用户名: 密码: 验证码:
基于计算机微视觉的微运动测量关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科学技术正迅速向微小、超精密领域发展,由微米级、亚微米级进入到纳米级阶段。随着微纳制造、微电子、生物医学工程等技术的高速发展,对微运动测量技术提出了更高的要求。研制高精度的新测量手段已经成为微纳制造及生物医学等技术发展的迫切需要。计算机微视觉方法以其柔性、快速、非接触、精确、自动化程度高等特点,在精密测量领域受到了越来越高的重视。本文研究利用计算机微视觉方法进行高精度的微运动测量,主要研究内容如下:
     首先,深入研究计算机微视觉测量系统方案及硬件组成,系统分析了光源对成像质量的影响,讨论了计算机微视觉系统采集的图像信号和噪声的特性,并分析了减少微视觉图像噪声的主要方法。
     其次,针对光照变化、噪声及大位移量等严重影响基于计算机微视觉的微运动测量精度的问题,提出了三种高精度的鲁棒运动估计算法:
     (1)根据微视觉的成像模型,提出一种基于同态滤波的鲁棒多尺度微运动测量算法。首先采用同态滤波增强方法对显微视觉图像亮度不均匀进行了校正,并增强对比度,然后利用双权重函数,自动调节不同残差数据点的权重,去除残差过大的数据点,并采用多尺度金字塔由粗到精逐层迭代,精确地估计运动矢量。实验模拟表明提出的算法鲁棒性好,能有效地减弱在基于计算机微视觉的微运动测量中光照非一致分布的影响,同时减少噪声引起的界外值的干扰,提高了运动估计的精度。
     (2)根据基于图像结构的模型,提出一种用于光照变化和低信噪比条件下的基于单演相位的鲁棒运动估计算法。在该算法中,传统的亮度不变假设将被单演相位不变的假设所代替。单演信号是首个旋转不变的二维解析信号。通过单演信号,图像的多尺度局部相位能够以旋转不变的方式获得。由于单演相位包含了图像的结构信息,具有对光照变化及噪声干扰都非常鲁棒的优点,所以该方法结合多尺度金字塔迭代方法和鲁棒估计方法用于运动估计,进一步提高了光照变化和低信噪比条件下的运动估计精度。实验模拟验证了该算法的良好性能。
     (3)采用相关方法,设计一种基于单演曲率张量与数字图像相关的运动估计算法。在该算法中,先用单演曲率张量来提取图像的1维和2维结构信息,利用图像结构在光照变化下保持不变的优点,提高在光照不均匀条件下的运动估计精度。然后采用相关方法获得整像素的运动位移,在此基础上,将基于梯度的亚像素位移算法结合鲁棒估计方法,以减少噪声对运动估计精度的影响,并获得亚像素的位移矢量。实验模拟测试验证了该算法不但适于在光照不均匀和噪声环境下进行刚体的运动估计,也适于变形物体的位移场估计。
     最后,以精密定位平台为测量对象,采用提出的运动估计算法对其平移微运动和旋转微运动进行了测量,实验验证了本文所提出的理论和方法是可行的,有效地实现了在光照变化及噪声环境下的高精度运动估计。
Modern science and technology is rapidly developing to tiny, ultra-precision field from micron, submicron into the nanoscale stage. With the fast development of the technologies such as micro/nano manufacturing, microelectronics and biomedicine, micro-motion measurement is strongly demanded. Novel high-precision measurement methods are hence in urgent need for micro/nano manufacturing and biomedicine. Computer micro-vision method has been increasing attention in the field of precision measurement for its flexible, rapid, non-contact, precision and high degree of automation. This thesis focuses on micro-motion measurement with high accuracy using computer micro-vision approach. The main contributions of this thesis are listed as follows:
     First, the computer micro-vision measurement system scheme and its hardware components are in-depth studied, the effects of light source on the imaging quality are systematically analyzed, the properties of the acquired images and the noises introduced by the computer microvision system are explored, and the main approaches to attenuating these noises are analyzed.
