用户名: 密码: 验证码:
基于柔性鳍波动的水下仿生系统推进性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下推进器在海洋资源的勘探技术装备开发中起着越来越重要的作用,传统的水下推进器多采用螺旋桨推进,在效率、机动能力、能耗、噪音等方面存在不足,因此,设计高性能水下推进器已成为各国关注的热点和核心问题之一。鱼类作为海洋的主要“居民”经过上亿年的进化和自然选择,形成了适合海洋环境的独特形态和运动方式。其中柔性鳍波动推进模式与传统的鱼类身体/尾鳍(body and/or caudal fin,简称BCF)推进模式相比,属于中央鳍/对鳍(median and/or paired fin,简称MPF)推进模式,具有低速下高效、高机动性和低流体扰动等显著优点,为未来水下推进器的仿生设计提供了新的选择,采用此种推进模式的仿生推进器不仅适用于远距离航行,还具有小范围机动灵活、抗扰动能力强的特点,对海洋资源的勘探技术装备开发甚至军事方面具有重要的理论研究价值和广阔的应用前景。
     论文主要围绕柔性鳍波动推进仿生系统的结构设计、水动力学建模及数值计算和实验验证三方面展开:
     首先,基于动量守恒定律对柔性鳍波动推进模型进行水动力分析,提出基于三维非定常流体控制方程组和基于流固耦合控制方程组的柔性鳍波动系统动力学建模方法,并对两种建模方法进行了分析与比较。
     其次,以刀鱼长背鳍为研究对象,提出一种新型柔性长背鳍波动模型并通过波动性能实验对柔性长鳍进行优化,采用基于三维非定常流体控制方程组的建模方法对柔性长鳍进行动力学建模并采用计算流体动力学(computational fluid dynamics,简称CFD)方法对柔性长鳍波动推进运动实现三维数值计算,揭示了柔性鳍波动时周围流体的压力场、速度场分布特征,同时揭示了柔性鳍波动推进力的变化周期是鳍波动周期的一半。
     然后,仿生设计并研制了一套基于柔性长鳍波动的仿生推进装置,该装置采用单电机驱动,依靠柔性鳍自身与流体的相互作用传递行波实现推进。同时开展水下推进性能实验,验证系统设计的可行性和可靠性。通过数值计算结果与实验结果的对比,验证了动力学模型及数值计算方法的合理性与准确性,为进一步分析柔性鳍波动的推进机理及提高推进性能的研究提供理论指导及实验基础。
     为了进一步提高柔性鳍波动推进性能,以枪乌贼为研究对象提出柔性双鳍波动推进方式,并基于流固耦合建模的数值计算方法对柔性双鳍波动推进性能进行优化评估,实现三维流固耦合数值计算,在此基础上完成柔性双鳍波动推进仿生系统的样机研制并开展了水下推进性能实验,验证双鳍波动系统设计的可行性和可靠性。基于流固耦合建模的数值计算方法是一种有效的柔性鳍波动推进设计优化方法,为开发新型的基于柔性鳍波动的仿生推进系统提供新的思路及分析方法。
     本研究工作在柔性鳍波动推进动力学模型及仿生装置研制等方面积累的成果为柔性鳍波动推进仿生智能机器人的深入研究积累了很好的经验,为今后更为深入的理论研究和开发实践奠定了坚实基础。
Propellers have been playing an increasingly important role in underwater devices for resources exploration. As traditional propulsions (such as jets and axial propellers) have little advantages of propulsive efficiency at low speed, maneuverability, power consumption and acoustic noise, designing of alternative high-performance underwater propulsion becomes one of most interested research topics. Fish owes their unique morphological characteristics and movement modes for living in deep sea environment after billions of years of evolution and natural selection. In comparison against body/caudal fin (BCF) modes, the flexible undulating fin-based propulsion mode (as one of median/paired fin modes) offers several advantages including good propulsive efficiency, great maneuverability, and low underwater acoustic noise at low speeds; as a result, it is a source of biologically inspiration for future propeller designs.
     This dissertation presents the design and modeling of a flexible undulating fin-based propulsion system and findings of computational and experimental investigations.
     Firstly, a new design of a long flexible undulating fin inspired by the knifefish has been developed with the aid of an experimental investigation. Secondly, the hydrodynamics of a flexible undulating fin has been numerically modeled based on the conservation equations of mass and momentum. The three dimensional unsteady fluid controlled equations take into account the effects of fluid-solid interaction and have been numerically solved using computational fluid dynamics (CFD) method for the pressure and velocity distributions and the forces acting on the undulating fin in the neighborhood of the undulating fin. Thirdly, a fin-based robotic fish (driven by a single DC-motor) has been designed and developed for forward propulsion using the undulating fin which propagates the wave in the opposite direction of the swim. The feasibility and reliability of the design have been examined experimentally, which also provides a basis for validating the computed thrust. The theoretical predication, which agrees well with the measured data validating the numerical model, offers guidance for performances improvements of future designs.
