用户名: 密码: 验证码:
竹节人参皂苷对乙醇性肝损伤的保护机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酗酒既是个社会问题也是个医学问题,因酗酒导致的急慢性酒精中毒、酒精性脂肪肝、慢性肝炎、肝硬化等疾病严重危害着人们的健康。大量饮酒过后,血液中乙醇浓度明显升高,出现各种醉酒症状。乙醇主要在肝脏中通过乙醇氧化系统进行代谢,同时产生大量自由基02-·、OH·,以及乙醇自身产生的自由基C2H50-和C2H5OH-,当产生自由基超出了机体的清除能力,便造成机体组织损伤。所以普遍认为乙醇导致肝损伤,其机制之一是通过激活O2产生自由基,导致肝细胞膜脂质过氧化及肝细胞损伤。
     竹节人参(Panax Japonics.C.A.Mey)系五加科植物,为《中华人民共和国药典》收载的名贵常用中药,通常被认为具有抗炎、镇痛、镇静、抗衰老、抗疲劳、抗病毒、抗肿瘤、保护中枢神经系统、保护心血管系统、保护内分泌系统、保护免疫系统等多方面的功能,其主要化学成份为竹节参皂苷。现代药理学研究发现,竹节人参总皂苷可显著提高多种模型(如:运动、衰老、脑缺血再灌注损伤、高脂血症、等)动物血清、肝脏中SOD、CAT、GSH-PX活性,同时降低MDA含量,从而抑制脂质过氧化。因此,本研究利用循环超声波提取了人工栽培的竹节人参总皂苷,高效液相色谱-蒸发光散射检测-质谱(HPLC-ELSD-MS)分析了竹节人参皂苷单体及含量组成,并以抗氧化性为着手点,研究了竹节人参总皂苷对模型小鼠、人胚肝细胞L-O2乙醇性损伤的保护作用及作用机理,同时分析了不同竹节人参皂苷单体对乙醇损伤肝细胞L-O2的保护作用及作用机理,主要研究结果如下:
     1、通过竹节人参总皂苷提取,HPLC-ELSD分离获得6个皂苷单体,通过标准品比对,结合HPLC-ESI-MS分析,可知分别为Rg1、Re、Rf、F3、Rg2和Rd,其在人参总皂苷中的含量分别为:12.23%、16.24%、16.95%、7.51%、8.53%和11.47%。
     2、给乙醇性肝损伤模型小鼠灌胃给予竹节人参总皂苷,气相色谱法(GC)测定小鼠血清、尿液中乙醇浓度,分光光度法测定小鼠血清谷丙转氨酶(ALT)、谷草转氨酶(AST)活性以及血清、肝组织中丙二醛(MDA)含量、还原型谷光甘肽(GSH)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、谷胱甘肽过氧化物酶(GSH-PX)活性等生化指标,光镜、透射电镜观察肝组织超微病理变化,研究竹节人参总皂苷对小鼠乙醇性肝损伤的保护效果及作用机制;结果显示,竹节人参总皂苷不具有抑制乙醇在胃肠道吸收作用,但能显著降低乙醇肝损伤模型小鼠血清ALT、AST酶活性及血清、肝组织MDA含量,提高模型小鼠血清、肝脏中GSH含量和抗氧化酶GSH-PX、CAI、SOD的活性。在血清中,竹节人参总皂苷50 mg/kg剂量组小鼠血清GSH含量、GSH-PX、CAT和SOD活性与正常组小鼠无显著性差异(P>0.05);在肝脏中,竹节人参总皂苷50 mg/kg剂量组小鼠肝脏GSH-PX、SOD活性可恢复至正常水平,与正常组小鼠无显著性差异(P>0.05);GSH、CAT水平虽然显著提高,但仍显著低于正常组(P<0.01);竹节人参总皂苷(50 mg/k)可降低肝组织病变,促进肝小叶结构恢复正常,肝索、肝窦无明显异常,肝细胞体积逐渐恢复正常,细胞核染色质分布较均匀,核膜整形光滑,线粒体结构基本恢复正常,内(嵴)外膜完整,基质均匀,但部分线粒体嵴仍有些紊乱。以上结果表明,竹节人参总皂苷具有提高机体抗氧化功能,特别是对肝细胞及细胞器线粒体的结构完整性具有明显的保护作用。
     3、通过台盼蓝染色计数观察竹节人参总皂苷对正常及乙醇损伤的肝细胞L-02活性的影响,分光光度法测定肝细胞内液MDA含量和SOD、GSH-PX、CAT活性变化,以及RT-PCR分析肝细胞内SOD1、SOD2、SOD3、GSH-PX1、GSH-PX2、CAT mRNA水平变化,研究竹节人参总皂苷对乙醇损伤人胚肝细胞L-02的保护作用及作用机制。结果发现,对正常肝细胞,竹节人参总皂苷(100μg/mL)表现出明显的促进L-02增殖作用,当竹节人参总皂苷浓度达400μg/mL时,则表现出明显的抑制细胞增殖作用;对乙醇损伤的肝细胞L-02,竹节人参总皂苷(100μg/mL)表现出明显的保护作用,其肝细胞内液MDA含量、SOD、GSH-PX活性可恢复至正常水平(P>0.05),CAT活性虽显著升高,但仍显著低于正常组(P<0.01)。RT-PCR分析发现,竹节人参总皂苷(100μg/mL)可促进SOD1、SOD2、SOD3、GSH-PX1、GSH-PX2、CAT mRNA表达,其中GSH-PX3显著高于正常组(P<0.01),SOD1、SOD3与正常组无显著差异(P>0.05),SOD2、CAT虽显著提高,但仍低于正常对照(P<0.01),该结果与体内实验结果一致,说明竹节人参总皂苷发挥抗氧化作用与促进抗氧化酶SOD、GSH-PX、CAT特别是SOD1、SOD3、GSH-PX3mRNA表达有关。
     4、通过清除羟自由基(OH·)和超氧阴离子自由基(02·)试验,进行竹节人参总皂苷体外抗氧化能力评价。结果竹节人参总皂苷呈现出明显的清除OH·效应,并且其效果优于Vc,当浓度为12.5-1600μg/mL时,竹节人参总皂苷和Vc对OH·清除率分别为3.37-59.47%和3.10-31.79%;竹节人参总皂苷对联苯三酚自氧化具有一定的抑制作用,能清除O2-·,但清除能力要低于Vc,当浓度为12.5-1600μg/mL时,竹节人参总皂苷和Vc清除率分别为1.01-6.87%和0.89-15.98%。研究结果表明,竹节人参总皂苷在乙醇性肝损伤保护作用中,不仅可提高抗氧化剂GSH含量以及抗氧化酶GSH-PX、CAT、SOD的活性,同时具有直接清除肝代谢过程产生的·OH、O2-·自由基,亦或者是两者的协同作用达到对肝细胞的保护。