     Second, Aiming at the problem of illumination variation, noise and large displacement that may badly influence motion estimation precision in micro-motion measurement based on computer microvision. Three kinds of high-precision robust motion estimation algorithm are proposed:
     (1) According to the imaging model of micro-vision, a robust multi-scale micro-motion measurement algorithm based on homomorphic filtering is proposed. First, a method of homomorphic filtering for image enhancement is used to correct the uneven brightness of micro-vision image and enhance contrast. Then biweight function is used to automatically adjust the weight of data with different residual error and to remove those data with excessive residual errors, and a multi-scale pyramid is employed to accurately estimate the motion vector by an iteration gradually from coarseness to fine. Experimental simulation show the new algorithm has good robustness, it can effectively weaken the influence of uneven illumination in micro-motion measurement based on computer micro-vision and reduce the interference of outliers caused by noises, and the accuracy of micro-motion measurement is improved.
     (2) According to the model based on image structure, an integrated approach of robust motion estimation based on constancy assumption of monogenic phase was proposed, which use for illumination changes and low SNR. The monogenic signal is the first rotation invariant two-dimensional analytic signal. Its phase information includes structural information and has the advantage of being robust to illumination changes and noise interferences. Therefore, the method combines multi-scale pyramid iterative methods and robust estimation methods for motion estimation would further improve the motion estimation accuracy under illumination changes and low SNR conditions. Experimental simulations verify the good performance of the algorithm.
     (3)A motion estimation algorithm based on monogenic curvature tensor and digital image correlation is designed by using correlation method. In the algorithm, first 1D and 2D structural information of the image is extracted by monogenic curvature tensor to improve motion estimation accuracy under uneven illumination by using the advantage of image structure being invariant to illumination change. Then, motion displacement of integer pixel is obtained by correlation method. On this basis, the gradient-based sub-pixel displacement estimation algorithm combined with robust methods to reduce the effect of noise on the accuracy of motion estimation and obtain sub-pixel displacement vector. Experimental simulations verify that the algorithm can not only be suitable for rigid body motion estimation in uneven illumination and noise conditions, but also be suitable for displacement field estimation of deformation objects.
     Finally, using the precision positioning stage as measurement objects, translation and rotation micro-motions are measured using the proposed methods. Experiment results verify the theory and methods in this thesis are feasible and effectively achieve the high-precision motion estimation in illumination variation and noise conditions.
引文
[1]王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学学报,2000,40(5):505-508
    [2]王涛,王晓东,王立鼎等.MEMS中微结构动态测试技术进展[J].中国机械工程,2005,16(1):83-88
    [3]Alexander J.A.. Measuring Sound-Induced Motions of the Alligator Lizard Cochlea [D]. PhD thesis, Massachusetts Institute of Technology, Cambridge,MA,2002
    [4]王先逵.广义制造论[J].机械工程学报,2003,39(10):86-94.
    [5]Rembe C., Kant R., Muller R.S.. Optical Measurement Methods to Study Dynamic Behavior in MEMS[C]. Proceedings of SPIE 2001,4400:127-137
    [6]Davis C.Q., Freeman D.M.. Statistics of subpixel registration algorithms based on spatiotemporal gradients or block matching [J]. Opt. Eng.1998,37(4):1290-1298
    [7]Davis C.Q., Freeman D.M.. Using a light microscope to measure motions with nanometer accuracy[J]. Optical Engineering.1998,37(4):1299-1304.
    [8]Hart M.R., Robert A.C., Lau K.Y., et al. Muller. Stroboscopic Interferometer System for Dynamic MEMS Characterization[J]. Journal of microelectromechanical systems,2000,9(4): 409-418
    [9]Hart M.R., Robert A.C., Lau K.Y., et al. Stroboscopic Phase-shifting Interferometry for Dynamic Characterization of Optical MEMS[C]. SPIE,1999,3749:468-469
    [10]Rembe C., Kant R., Muller R.S.. Measurement System for Full Three-Dimensional Motion Characterization of MEMS[J]. Journal of Microelectromechanical Systems,2002, 11(5):479-488.
    [11]Rembe C., Hart M.R, Michael A., et al. Stroboscopic Interferometer with Variable Magnification to Measure Dynamics in an Adaptive-Optics Micromirror[J]. IEEE, 2000:73-74.