     To improve the propulsion performances, the undulating lateral fin has been numerically solved using a three-dimensional unsteady method based on fluid-solid interaction effect, for optimizing the design of the robotic fish based on flexible lateral fins, which method is experimentally validated previously by comparing the computed thrust against data measured on the prototype long flexible-fin mechanism. Thus a prototype paired lateral-fin mechanism has been developed and experiments have been done validating for feasibility and reliability of the system. The results show that this analysis method is feasible and reasonable for analyzing and optimizing the propulsion performance.
     In summary, the hydrodynamic model and numerical results of the flexible undulating fin provide a good foundation for research and development of a flexible undulating fin based system.
引文
[1]蒋新松.未来机器人技术发展方向的探讨.机器人,1996,18(5):285-291.
    [2]刘敏,李力,舰船喷水推进器和螺旋桨.国外舰船工程,2003,294(8):27-31
    [3]Sfakiotakis, Lane, D M and Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering,1999.24:237-252.
    [4]Webb P W. Maneuverability general issues. IEEE Journal of Oceanic Engineering. 2004,29(3):547-555.
    [5]喻俊志,陈尔奎,王硕,谭民.仿生机器鱼研究的进展与分析.控制理论与应用,2003,20(4):485-491.
    [6]曾妮,杭观荣,曹国辉等.仿生水下机器人研究现状及其发展趋势.机械工程师,2006,(4):18-21.
    [7]梁建宏,王田苗,魏宏兴.仿生机器鱼技术研究进展及关键问题探讨.机器人技术与应用,2003,(3):14-19.
    [8]Colgate J E, Lynch K M. mechanics and control of swimming:A Review. IEEE Journal of Oceanic Engineering,2004,29(3):660-673.
    [9]成巍,苏玉民,秦再白等.一种仿生水下机器人的研究进展.船舶工程,2004.26(1):5-8.
    [10]Breder C M. The locomotion of fishes. Zoologica,1926.4(2):159-256.
    [11]Webb P W. Form and function in fish swimming. Scientific American,1984.251(1): 58-68.
    [12]Kato N. Median and paired fin controllers for biomimetic marine vehicles. Transactions of the ASME,2005,58:238-252.
    [13]Blake R W. Fish locomotion. Cambridge:Cambridge University Press,1983.
    [14]VIDELER J J. Fish swimming. Chapman & Hall, New York.1993.
    [15]BLAKE R W. Undulatory median fin propulsion of two teleosts with different modes of life. Can. J. Zool.,1980,58:2116-2119.
    [16]王振龙,杭观荣,王扬威等.乌贼游动机理及其在仿生水下机器人上的应用.机械工程学报,2008,44(6):1-9.
    [17]Low K H, Gerald G L and Zhou C. Biomimetic design and workspace study of compact and modular undulating fin body segments. Int. Conf. on Mechatronics and Automation. Harbin. China,2007,129-136.
    [18]http://academic.reed.edu/biology/courses/BIO342/2011_syllabus/2011_websites/mori ah_misha/index.html
    [19]Blake R W. Swimming in the electric eels and knifefishes. Can. J. Zool.1983. 61:1432-1441.
    [20]Kier W M. The fin musculature of cuttlefish and squid (Mollusca, Cephalopoda): morphology and mechanics. J. Zool., Lond.1989,217:23-38.
    [21]Yamamoto I, Terada Y. Nagamatu T, et al. Propulsion system with flexible/rigid oscillating fin. IEEE J of Oceanic Engineering,1995,20(1):23-30.
    [22]Bandyopadhyay R. Trends in Biorobotic Autonomous Undersea Vehicles Promode. IEEE J. Ocean. Eng.,30(1):109139,2005.
    [23]童秉纲.鱼类波状游动的推进机制.力学与实践,2000,22(3):69-74.
    [24]Zhu Q. Wolfgang M J, Yue D K P, et al. Three-dimensional flow structures and vorticity control in sh-like swimming. J. Fluid. Mech.,2002,468:1-28.
    [25]Lauder G V. Drucker E G. Morphology and experimental hydrodynamics of fish fin control surfaces. J. Ocean. Eng.,2004,29(3):556-571.
