诚. Internet延迟瓶颈的测量与分析[J].计算机学报,2003,26(4):406-416
    32姜誉,方滨兴,胡铭曾,何仁清.大型ISP网络拓扑多点测量及其特征分析实例[J].软件学报,2005,16(5):846-856
    33张宇,方滨兴,张宏莉.中国AS级拓扑测量与分析[J].计算机学报,2008,31(4):611-619
    34 D.L.Mills. Internet delay experiments, RFC-889,1983,12.
    35 MOON S B, KUROSE J, SKELLY P, TOWSLEY D. Correlation of packet delay and loss in the Internet[R].Technical Report 98-11, Department of Computer Science, University of Massachusetts, Amherst, MA 01003.
    36 Sanghid D, Agrawala A. Experimental assessment of end-to-end behavior on Internet [A]. Proceedings of IEEE INFOCOM'93[C]. San Francisco,USA,1993.867-874.
    37 Jean-Chrysostome Bolot. Characterizing End-to-End Packet Delay and Loss in the Internet, ACM SIGCOMM,1993,289-298
    38 Acharya A, Saltz J. A study of Internet round2trip delay. Technical Report CS2TR23736,University of Maryland, College Park 20742,1997
    39张宇,方滨兴,张宏莉.中国IP级网络拓扑测量与分析[J].通信学报,2007,28(12):96-101
    40 Wang W X, Wang B H. General dynamics of topology and traffic on weighted technological networks [J]. Phys Rev Letter,2005,94:188702.
    41 Leland W, Willinger W. On the self-similar nature of Eethernet traffic [J]. IEEE/ACM Transactions on Networking,1994,2 (1):1215.
    42 Pastor R, Alessandro V. Epidemic Spreading in Scale2Free Networks [J]. Phys Rev Letter,2001,86(14):320023203.
    43邹柏贤,刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002,39(12):1645-1652
    44李捷,候秀红,韩志杰,基于卡尔曼滤波和小波的网络流量预测算法研究[J].电子与信息学报,2007,29(3):53-60
    45方锦清,汪小帆,刘曾荣.略论复杂性问题和非线性复杂网络系统的研究[J].基础 科学.2004,(2):9-12
    46张琪昌,王洪礼等.分岔与混沌理论及应用[M].天津大学出版社,天津.2005.256-280
    47 Watts D J, Strogatz S H. Collective dynamics of small-world networks [J], Nature,1998, 393,440-442
    48 Barabasi A L, Albert R. Emergence of scaling in complex networks [J], Science. 1999,286,509
    49李昊,山秀明,任勇.具有幂率度分布的因特网平均最短路径长度估计[J].物理学报,2004,53(11):3695-3700
    50 Carmi S, Havlin S, Kirkpatrick S, Shavitt Y, Shir E. MEDUSA-New model of Internet topology using k-shell decomposition [J]. ArXiv Condensed Matter e-prints,2006
    51 Jaiswal S, Rosenberg A L, Towsley D. Comparing the structure of power-law graphs and the Internet AS graph [C]. In:Proc 12th IEEE International Conference on Network Protocols,2004:294-303
    52 Alvarez H J I, Dall A L, Barrat A, Vespignani A. K-core decomposition:a tool for the visualization of large scale networks [J] Advances in Neural Information Processing Systems,2006,18:41
    53 Li Y, Cui J H, Maggiorini D, Faloutsos M. Characterizing and modelling clustering features in AS-level Internet topology [C]. UCONN CSE Technical Report: UbiNet-TR07-02,2007
    54 Fraigniaud P, A new perspective on the small-world phenomenon:greedy routing in tree-decomposed graphs [C]. In:Proc 13th Annual European Symposium on Algorithms, 2005:791-802
    55 Oliveira R V, Zhang B, Zhang L. Observing the evolution of internet as topology [C]. In: Proc ACM SIGCOMM 2007,37(4):313-324
    56 Albert R, Barabasi A. Statistical mechanics of complex networks[J]. Reviews of Modern Physics,2002,74(1):47-97
    57张家才,姚力等. Internet动态行为的探索[J].北京师范大学学报(自然科学版),2001,37(5):628-631.
    58汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].清华大学出版社,2006,49-70
    59 Yook S H, Jeong H, Barabasi A L. Modeling the Internet's large-scale topology [J]. Applied Physical Sciences,2002,99(21):13382-13386
    60 ADAMIC L A, HUBERMAN B A. Evolutionary dynamics of the World Wide Web [J]. Nature,1999,401(9):131
    61周晋,路海明,李衍达.用small world设计无组织P2P系统的路由算法[J].软件学报,2004,25(6):915-923
    62徐野,赵海,苏威积,张文波,张听. Internet网络的访问直径分析[J].计算机学报,2006.05(29):690-698.