    [12]Rembe C., Caton P., White R.M., et al. Stroboscopic Interferometry for Characterization and Improvement of Flexural Plate-Wave Transducers [J]. Proceedings of SPIE,2001,4558: 108-116.
    [13]孙长库,叶声华.激光测量技术[M].天津大学出版社,2001
    [14]金翠云.MEMS平面微运动测量的若干关键技术研究[D].天津大学博士学位论文,2004
    [15]Speller K.E., Goldberg H., Gannon J., et al. Unique MEMS characterization solutions enabled by laser Doppler vibrometer measurements [J]. Proc. SPIE,2002,4827:478-485
    [16]Kimberly T.. LDV Measurements in MEMS[C]. A sampling of capability Proceedings of 2002 PSV User's Meeting, San Diego,2002
    [17]Abcdin K.M., Jesmin S.A., Haider A.F.M.Y.. Construction and Operation of a Simple Electronic Speckle Pattern Interferometer and its Use in Measuring Microscopic Deformations[J]. Optics and Laser Tcchnology,2000,32(5):323-328
    [18]Jarad A.E., Gulker G., Hinsch K.D.. Microscopic ESPI:Better Fringe Quality by the Fourier Transform Method [J]. Proc. SPIE,2003,4933:335-341
    [19]Kurth S.. Interference Microscopic Techniques for Dynamic Testing of MEMS[J], Annual Research Report 2002, Chemnitz University of Technology, Germany
    [20]Ferrari J.A., Frins E.M., Dultz W.. Optical Fiber Vibration Sensor Using(Pancharatnam) Phase Step Interferometry[J]. Journal of Linhtwave Technology,1997,15(6):968-971
    [21]Fang R., Yan Z., et al. A Precision Fiber Optic Displacement Sensor Based on Reciprocal Interferometry[J]. Optics Communications,2000,176:105-112.
    [22]Lee C.W., Zhang X.M., Tin S.C., Liu.A.Q.. Nano-scale Displacement Measurement of MEMS Devices Using Fiber Optic Interferometry[J]. Proceedings of SPIE,2003,5145: 196-201.
    [23]冯亚林,栗大超等.基于计算机视觉的MEMS测试系统[J].微纳电子技术,2003,7(8):221-223.
    [24]栗大超,冯亚林等MEMS动态测试技术[J].微纳电子技术,2005,4:188-193.
    [25]金翠云,靳世久等.基于机器微视觉的微结构平面运动测试技术[J].天津大学学报,2005,38(3):248-252.
    [26]金翠云,王建林,靳世久等.基于相位相关与块匹配的纳米精度微器件平面动态测量[J].光学技术.2007,33(2):269-272
    [27]陈治,胡晓东,傅星等.基于相关拟合校准技术的MEMS平面微运动纳米精度测量[J].天津大学学报,2009,42(6):549-553
    [28]郭彤,胡晓东等.显微干涉技术在MEMS动态测试系统中的应用[J].微纳电子技术,2003,7(8):218-220.
    [29]谢勇君,白金鹏,史铁林,刘胜.MEMS三维静动态测试系统[J].光电子·激光,2005,16(5):570-574.
    [30]谢勇君,史铁林,白金鹏,来五星.基于亚像素综合定位匹配算法的MEMS平面运动测量[J].纳米技术与精密工程,2005,3(2):93-96.
    [31]张建勋,薛大庆,卢桂章等.通过显微图像特征抽取获得微操作目标纵向信息[J].机器人,2001,23(1):73-77
    [32]Lu Q.H., Zhang X.M.. Multiscale MSE-minimizing filters for gradient-based motion estimation. Measurement,2007,40:841-848
    [33]Hemmert W., Mermelstein M.S., Freeman D.M.. Nanometer Resolution of Three Dimen Sional Motions Using Video Interference Microscopy[C]. IEEE International MEMS99, Orlando FL, January,1999,17-21
    [34]Barron J.L., Fleet D.J., Beauchemin S.S.. Performance of optical flow techniques[J]. International Journal of Computer Vision,1994,12:3-77
    [35]Moulin P., Krishnaumrthy R., Woods J.W.. Multi-scale modeling and estimation of motion fields for video coding[J]. IEEE Transactions. Image Processing, Dec.1997,6(12): 1606-1620.