    [26]张代兵.波动鳍仿生水下推进器及其控制方法研究.国防科技大学博士论文,长沙:国防科技大学,2007.
    [27]Taylor G. Analysis of the swimming of microscopic organisms.//Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. London: The Royal Society,1951:447-461.
    [28]Taylor G. Analysis of the swimming of long and narrow animals.//Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. London: The Royal Society,1952:158-183.
    [29]Lighthill M J. Note on the swimming of slender fish. J. Fluid. Mech.,1960,9:305-317.
    [30]Lighthill M J. Aquatic Animal Propulsion of High Hydromechanical Efficiency. J. Fluid Mech.,1970,44:265-301.
    [31]Lighthill M J. Large-amplitude Elongated-body Theory of Fish Locomotion. Proc. R. Soc. Lond. B,1971,179:125-138.
    [32]Wu T Y. Swimming of a waving plate. J. Fluid. Mech.,1961.10(3):321-344.
    [33]Wu T Y. Hydromechanics of swimming propulsion, Part 1. Swimming of a Two-dimensional Flexible Plate at Variable Forward Speeds in an Inviscid Fluid. J. Fluid Mech.,1971,46:337-355.
    [34]Wu T Y. Hydromechanics of swimming propulsion, Part 2. Some Optimum Shape Problems. J. Fluid Mech.,1971,46:521-544.
    [35]Cheng J Y, Zhuang L X and Tong B G. Analysis of swimming three dimensional waving plates. J.Fluid. Mech.,1991,232:341-355.
    [36]Tong B G. Zhuang L X and Cheng J Y. The hydrodynamic analysis offish swimming performance and its morphological adaptation. Surveys in Fluid DynamicsⅢ, Sadhana.1993,18:719-728,.
    [37]童秉纲,庄礼贤.描述鱼类波状游动的流体力学模型及其应用.自然杂志,1998.20:1-7.
    [38]Wu T Y. Mathematical biofluiddynamics and mechanophysiology of fish locomotion Math. Meth. Appl. Sci.,2001,24:1541-1564.
    [39]Wu T Y. On theoretical modeling of aquatic and aerial animal locomotion. Adv. in Appl. Mech.,2001,38:291-353.
    [40]Miriam A A. Mechanical properties of the dorsal fin muscle of seahorse (hippocampus) and pipefish. J. Exp. Zoo.,2002,293:561-577.
    [41]Long J H, Adcock J B and Root R G. Force transmission via axial tendons in undulating fish:a dynamic analysis combiochem. Physiol.,2002,133A:911-929.
    [42]章永华.柔性仿生波动鳍的理论与实验研究.中国科学技术大学博士论文.合肥:中国科学技术大学,2008.
    [43]王光明,沈林成,吴永辉.柔性长鳍波动推进动量传递的有效性分析.第25届中国控制会议,2006:1681-1684.
    [44]Lighthill M J, Blake R. Biofluiddynamics of balistiform and gymnotiform locomotion, Part 1:Biological background, and analysis by elongated-body theory. J. Fluid. Mech., 1990,212:183-207.
    [45]Lighthill M J, Blake R. Biofluiddynamics of balistiform and gymnotiform locomotion, Part 2:The pressure distribution arising in two-dimensional irrotational flow from a general symmetrical motion of a flexible flat plate normal to itself. J. Fluid. Mech., 1990,213:1-10.
    [46]Lighthill M J, Blake R. Biofluiddynamics of balistiform and gymnotiform locomotion. Part 3:Momentum enhancement in the presence of a body of elliptic cross-section. J. Fluid. Mech.,1990,213:11-20.
    [47]Zhu Q, et al. Threedimensional flow structures and vorticity control in fishlike swimming. J. Fluid Mech.,2002,468:1-28.
    [48]Ramamurti R. et al. Fluid dynamics of flapping aquatic flight in the bird wrasse:three dimensional unstesdy computations with fin deformation. J. Exp. Biol.,2002.205: 2997-3008.
    [49]Ramamurti R, Lohner R and Sandberg W C. Computation of unsteady flow past a tuna with caudal fin oscillation. Advances in Fluid Mechanics,1996.9:169-178.
    [50]Ramamurti R and Sandberg W C. Simulation of flow about flapping airfoils using a finite element incompressible flow solver. AIAA J.2001.39:253-260.
    [51]Ramamurti 1 R. Sandberg W C, Lohner R, and et al. Fluid dynamics of flapping aquatic flight in the bird wrasse:three dimensional unsteady computations with fin deformation. J. Exp. Biol.,2002,205:2997-3008.