    63张文波,赵海,孙佩刚.因特网拓扑演化及其节点平均连接度的分形研究[J].电子学报,2006(8):1438-1445
    64 Macroscopic Topology Measurements, CAIDA. [EB/OL] http://www.caida.org/analysis/topology/macroscopic/
    65 Skitter, CAIDA. [EB/OL] http://www.caida.org/tools/measurement/Skitter/
    66 Skitter Destination Lists, CAIDA. [EB/OL] http://www.caida.org/analysis/topology/macroscopic/list.xml
    67苏威积,赵海,徐野,张文波.基于HOPS的Internet复杂网络分割度分析[J].通信学报,2006,26(9):1-8
    68徐野,赵海,苏威积,张文波. Internet网络的IP基密度分析[J].通信学报,2005,11(26):125-131
    69 Meyer D. University of Oregon Route Views Project. [EB/OL] http://www.routeviews.org/
    70 RIPE Routing Information Service Project. [EB/OL]http://www.ripe.net/
    71 Swiss Network Operators Group. [EB/OL] http://www.swinog.ch/
    72 Huston G. Analyzing the Internet BGP routing table [J]. The Internet Protocol Journal, 2001,4(1):2-15
    73 Gao L X. On inferring autonomous system relationships in the Internet [C]. In:Proc 2000 IEEE Global Telecommunications Conference,2000,1:387-396
    74 Teixeira R, Resford J. A measurement framework for pin-pointing routing changes [C]. In: Proc 2004 ACM SIGCOMM Workshop on Network Troubleshooting,2004:313-318
    75 Tangmunarunkit H, Govindan R, Shenker S, Estrin D. The impact of routing policy on Internet paths [C]. In:Proc IEEE INFOCOM 2001,2:736-742
    76 Hyun Y, Broido A, Claffy K C. Tracertoute and BGP AS path incongruities [C]. CAIDA Technical Report,2003:1-14
    77 Hyun Y, Broido A, Claffy K C. On third-party addresses in traceroute paths [C]. In:Proc 4th International Passive and Active Measurement Workshop,2003
    78 Oregon Route Views Project.2007. [EB/OL] http://www.routeviews.org/
    79林宇,程时端,邬海涛,金跃辉,王文东.IP网端到端性能测量技术研究的进展[J].电子学报,2003,31(8):1228-1233
    80李勇军,蔡皖东,王伟.网络断层扫描技术综述[J],计算机工程.2006,32(13):91-93
    81 CAIDA Ark. [EB/OL] http://www.caida.org/projects/ark/
    82 Huffaker B, Plummer D, Moore D. Claffy K. Topology discovery by active probing. Applications and the Internet (SAINT) Workshops,2002,90-96
    83 Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D U. Complex networks:structure and dynamics [J]. Physics Reports,2006,424:175-308
    84 Douglas B. West.图论导引[M].机械工业出版社,2006,1-47,339-348.
    85 Aiello W, Chung F, Lu L. A random graph model for massive graphs[A]. Proceedings of the 32nd Annual Symposium on the Theory of Computing[C],2000
    86 Klemm K, Eguiluz V M. Growing scale-free networks with small world behavior [J]. Physical Review E,2002,65:057102-1-057102-4
    87 Davidson J, Ebel H, Bornholdt S. Emergence of a small world from local interactions: Modelling acquaintance networks [J]. Phys Rev Lett,2002,88,128701-1-128701-4.
    88 Kumar, R. et al., Trawling the web for cyber communities [A], Proc.8th www,1999
    89单锐,郑彩萍.非线性时间序列ARMA模型的优化估计法[J],统计与决策.2008,259(7):169-171
    90 Kennedy J. Particle Swarm Optimization [C]. In IEEE Conf on Neural Networks, Perth, Australia,1995:1942-1948
    91黄润生.混沌及其应用[M].武汉大学出版社.2000.1.1:191-239.
    92 Floyd S, Kohler E. Internet research needs better models [J]. ACM SIGCOMM Computer Communication Review,2003,33(1):29-34
    93杜鹏,宁永海,黄汉卿.基于网络延迟瓶颈定位算法的研究[J],微电子学与计算机. 2008,25(2):144-147
    94 Moy. OSPF Version 2, Internet Engineering Task Force Request For Comments 2328(Standards Track). Ascend Communications, April 1998.