     5、通过MTT法测定细胞存活率,分光光度法测定肝细胞内液MDA含量、SOD及GSH-PX活性,研究竹节人参皂苷单体对乙醇损伤肝细胞L-02的保护作用及作用机理。结果显示,Rg1 0.16 mg/mL、Re 1.28 mg/mL和Rf 0.64mg/mL可促进正常肝细胞L-O2增殖,增殖率分别为22.68%、34.80%和28.47%(P<0.01);Rd 0.16mg/mL和F3 1.28 mg/mL对正常肝细胞L-O2生长表现出明显的抑制作用,抑制率分别为49.69%和43.33%(P<0.01)。对乙醇损伤的肝细胞L-O2,Rg1 0.16mg/mL、Re 1.28 mg/mL和Rf 0.64 mg/mL具有明显的保护作用,对细胞生长的抑制率由乙醇损伤模型组的50.37%分别降低为23.31%、26.90%和26.58%(P<0.01);Rd 0.16mg/mL和F3 1.28 mg/mL则加剧乙醇对肝细胞的损伤,抑制率高达83.18%和64.79%(P<0.01)。乙醇损伤模型组肝细胞L-02内乙醇代谢产生MDA含量、抗氧化酶SOD和GSH-PX活性分别为1.35±0.05μmol/mL、26.45±2.78 U/mL和67.04±4.27U/mL, Rg1 0.16 mg/mL、Re 1.28 mg/mL和Rf 0.64mg/mL可降低乙醇损伤的肝细胞L-02内MDA含量,分别降低为1.17±0.04、1.21±0.03和1.21±0.05μmol/mL(P<0.01);提高SOD活性,分别升高为38.32士4.85、35.58±4.43和38.96±3.27 U/mL(P<0.01);增强GSH-PX活性,分别升高为86.30±5.72、78.40±3.54和84.25士4.35U/mL(P<0.01)。以上结果表明,人参皂苷单体Rg1、Re和Rf对乙醇损伤肝细胞L-02具有明显的保护作用,清除乙醇代谢过程中产生的MDA以及提高抗氧化酶SOD和GSH-PX的活性,可能是其发挥该保护作用的机制之一。
Alcoholism is a social problem, and is also a medical issue. Acute alcoholism, chronic alcoholism, alcoholic fatty liver, chronic hepatitis and cirrhosis caused by prolong and heavy alcohol intake seriously harms people's health. After heavy drinking, blood alcohol concentration was significantly increased, and emergence of various drunken symptoms. Ethanol is mainly metabolized in liver by ethanol oxidation system, while producing a large number of free radicals O2-·, OH·and ethanol production of free radicals C2H5O-, C2H5OH-. When free radicals beyond the body scavenging capacity, it will cause the body tissue injury. So generally considered that one of the mechanisms of the alcohol-induced liver damage is through activating the O2 and produce free radicals, then cause hepatic cell membrane lipid peroxidation and injury.
     Panax japonicus (Panax japonicus. C.A.Mey), as one of traditional Chinese medicines and recorded in "Chinese Pharmacopoeia", is usually considered to have many effects such as anti-inflammatory, analgesic, sedative, anti-aging, anti-fatigue, anti-virus, anti-tumor, and protection of central nervous system, cardiovascular system, endocrine system, immune system and so on, the main active components of Panax japonicus are the saponins. Pharmacological studies found that total saponins of Panax japonicus can significantly increased the activities of SOD, CAT, GSH-PX, while reducing the MDA content in serum and liver in various animal models (such as:sports, aging, cerebral ischemia reperfusion injury, hyperlipidemia, etc.), thus inhibiting lipid peroxidation. Therefore, the total saponins used in this study were extracted from artificial cultivated Panax japonicus by circular sonication, the composition and its content of different saponins were analyzed with high performance liquid chromatography- evaporative light scattering detector- mass spectroscope (HPLC-ELSD-MS). Antioxidant activities as a starting point, we investigated the protective effect of saponins from Panax japonicus on ethanol-induced mice liver and human hepatic cell L-O2 injury, and its potential mechanisms of hepatoprotection involved, the protective effect of different purity saponin from Panax japonicus on ethanol-induced hepatic cell L-O2 injury and its possible mechanism are also studied in this paper. The main results are as follows:
     1. Total saponins were extracted from Panax Japonics, tentative identification of the saponins was achieved by comparing their retention times with those of the authentic standards, and further identification of the structures of these saponins by LC-ELSD-MS. The results were that the saponins used in this paper were identified to be ginsenosides Rg1, Re, Rf, F3, Rg2 and Rd, and the contents of which were 12.23%,16.24%,16.95%, 7.51%,8.53% and 11.47%, respectively.
     2. Saponins from Panax Japonics (SPJ) were given to mice by gavage 1 hour prior the alcohol treatment, the alcohol concentrations in serum and urine were determined by GC; the levels of malondialdehyde (MDA), alanine transaminase (ALT), aspatate transaminase (AST), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-PX) etc were measured by spectrophotometry; histopathological examination were observed through Lecia-DM2500 microscope and JEOL-1230 transmission electron microscopy; Results:SPJ may not inhibit ethanol absorption in the gastrointestinal tract. The AST, ALT activities and MDA content were decreased distinctly in serum in SPJ (50 mg/kg) treated mice, and the antioxidant as GSH, GSH-PX, CAT and SOD were evidently increased in serum and liver. Pretreated with SPJ, all the levels could restore to normal (50mg/kg b.w) in serum. In liver determination, the administration of SPJ significantly increased the activities of GSH-PX and SOD, and the final values were restored to normal at the dose of 50mg/kg b.w. (P>0.05). The levels of CAT and GSH were also significantly elevated compared to alcohol treatment mice, but still lower evidently than control (P<0.01). In histopathological studies, SPJ (50 mg/kg b.w.) pretreatment significantly prevented alcohol-induced abnormalities in dose-dependent manner, in which the hepatic lobule structure, liver cord and sinusoidal were remedied and showed normal histology. The cell structure were gradually restored nearly normal, karyon chromatin distributed uniform, nuclear membrane became smooth, mitochondrial structure returned to normal, the cristae and outer membrane became integrity, the persistent damage disappeared and most of mitochondria restored back to normal, whiles a few portion of mitochondria still showed with little distorted cristae. These results indicated that SPJ may exert a protective effect against lipid peroxidation by scavenging reactive oxygen species and elevating the activity of antioxidant enzymes, in consequence prevented the peroxidative deterioration of structural lipids in membranous organelles, especially mitochondria and karyon.