    [52]Ramamurti R, Sandberg W C and Lohner R. The influence of fin rigidity and gusts on the force production in fishes and insects:a computational study. AIAA20040404. Washington, D.C.,2004.
    [53]夏全新,鲁传敬,吴磊.鱼类波状摆动推进的数值模拟.水动力学研究与进展A辑.2005,20:921-928.
    [54]Kern S, Koumoutsakos P. Simulations of optimized anguilliform swimming. J Exp. Biol.,2006,209:4841-4857.
    [55]Singh S N, Simha A and Mittal R. Biorobotic AUV maneuvering by pectoral fins: inverse control design based on CFD parameterization. J. Ocean. Engine.,2004, 29(3):777-785.
    [56]Sarkar S, Venkatraman K. Numerical simulation of thrust generating flow past a pitching airfoil. Computers & Fluids,2006,35(1):16-42.
    [57]Takashi. A fundamental study for the flow field around undulating side fins and hydrodynamic forces action on fins.2006.
    [58]Epstein M, Colgate J E and MacIver M A. A biologically inspired robotic ribbon fin. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Edmonton, Alberta, Canada,2005.
    [59]Shirgaonkar A A, Curet O M, Patankar N, amd MacIver M A.The hydrodynamics of ribbon-fin propulsion during impulsive motion. J. Exp. Biol.,2008,211:3490-3503.
    [60]Shirgaonkar A A, MacIver M A, and Patankar N A. A new mathematical formulation and fast algorithm for fully resolved simulation of self-propulsion. J. Computational Physics,2009,228:2366-2390.
    [61]Zhang Y H, He J H and Yang J. A computational fluid dynamics (CFD) analysis of undulatory mechanical fin driven by shape memory alloy. International Journal of Automation and Computing,2006.3(4):374-381.
    [62]Zhang Y, Jia L B, Zhang S W and et al. Computational research on modular undulating fin for biorobotic underwater propulsor. J. Biol. Eng.,2007,4:25-32.
    [63]Hu T J, Shen L C, and Wang G M. A novel CFD based approach of biopropulsor allocation optimization for underwater robots. ICMEM2005 Int. Conf. on Mechanical Engineering and Mechanics, Nanjing, China,2005,26-28.
    [64]Hu T J. Shen L C. CFD validation of the optimal arrangement of the propulsive dorsal fin of gymnarchus niloticus. J. Biol. Eng..2006,3:139-146.
    [65]Harris J E. The role of the fins in the equilibrium of the swimming fish.I. Wind-tunnel tests on a model of mustelus canis (Mitchill). J. Exp. Biol.,1938,13:476-493.
    [66]Drucker E G and Lauder G V. Locomotor function of the dorsal fin in Teleost fishes: an experimental analysis of wake forces in Sunfish. J. Exp. Biol.,2001. 204:2943-2958.
    [67]Katz S L and Shadwick R E. Curvature of swimming fish midlines as an index of muscle strain suggests swimming muscle produces net positive work. J. Theor. Biol. 1998,193:243-256.
    [68]Ellerby D J, Altringham J D, Williams T and et al. Slow muscle function of pacific bonito (Sarda chiliensis) during steady swimming. J. Exp. Biol.,2000,203: 2001-2013.
    [69]Syme D A, Shadwick R E. Effects of longitudinal body position and swimming speed on mechanical power of deep red muscle from Skipjack Tuna (Katsuwonus pelamis). J. Exp. Biol.,2002,205:189-200.
    [70]Syme D A. Functional properties of skeletal muscle. Fish Biomechanics in Fish Physiology. Academic, San Diego.2006,23:179-240.
    [71]Rosenberger L J, Westneat M W. Functional morphology of undulatory pectoral fin locomotion in this stingray TAENIURA LYMMA(Chondrichthyes:dasyatidae). J. Exp. Biol.,1999,202:3523-3539.
    [72]Rosenberger L J, Pectoral fin locomotion in batoid fishes:undulation versus oscillation. J. Exp. Biol.,2001,204:379-394.
    [73]Maclver M A, Sharabash N M, and Nelson M. Prey-capture behavior in gymnotid electric fish:motion analysis and effects of water conductivity. J. Exp. Biol.,2001, 204:543-557.
    [74]MacIver M A, Fontaine E, and Burdick J W. Designing future underwater vehicles: principles and mechanisms of the weakly electric fish. J. Oceanic Eng.,2004. 29(3):651-659.
    [75]Kier W M. Messenger J B. and Miyan J A. Short communication mechanoreceptors in the fins of the cuttlefish. Sepla Officinalis. J. Exp. Biol.,1985,119:369-373.