    [36]Tsai J.C., Hsieh C.H., Weng S.K., et al. Block-matching motion estimation using correlation search algorithm[J]. Signal Processing:Image Communication,1998,13:119-133
    [37]Moschetti F., Debes E.. Statistical adaptive block-matching motion estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology,2003,13(4):417-431
    [38]Hill L., Vlanchos T.. On the estimation of global motion using phase correlation for broadcast applications[C]. IEEE International Conference on Image Processing and Its Applications, July,1999,2:721-725
    [39]Heeger, D.J.. Optical flow using spatiotemporal filters[J]. International Journal of Computer Vision,1988,1:279-302.
    [40]Tian Q. Huhns M.N.. Algorithms for subpixel registration[J]. Computer Vision, Graphics, and Image Processing,1986,35:220-233
    [41]Viola P.. Alignment by Maximization of Mutual Information[J]. International Journal of Computer Vision,1997,24(2):137-154
    [42]廖强,周忆,米林等.机器视觉在精密测量中的应用[J].重庆大学学报,2002,25(6):1-4
    [43]Davis C.Q.. Measuring nanometer, three-dimensional motions with light micrscopy[D]. Ph.D thesis. Massachusetts Institute of Technology, Cambridge, MA,1997
    [44]Freeman D.M., Aranyosi A.J., Gordon M.J., et al. Multidimensional motion analysis of MEMS using computer microvision[A]. Solid State Sensor & Actuator Workshop[C]. Hilton Head Island, South Carolina,1998,150-155
    [45]周铭.计算机立体视觉技术在工业测量中的应用研究[J].计量与测试技术,1999, (4):9-10
    [46]朱铮涛.基于计算机视觉图像精密测量的关键技术研究[D].华南理工大学博士学位论文,2005
    [47]杨敏.基于机器视觉的发动机气门杆直径及圆度检测研究[D].华南理工大学博士学位论文,2004
    [48]Navitar公司产品手册[G].中文版,2006
    [49]王庆有,孙学珠.CCD应用技术[M].天津大学出版社,1993
    [50]Compact Monochrome 2 Megapixel Progressive Scan Camera CV-A2 Operation Manual Camera:Revision A, Manual:Version 1.0[G], JAI
    [51]Goodman J.W.著,詹达三等译.傅里叶光学导论(Introduction to Fourier Optics) [M].北京,科学出版社,1976
    [52]Janesick J.. Lux transfer:CMOS versus CCD[J]. Proceedings of SPIE,2002,4669: 232-249
    [53]许秀贞,李白田,薛利军.CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4):343-346
    [54]张惠鸽,杨存榜,张文海等.用于激光聚变的科学级光学CCD读出噪声标定[J].光学与光电技术,2007,5(5):9-11
    [55]李云飞,司国良,郭永飞.科学级CCD相机的噪声分析及处理技术[J].光学精密工程,2005,13:158-163
    [56]卢清华,张宪民,范彦斌.计算机微视觉微运动测量系统图像噪声分析[J].机械设计与制造,2008,4:90-92
    [57]Pitas I., Venetsanopou A.N.. Nonlinear digital filters:principles and application[M]. Norwell, MA, USA:Kluwer,1990.
    [58]Brownrigg D.. The weighted median filter[J]. Commun. Assoc. Computer,1984, 27(8):807-818.
    [59]Kos J., Neuvo Y.. Center weighted median filter and their applications to image enhancement[J]. IEEE Transactions on Circuits and System,1991,38(1):984-993.
    [60]徐锬,王超.基于模糊数学的数字图像模糊度[J].计算机辅助设计与图形学学报,2002,14(8):45-47
    [61]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].科学技术出版社,2002
    [62]Horn B.K.P., Schunk B.G.. Determining optical flow[J]. Artificial Intelligence,1981,17: 185-203
    [63]Naresh G., Laveen K.. Gradient based image motion estimation without computing gradients[J]. International Journal of Computer Vision,1997,22:81-101
    [64]Lucas B.D., Kanade T.. An iterative image registration technique with an application to stereo vision[J]. Proceedings of the Seventh International Joint Conference on Artificial Intelligence,1981,674-679
    [65]Nagel H.. On a constraint equation for the estimation of displacement rates in image sequences[J], IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(1): 13-30
    [66]Black M.J., Anandan P.. A frame work for the robust estimation of optic flow[J]. Proceedings of International Conference on Computer Vision,1993,231-236.