    95 Y.Rekhter. A Border Gateway Protocol 4(BGP-4).March 1995.
    96 Battista G D, Erlebach T, Hall A, Patrignani M, Pizzonia M, Schank T. Computing the types of the relationships between autonomous systems [J]. IEEE/ACM Transactions on Networking,2007,15(2):267-280
    97 Xu K, Duan Z H, Zhang Z L, Chandrashekar J. On properties of Internet exchange points and their impact on AS topology and relationship [C]. In:Proc 3rd International IFIP-TC6 Networking Conference,2004:284-295
    98 Dimitropoulos X, Krioukov D, Fomenkov M, Huffaker B, Hyun Y, Claffy K C, Riley G AS relationships:inference and validation [J]. SIGCOMM Computer Communications Review,2007,37(1):29-40
    99 Battista G D, Patrignani M, Pizzonia M. Computing the types of the relationships between autonomous systems [C]. In:Proc IEEE INFOCOM 2003,1:156-165
    100 Dimitropoulos X A, Krioukov D V, Huffaker B, Claffy K C, Riley G F. Inferring AS relationships:dead end or lively beginning [C]. In:Proc 4th Workshop on Efficient and Experimental Algorithms,2005
    101 Rekhter Y. A Border Gateway Protocol4(BGP-4).RFC4271.2006.
    102胡湘江,朱培栋,龚正虎. SE-BGP:An Approach for BGP Security[J],软件学报.2008,19(1):167-176
    103 Merit IRR Services [EB/OL]. http://www.irr.net/
    104 Autonomous System Taxonomy Repository [EB/OL]. http://www.caida.org/data/active/as_taxonomy/
    105 http://netgeo.caida.org/aslatlong.txt
    106 NetGeo-The Internet Geographic Database [EB/OL].http://www.caida.org/tools/utilities/netgeo/
    107 http://www.caida.org/data/active/as_taxonomy/as_rel.tgz
    108 Documentation for the CAIDA::ASFinder module [EB/OL]. http://www.caida.org/tools/measurement/coralreef/doc/libsrc/ASFinder/doc/index.html
    109 Oregon Route Views Project[EB/OL].2007. http://www.routeviews.org/
    110 Paxson V. End-to-End Internet Packet Dynamics[J]. IEEE/ACM Transactions on Networking.1999,7(3):277-292.
    111 Zeitoun A, Chen-Nee Chuah, Bhattacharyya S, Diot C. An AS-level study of Internet path delay characteristics [C]. In:GLOBECOM'04 Global Telecommunications Conference, 2004:1480-1484
    112 Halabi S, McPherson D. Internet Routing Architectures[M].北京:清华大学出版社,2000.
    113张国强,张国清.互联网AS级拓扑的局部聚团现象研究[J].复杂系统与复杂性科学.2006,3(3):34-41.
    114 http://www.caida.org/tools/visualization/geoplot/
    115 Caida. Skitter Destination Lists[EB/OL]. http://www.caida.org/analysis/topology/macroscopic/list.xml
    116罗恒端,吴诗其.数据分组网中自相似业务模型的研究进展[J].通信学报,2002,23(7):107-115
    117 Klemm K, Eguiluz V M. Growing scale-free networks with small world behavior [J]. Physical Review E,2002,65:057102-1-057102-4
    118 Albert R, Baraba A L. Statistical mechanics of complex networks [J]. Reviews of Modern Physics,2002,74(1):47-97
    119 Hegger R, Kantz H. Practical implementation of nonlinear time series methods, The TISEAN software package online documentation [R]
    120黄润生.混沌及其应用.武汉:武汉大学出版社,2000.
    121张琪昌,王洪礼,竺致文.分岔与混沌.天津:天津大学出版社,2005.
    122吕金虎,陆君安.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002
    123李后强,汪富泉.分形理论及其在分子科学中的应用.北京:科学出版社,1993
    124张伟,吴智铭,杨根科.混沌时间序列的遗传演化建模[J].电子学报.2005,33(4):748-751.
    125吴淑玲.利用Logistic模型预测我国数字图书馆的发展趋势[J].情报方法.2004,23(4):56-57
    126尹朝庆,尹皓.人工智能与专家系统[M].中国水利水电出版社,2002,286-295.
    127 Xu H J,Ioannou P A,Mirmirani M. Adaptive sliding mode control design for a hypersonic flight vehicle[J].Journal of Guidance,Control and Dynamics,2004,27 (5):829-838
    128孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300
    129汪剑鸣,许镇琳.浮点遗传算法中一种新的杂交算子[J],控制理论与应用,2002.1219(6):977-980.
    130 Kennedy J,Eberhart R. Particle Swarm optimization[C].IEEE International Conference on Neural Network. USA:IEEE Press,1995,4:1942-1948
    131 Lorenz E. N. Deterministic nonperiodic flow. Journal of Atoms Science,1963,20:130-141
    132康卓,黄竞伟,李艳.复杂系统数据挖掘的多尺度混合算法软件学报,2003,14(7):1229-1237.
    133袁坚,任勇,刘锋.复杂计算机网络中的相变和整体关联行为[J].物理学报,2001,50(7):12212-1225.
    134彭仕政.非线性系统的随机过程[M].贵阳:贵州人民出版社,2001.
    135 Kwok T, Smith K A. Experimental analysis of chaotic neural network models for combinatorial optimization under a unifying framework.Neural Networks,2000, 13:731-744.
    136 Khotanzad A, Elragal H. Combination of artificial neural network forecasters for prediction of natural gas consumption. IEEE Transaction on Neural Networks,2000, 11(2):464-473

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700