    [76]Klein M D. Spoor C W, Frans CT. and et al. Measuring muscle and joint geometry parameters of a shoulder for modeling purposes. J. Biomechanics,1999. 32:1191-1197.
    [77]Anderson E J. Demont M E. The locomotory function of the fins in the squid loligo pealei. Marine and Freshwater Behaviour and Physiology,2005; 38(3):169-189.
    [78]Westneat M W. Functional morphology of aquatic flight in fishes:kinematics. electromyography, and mechanical modeling of labriform locomotion. Am. Zool. 1996.36:582-598.
    [79]Drucker E G. and Lauder G V. Locomotor function of the dorsal fin in rainbow trout: kinematic patterns and hydrodynamic forces. J. Exp. Biol.,2005,208:4479-4494.
    [80]Walker J and Westneat M. Labriform propulsion in fishes:kinematics of flapping aquatic flight in the bird wrasse gomphosus varius (Labridae). J. Exp. Biol.,1997.200: 1549-1569.
    [81]Wu G, Yang Y, and Zeng L. Routine turning maneuvers of carp cyprinus carpio koi: effects of turning rate on kinematics and hydrodynamics. J. Exp. Biol.,2007.210: 4379-4389.
    [82]Shadwick R, Gemballa S. Structure, kinematics, and muscle dynamics in undulatory swimming. In:Shadwick RE, Lauder GV (eds) Fish biomechanics in fish physiology. Academic, San Diego,2006,23:241-280.
    [83]Lauder G V, Drucker E G. Forces, fishes, and fluids:hydrodynamic mechanisms of aquatic locomotion. News Physiol Sci.,2002,17:235-240.
    [84]Lauder G V. Function of the caudal fin during locomotion in fishes:kinematics, flow visualization, and evolutionary patterns. Am. Zool,2000,40:101-122.
    [85]Drucker E G, and Lauder G V. Locomotion function of the dorsal fin in the teleost fishes:experimental analysis of wake forces in sunfish. J. Exp. Biol.,2001. 204:2943-2958.
    [86]Kato N. Median and paired fin controllers for biomimetic marine vehicles. Transactions of the ASME,2005.58:238-252.
    [87]王光明,沈林成,胡天江等.柔性长鳍波动推进试验及分析.国防科技大学学报.2006,28(1):98-102.
    [88]Lighthill J. Mathematical biofluiddynamics. SIAM,1975.
    [89]敬军.鱼类C形起动的运动特性及机理研究.中国科学技术大学博士学位论文,合肥:中国科学技术大学,2005.
    [90]Anderson J M, Kerrebrock P A. The vorticity control unmanned undersea vehicle (VCUUV):an autonomous robot Tuna. Proc 11th Intl. Symp. on Unmanned Untethered Submersible Tech., Durham, NH, USA,1997.
    [91]Mcisaac K, Ostrowski J. A geometric approach to anguilliform locomotion:modelling of an underwater eel robot. IEEE International Conference of Robotics and Automation,1999,2843-2848.
    [92]Low K H. Parametric Study of modular and reconfigurable robotic fish with oscillating caudal fin mechanisms. IEEE International Conference on Mechatronic and Automation (ICMA07). Harbin, China,2007,123-128.
    [93]http://web.mit.edu/towtank/www/Tuna/tuna.html
    [94]Liu J D, Dukes I, Hu H S. Novel mechatronics design for a robotic fish. IEEE/RSJ International Conference on Intelligent Robots and Systems,2005.2077-2082.
    [95]Hu H S, Liu J D, Dukes I, et al. Design of 3D swim patterns for autonomous robotic fish. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,2006.2406-2411.
    [96]Liu J D, Hu H S. A methodology of modeling fish-like swim patterns for robotic fish. IEEE Int. Conf. on Mechatronics and Automation,2007,1316-1321.
    [97]Robinson G, Davies J B C. The parallel bellows actuator. Proc. Robotica '98. Brasov. Romania,1998,195-200.
    [98]Sfakiotakis M, Lane D M, and Davies B C. An experimental undulating-fin device using the parallel bellows actuator. IEEE Int. Conf. on Robotics and Automation. Seoul, Korea,2001:2356-2362.
    [99]Epstein M, Colagate J E, and Maclver M A. Generating thrust with a biologically-inspired robotic ribbon fin. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,2006,2412-2417.
    [100]Toda Y, Suzuki T, Uto S, and et al. Fundamental study on a fishlike body with two undulating side fins. Second International Symposium on Aqua BioMechanism. Japan. 2003.
    [101]Toda Y, Hieda S, Sugiguchi T. Laminar flow computation around a plate with two undulating side fins. Journal of Kansai Society of Naval Architects,2002.237:71-78.