    [67]Robinson D., Milanfar P.. Bias-minimizing filters for gradient-based motion estimation [C]. Proceedings of the 37th Asilomar Conference on Signals, Systems, and Computers, November 2003
    [68]Black M.J., Anandan P.. The robust estimation of multiple motions:parametric and piecewise smooth flow fields[J]. Computer Vision and Image Understanding,1996,63(1): 75-104.
    [69]Stiller C., Konrad J.. Estimating motion in image sequences. IEEE Signal Processing Magazine[J].1999,16:70-91
    [70]Spies H., Scharr H.. Accurate optical flow in noisy images sequences[C], Proc. Int. Conf. Computer Vision,2001,1:587-592
    [71]Papenberg N., Bruhn A., Brox T., et al. Highly accurate optical flow computation with the oretically justified warping[J]. International Journal of Computer Vision,2006, 67(2):141-158
    [72]Hampson F.J., Pesquet J.C.. Motion estimation in the presence of illumination variations [J]. Signal processing:Image Communication 2000,16:373-381
    [73]Lai S.H.. Adaptive motion estimation for image sequences under non-uniform illumination variations[C]. Proceedings Intenational Computer Symposium:Workshop on Image Procesing and Pattern Recognition. Chiayi, Taiwan,2000,223-230
    [74]Negahdaripour S., Yu C.H.. A generalized brightness change model for computing optical flow[C]. Proceedings of International Conference on Computer Vision. Berlin, Germany, May.1993,2-11.
    [75]Haussecker H.W., Fleet D.J.. Computing optical flow with physical models of brightness variation[C]. IEEE Trans, Pattern Anal, Machine Intell 2001,23(6):661-673.
    [76]Voicu L., Myler H.R., Weeks A.R.. Practical considerations on color image enhancement using homomorphic filtering[J]. Journal of Electronic Imaging.1997,6(1):108-113
    [77]Brinkman B.H., Manduca A., Robb R.A.. Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction[J]. IEEE Transactions on Medical Imaging.1998, 172:161-171.
    [78]Viola P.A.. Alignment by Maximization of Mutual Information[D]. PhD thesis, MassachusettsInstitute of Technology, Cambridge, MA,1995.
    [79]Holland P.W., Welsch R.E.. Robust Regression Using Iteratively Reweighted Least-Squares[J]. Communications in Statistics:Theory and Methods,1977,6:813-827
    [80]Freeman D.M., Alexander J.A, Michael J.G, et al. Multidimensional Motion Analysis Using Computer Microvision[R] [DB/OL]. http://umech.mit.edu/freeman/talks/sssaw98, [2007-01-05]
    [81]http://www.cs.brown.edu/people/black/images.html
    [82]Alon N.,Yuster R., Zwick U.. Color-coding[J]. Journal of the ACM.1995,42(4):844-856
    [83]http://i21www.ira.uka.de/Image_sequences
    [84]Timoner S.J., Freeman D.M.. Multi-image gradient-based algorithms for motion estimation[J]. Optical Engineering.2001,40(9):2003-2016
    [85]王兵,赵荣椿,程英蕾.一种基于小波域的运动估计方法[J].电子与信息学报,2005,27(5):757-761
    [86]Trobin W., Pock T., Cremers D., et al. An unbiased second-order prior for high-accuracy motion estimation[C]. In Proceedings of Pattern Recognition,2008,396-405
    [87]Wedel A., Cremers D., Pock T., et al. Structure-and motion-adaptive regularization for high accuracy optical flow[C]. In Proceedings of the IEEE International Conference on Computer Vision,2009.