    [102]Toda Y, Fukui K, Sugiguchi T. Fundamental study on propulsion of a fishlike body with two undulating side fins. Proc. of Asia Pacific Workshop on Marine Hydronamics. Kobe. Japan,2002.227-232.
    [103]Toda Y, Ikeda H. and Sogihara N. The motion of a fishlike underwater vehicle with two undulating side fins. Third International Symposium on Aqua BioMechanism. 2006.
    [104]Takagi K, and et.al. Development of a rajiform swimming robot using ionic polymer artificial muscles. IEEE/RSJ International Conference on Intelligent Robots and Systems,2006.1861-1866.
    [105]Yamamura M, Takagi K, Luo Z W. and et.al. An autonomous raylike swimming robot with IPMC artificial muscle. The Third Conference on Artificial Muscle. Poster Session,2006.
    [106]Willy A, LOW K H. Initial experimental investigation of undulating fin. IEEE Int. Conf. on Intelligent Robots and Systems, Alberta, Canada,2005:1600-1605.
    [107]Low K H, WILLY A. Biomimetic motion planning of an undulating robotic fish fin. Journal of Vibration and Control,2006,12(12):1337-1359.
    [108]Low K H. Locomotion and depth control of robotic fish with modular undulating fins. International Journal of Automation and Computing,2006,4:28-37.
    [109]Low K H, and Willy A. Controllable swimming modes of robotic fish with modular and flexible fin mechanisms. Journal of Vibration and Control, USA,2006.
    [110]Low K H. Biomimetic design and workspace study of a compact and modular undulating fin body segments. International Conference on Mechatronics and Automation (ICMA2007),2007,129-134.
    [111]徐海军.柔性长背鳍波动仿生装置的结构设计与仿真技术研究.国防科技大学硕士学位论文.长沙:国防科技大学,2005.
    [112]谢海斌.基于多波动鳍推进的仿生水下机器人.国防科技大学博士学位论文.长沙:国防科技大学,2006.
    [113]谢海斌,张代兵,沈林成.基于柔性长鳍波动推进的仿生水下机器人设计与实现.机器人,2006,28(5):525-529.
    [114]王光明,胡天江,李非等.长背鳍波动推进游动研究.机械工程学报.2006,42(3):88-92.
    [115]谢海斌,张代兵,沈林成.柔性长鳍仿生装置波动控制技术研究.国防科技大学学报.2006,28(3):99-103.
    [116]谢海斌,沈林成,薛宏涛.仿鱼鳍推进水下机器人流体动力测试系统.测试技术学报,2006.20(5):383-389.
    [117]Li F., Hu T. J., Wang G. M., Shen L. C. Locomotion of Gymnarchus Niloticus: Experiment and Kinematics. Journal of Bionics Engineering.2(3):115121.2005.
    [118]Hu T. J., Li F., Wang G. M., Shen L. C. Morpholocial Measurement and Analyses of Gymnarchus Niloticus. Journal of Bionics Engineering.2(1):2531,2005.
    [119]Hu T., Li F.. Wang G., Shen L. A Contourdetecting Algorithm for Undulation by the Longbased Dorsal Fin of Gymnarchus niloticus [J]. Journal of National University of Defense Technology.27(5):6772,2005.
    [120]梁建宏.王田苗,魏洪兴.水下仿生机器鱼的研究进展Ⅰ——鱼类推进机理.机器人,2002,24(2):107-111.
    [121]梁建宏,王田苗,魏洪兴等.水下仿生机器鱼的研究进展Ⅱ——小型实验机器鱼的研制.机器人,2002,24(3):234-238.
    [122]梁建宏,邹丹,王松等.SPC-Ⅱ机器鱼平台及其自主航行实验.北京航空航天大学学报,2005,31(7):709-713.
    [123]文力,梁建宏.谢成荫等.SPC-3 UUV仿生机器鱼及其长航时实验.机器人技术与应用.2007(4):33-36.
    [124]李吉.毕树生,高俊等.仿生蝠鲼机器鱼BH-RAY3的研制及水力实验.控制工程.2010.17:127-130.
    [125]Punning A, et al. A biologically inspired raylike underwater robot with electroactive polymer pectoral fins. IEEE Mechatronics and Robotics (MechRob'04). Aachen,2004, 241-245.
    [126]Kruusmaa M, Aabloo A. Empirical model of a bending IPMC actuator. SPIE TheInternational Society for Optical Engineering,2006.6168:517-524.