    [88]Sun D., Roth S., Black M.J.. Secrets of optical flow estimation and their principles[C]. In Proc. of Conference on Computer Vision and Pattern Recognition,2010,2432-2439
    [89]Robinson D., Milanfar P.. Bias-minimizing filters for gradient-based image registration[J]. Signal Processing:Image Communication,2005,20:554-568
    [90]Kim Y.H., Martinez A.M., Kak A.C.. Robust motion estimation under varying illumination[J]. Image and Vision Computing,2005,23(1):365-375
    [91]Van D., Weijer J., Gevers T.. Robust optical flow from photometric invariants[C]. International Conference on Image. Processing, Singapore, Oct,2004,3:1835-1838
    [92]Roth S., Black M.J. On the spatial statistics of optical flow[J]. International Journal of Computer Vision,2007,74(1):33-50
    [93]Mester R.. A new view at differential and tensor-based motion estimation schemes [C]. In Proceedings Pattern Recognition 2003. Lecture Notes in Computer Science, Magdeburg, Germany, Springer Verlag,2003
    [94]Muhlich M., Mester R.A.. statistical unification of image interpolation, error concealment, and source-adapted filter design[C]. In:Proceeding Sixth IEEE Southwest Symposium on Image Analysis and Interprettaion, Lake Tahoe, NV/USA,2004
    [95]Krajsek K., Mester R.. Wiener optimized filters for motion estimation[C]. In:1st International Workshop on Complex Motion (ICM04) Reisensburg/Giinzburg, Germany, 2005,12-14
    [96]Krajsek K., Mester R.. Signal and noise adapted filters for differential motion estimation [C]. In:DAGM 2005-27th Annual meeting of the German Association for Pattern Recognition Vienna, Austria August 30th-September 2nd,2005
    [97]Lu Q.H., Zhang X. M. Multiscale MSE-minimizing filters for gradient-based motion estimation[J]. Measurement,2007,40:841-848
    [98]Fleet D.J., Jepson A.D. Computation of component image velocity from local phase information[J]. International Journal of Computer Vision.1990,5(1):77-104
    [99]Liu H.Y., Rosenfeld A. Accurate dense optical flow estimation using adaptive structure tensors and a parametric model[J]. IEEE Transactions on Image Processing.2003,12(10): 1170-1179
    [100]Felsberg M., Sommer G.. The monogenic signal[J]. IEEE Transactions on Signal Processing,2001,49(12):3136-3144
    [101]Felsberg M., Sommer G.. The monogenic scale-space:A unifying approach to phase-based image processing in scale-space[J]. Journal of Mathematical Imaging and Vision, 2004,21:5-26
    [102]Felsberg M., Jonsson E.. Energy tensors:Quadratic phase invariant image operators[J]. DAGM,2005,3663:493-500
    [103]ftp://ftp.csd.uwo.ca/pub/vision
    [104]Yamaguchi I.. Speckle Displacement and Deformation in the Diffraction and Imag Fields for Small Object Deformation[J]. Journal of Modern Optics,1981,28(10):1359-1376
    [105]Peters W.H., Ranson W.F. Digitall maging Technique in Experimental Mechanics[J]. Optical Engineering,1982,21(3):427-431
    [106]Peters W.H., Ranson W.F., Sutton M.A., et al. Application of Digital Correlation Method to Rigid Body Mechanics[J]. Optical Engineering,1983,22(6):738-742
    [107]Chu T.C., Ranson W. F., et al. Application of Digital Image Correlation Technique to Experimental Mechanics[J]. Experimental Mechanics,1985,25(3):232-244
    [108]Sutton M.A., Chen M.Q., et al. Application of all optimized digital correlation method to planar deformation analysis[J]. Image and Vision computing,1986,14(3):143-150
    [109]Sutton M.A., et al. The effects of subpixel image restoration on digital correlation error estimates[J]. Optical Engineering,1988,27(3):173-t75
    [110]潘兵,续伯钦.数字图像相关中亚像素位移测量的曲面拟合法[J].计量学报,2005,26(2):128-134
    [111]丙嘉白,金观昌.一种新的数字散斑相关方法及其应用[J].力学学报,1994,26(5):599-607
    [112]Bruck H.A., McNeil S.R., et al. Digital Image Correlation Using Newton-Raphson Mechod of Partial Differential Correction[J], Experimental Mechanics,1989,29(3):261-267
    [113]Peng Z., Goodson K.E.. Subpixel displacement and deformation gradient measurement using digital image/speckle correlation[J]. Optical Engineering,2001,40(8):1613-1620
    [114]元东平,藤树云,程传福.频率域数字散斑相关方法的研究[J].光学学报,2000,20(4):489-493
    [115]王世斌,李翔宇,李林安等.后验概率算法用于位移场的确定[J].实验力学,2004,19(3):371-375
    [116]Pilch A., Mahajan A., Chu T.. Measurement of whole-field surface displacements and strain using a genetic algorithm based intelligent image correlation method[J]. Journal of Dynamic Systems, Measurement and control Transactions of the ASME,2004, 126(3):479-488
    [117]Pitter M.C., See C.W.. Fast subpixel digital image correlation using artificial neural networks. International Conference on Image Processing,2001,901-904.
    [118]Cheng P., Sutton M.A., Schreier H.W., et al. Full-field speckle pattern image correlation with B-spline deformation function[J]. Experimantal Mechanics,2002,42(3):344-352
    [119]Sun Y.F., Pang J.H.L., Wong C.K., et al. Finite element formulation for a digital image correlation method[J]. Applied Optics,2005,44(34):7357-7363
    [120]潘兵,谢惠民,戴福隆.数字图像相关中亚像素位移测量算法的研究[J]力学学报,2007,39(2):245-252
    [121]潘兵,续伯钦,李克景.梯度算子选择对基于梯度的亚像素位移算法的影响[J].光学技术,2005,31(1):26-31
    [122]Zang D., Sommer G.. Signal modeling for two-dimensional image structures [J]. Journal of Visual Communication and Image Representation,2007,18:81-89
    [123]Zang D., Sommer G.. algebraically extended 2D image representation[A]. Proceedings of the 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering, Germany, July,2006,12-14
    [124]Zang D.. Signal Modeling for Two-Dimensional Image Structures and Scale-Space Based Image Analysis[D]. Ph.D thesis. Christian-Albrechts-University of Kiel, Kiel, Mai, 2007
    [125]Bracewell R.. Fourier Analysis and Imaging[M]. Kluwer Academic/Plenum Publishers, New York,2003.
    [126]Huber P.J.. Robust statistics[M]. Wiley, New York,1981
    [127]Nestares O., Heeger D.J.. Robust Muliresolution Alignment of MRI Brain volumes[J]. Magnetic Resonance in Medicine 2000,43:705-715
    [128]Albert E.B., John W.T.. The fitting of power series, meaning polynomials, illustrated on band-spectroscopic data[J]. Technometrics,1974,16:147-185
    [129]王伟丽,范光照,刘玉圣.基于共平面二维工作平台的精密测量系统[J].中国计量学院学报,2005,16(4):264-267
    [130]郝晓红,梅雪松,张东升等.新型磁悬浮精密定位平台的研究[J].西安交通大学学报,2005,Vo1.39(9):937-940
    [131]张大卫,杜伟涛,冯晓梅.面向芯片封装的高速精密定位平台控制系统设计[J].天津大学学报,2006,39(9):1060-1064
    [132]Kuo S.K.. Development of a magnetic suspension system with its applications in nano-imprinting and nano-metrology[D]. PhD Dissertation, The Ohio State University,2003
    [133]Nerino R.. Capacitive sensor arrays in dimensional analysis of surfaces. IEEE Transaction on Instrumentation and Measurement [J],1995:44 (4):875-880
    [134]王文,李欣欣.超精密定位平台的测量系统研究[J].机电工程,2006,23(4):13-16
    [135]Kuo S.K., Huang C.C., Lin C.C, et al. Development of a nano-displacement measurement system. Measurement J],2007,40:255-263
    [136]王华.基于柔顺机构的微位移精密定位平台理论与试验研究[D].华南理工大学博士学位论文,2008
    [137]PI产品资料F-140[DB/OL]. http://www.pi-china.cn/pdf/datasheet/F_140.pdf

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700