    [127]Punning A, Ritslaid P, Aabloo A, and et al. An autonomous biologically inspired raylike robot with ionpolymer metal composite actuators.2006.
    [128]王扬威,王振龙.杭观荣等.一种形状记忆合金丝驱动的仿乌贼水平鳍推进器.微特电机.2008.5:57-61.
    [129]杭观荣,王振龙,王扬威等.基于肌肉性静水骨骼原理的仿乌贼鳍推进器.上海交通大学学报,2008.
    [130]王扬威,王振龙,李健等.形状记忆合金驱动仿生蝠鲼机器鱼的设计.机器人,2010,32(2):256-261.
    [131]章永华.何建慧.张世武.NiTi形状记忆合金驱动的仿生鱼鳍研究.机器人2007.29(3):207-213.
    [132]Zhang S, Zhang Y, Yang J, and et al. Computational study on posture control of shape memory alloy biomimetic pectoral fin. IEEE Int. Conf. on Mechatronics and Automation, Harbin. China,2007:497-502.
    [133]Chen Z, and Tan X. Acontrol-oriented and physics-based model for ionic polymer-metal composite actuators. IEEE/ASME Trans. Mechatronics,2008,13(5): 519-529.
    [134]Zhang Y, Cong M, Guo D, and et al. Design optimization of a bidirectional microswimming robot using giant magnetostrictive thin films. IEEE/ASME Trans. Mechatronics,2009,14(4):493-503.
    [135]Peterson S D, Porfiri M, and Rovardi A. A particle image velocimetry study of vibrating ionic polymer metal composites in aqueous environments. IEEE/ASME Trans. Mechatronics,2009,14(4):474-483.
    [136]Abdelnour K, Mancia E, Peterson S D, and et al. Hydrodynamics of underwater propulsors based on ionic polymer metal composites:A numerical study. Smart Mater. Struct.,2009,18(8):1-11.
    [137]Chen Z, Shatara S, and Tan X. Modeling of biomimetic robotic fish propelled by an ionic polymer-metal composite caudal fin. IEEE/ASME Trans. Mechatronics,2010. 15(3):448-459.
    [138]Aureli M, Kopman V, and Porfiri M. Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatronics,2010, 15(4):603-614.
    [139]Liu F, Lee K M, and Yang C. Hydrodynamics of an undulating fin for wave-like locomotion system design. IEEE/ASME Trans. on Mechatronics.2011, available online.
    [140]刘芳芳,杨灿军,苏琦等.仿生鱼鳍运动仿真分析及试验研究.机械工程学报,2010.45(19):24-29.
    [141]Liu F, Yang C, and Lee K M. Hydrodynamic modeling of an undulating fin for robotic fish design. IEEE/ASME Int. Con. on Advanced Intelligent Mechatronics (AIM). Montreal. Canada,2010,55-60.
    [142]Liu F, Yang C, Xie Y, and et al. Initial development and experiments on a robotic fish with a novel undulating fin. IEEE Conference on Robotics. Automation and Mechatronics (RAM). Chengdu. China,2008.718-721.
    [143]Liu F, Yang C. Zhang Y, and et al. Initial computational research on an undulating-finned robotic fish,7th International Conference on Fluid Power Transmission and Control (ICFP), Hangzhou, China,2009,748-751.
    [144]Paquette J W, Kim K J, Yim W. Aquatic robotic propulsor using Ionic Polymer-Metal Composite artificial muscle. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendal. Japan,2004:1269-1274.
    [145]Kim B, Kim D H. Jung J, et al. A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators, Smart Mater. Struct.,2005,14:1579-1585.
    [146]Lauder G V, Madden P G A. Fish locomotion:kinematics and hydrodynamics of flexible foil-like fins. Exp. Fluids,2007,43:641-653.
    [147]Schultz W W, Webb P W. Power requirements of swimming:do new methods resolve old questions? Interg. Comp. Biol.,2002,43:1081-1025.
    [148]Qin H S, Hong Y G. Passivity, stability and optimality. Control Theory and Application,1994,11(4):421-427.
    [149]Sparenberg J A. Survey of the mathematical theory of fish locomotion. Journal of Engineering Mathematics,2002,44:395-448.
    [150]Weihs D. Stability versus maneuverability in aquatic locomotion. Interg. Comp. Biol., 2002,42:127-134.
    [151]徐有恒,穆晟.基础流体实验.上海:复旦大学出版社,1990.
    [152]Triantafyllou, Michael S, George S. An efficient swimming machine. Scientific.1995, 272(3):64-70
    [153]Chen Y, Wu S J, Xie Y J, and et al. A novel mechanical gas-tight sampler for hydrothermal fluids. IEEE Journal of Oceanic Engineering,2007,32(3):603-608.
    [154]Wu S J, Yang C J, Xie Y Q, and et al. Development of a single-shot linear actuator for the deep-sea sampling valve. Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science,2009,223(C10),2399-2404.
    [155]Liu W, Yang C J, Wu S J, and et al. Design of a novel high pressure-resistant hydrothermal fluid sample valve. Chinese Journal of Mechanical Engineering,2008, 21(1),72-76.
    [156]Tan C, Jin B, Ding K, and et al. A long-term in situ calibration system for chemistry analysis of seawater. Journal of Zhejiang University-SCIENCE A,2010,11:701-708.
    [157]Tan C, Ding K, Jin B, and et al. Development of an in situ pH calibrator in deep sea environments. Focused Section on Marine Mechatronic Systems, on IEEE/ASME Transactions on Mechatronics. Rapid post,2011.
    [158]Zhao W. Chen Y. Yang C. and et al. Design of low-power data logger of deep sea for long-term field observation. China Ocean Engineering,2009,23(1):133-144.
    [159]赵伟.杨灿军,陈鹰.水下滑翔器浮力调节系统设计及动态性能研究.浙江大学学报,2009,43(10):1772-1776.
    [160]童秉纲,庄礼贤.程健宇.鱼类波状摆动推进的流体力学研究.力学与实践.1991.13(3):17~26
    [161]Breder C M, Edgerton H E. An analysis of the locomotion of the sea-horse, hippocampus hudsonius, by means of high-speed cinematography. Ann. NY Acad. Sci., 1942,43:145-172.
    [162]林建忠.流体力学.北京:清华大学出版社,2005.
    [163]力学学科发展研究报告.国家自然科学基金委员会数学物理科学部.北京:科学出版社,2007,35-38.
    [164]吴家龙.弹性力学.北京:高等教育出版社,2001.
    [165]韩占忠,王敬,兰小平. Fluent流体工程仿真计算实例与应用.
    [166]赵攀峰.以MAV为背景的拍翼运动流场特性研究.中国科学技术大学博士学位论文,合肥:中国科学技术大学,2005.
    [167]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2004.
    [168]夏全新.鱼类波状摆动推进的数值模拟.上海交通大学硕士学位论文,上海:上海交通大学,2004.
    [169]Zimmerman W B J. Comsol有限元法多物理场建模与分析.北京:人民交通出版社.2007.
    [170]Ron O. Telemetered cephalopod energetics:swimming, soaring, and blimping. Interg. Comp. Biol.,2002.42:1065-1070.
    [171]Sfakiotakis M. Tsakiris D P, A simulation environment for undulatory locomotion. The lasted International Conference on Applied Simulation and Modeling, Rhodes. Greece.2004,154-159.
    [172]Merlet J P. Les robots parallel,2nd edition, Hermes. Paris,1997.
    [173]Tsai W L. Robot Analysis, Wiley-Inter science Publication,1999.
    [174]Raikova R. A general approach for modelling and mathematical investigation of the human upper limb. Journal of Biomechanics,1992,25:857-867.
    [175]江帆. Fluent高级应用与实例分析.北京:清华大学出版社,2010.
    [176]高殿荣,王益群.DPIV技术及其在流场测量中的应用.液压气动与密封,2001.89(5):30-33.
    [177]魏润杰,申功.DPIV系统研制及其应用.流体力学实验与测量,2003,17(2):88-92.
    [178]Peng J, Dabiri J O, Madden P G, and et al. Non-invasive measurement of instantaneous forces during aquatic locomotion:A case study of the bluegill sunfish pectoral fin. J. Exp. Biol.,2007,210:685-698.
    [179]Brucker C and Bleckmann H. Vortex dynamics in the wake of a mechanical fish. Exp. Fluids,2007,43:799-810.
    [180]Tytell E D. Do trout swim better than eels? Challenges for estimating performance based on the wake of self-propelled bodies. Exp. Fluids,2007,43:701-712.
    [181]W. M. Kier, J. T. Thompson. Muscle Arrangement, Function and Specialization in Recent Coleoids. in Proc. of Coleoid Caphalopods through Time. Berlin.2002, 3:141~162.
    [182]郑精辉.基于波动机理的仿生鱼探测器研究.浙江大学硕士学位论文,杭州:浙江大学.2007.
    [183]董正之.世界大洋经济头足类生物学.济南:山东科学技术出版社,1991.
    [184]邢景堂,周盛,崔尔杰.流固耦合力学概述.力学进展,1997,27(1):19-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700