     3. To investigate the protective effect and its possible mechanism(s) of SPJ on alcohol-induced hepatic cell L-O2 damage, the normal and alcohol-induced injury cell were counted through trypan blue staining, the intracellular MDA, SOD, CAT and GSH-PX levels of L-02 cells were measured by spectrophotometry, the CAT. GSH-PX1, GSH-PX3, SOD1, SOD2 and SOD3 mRNA were detected by Quantitative real-time reverse transcription-PCR. Results:SPJ(100μg/mL) could promote normal cell (L-02) proliferation, but SPJ (400μg/mL) showed a evident toxicity to normal cell (L-02). SPJ (100μg/mL) also showed a significant protective effect on ethanol-induced hepatic cell L-02 injury, and presented evidently inhibitory ability on MDA in L-02 cells. Meanwhile, the SOD, GSH-PX and CAT activities were increased, in which the SOD and GSH-PX activities were restore to normal after treated with SPJ (100μg/ml), but the CAT was still lower than control (P<0.01). RT-PCR results showed that the expression of all the antioxidant enzymes were remarkably decreased with treated with ethanol (200 mmol/1) for 48h. Pretreated with SPJ (100μg/ml), these down-regulated tendencies of all the antioxidant enzymes were reversed, in which GSH-PX3 was evidently increased compared with normal control, SOD1 and SOD3 were restored to normal level, but the CAT and GSH-PX1 mRNA levels were still lower than evidently. These results of RT-PCR studies were in agreement with biochemical analyses in vivo, which indicated that the antioxidant effect of SPJ was associated with up-regulating the expression of SOD, GSH-PX and CAT, especially of GSH-PX 3, SOD1 and SOD3.
     4. Antioxidant activities of SPJ measured by hydroxyl radicals (·OH) and superoxide anion radical (O2·-) scavenge assays in vitro. Results:SPJ had a higher scavenging hydroxyl radical's effect than Vc, and their scavenging effects increased with increasing concentration. Scavenging effects of SPJ was 3.37-59.47% at amount of 12.5-1600μg/ml, respectively, and that of Vitamin C was about 3.10-31.79%. Superoxide radicals were generated in biphenyl trihydroxybenzene autoxidation system; results showed that the SPJ has little scavenging activities on O2'-. At the amount of 12.5-1600μg/ml. the effect on scavenging superoxide of SPJ was just 1.01-6.87%, while the scavenging activity of Vitamin C for superoxide radical was 0.89-15.98%. These results indicated that the protective effect of SPJ on alcohol-induced damage not only just associated with increasing the activities of GSH-PX, CAT and SOD, but also related with directly scavenging free radical such as·OH、O2-·,or the synergy effect of the two.
     5. To study the protective effect of different purity saponins from Panax japonicus on ethanol-induced hepatic cell (L-O2) injury and its possible mechanism(s). Survival ratios of hepatic cell (L-02) were determined by MTT, the level of MDA, the activities of SOD and GSH-PX in cell L-02 were measured by spectrophotometer. Result:0.16 mg/mL Rg1、s 1.28 mg/mL Re and 0.64 mg/mL Rf could promote normal cell (L-02) proliferation, the proliferation ratio was 22.68%,34.80%,28.47%(P<0.01). respectively.0.16 mg/mL Rd and 1.28 mg/mL F3 showed a evident toxicity to normal cell (L-02), the inhibition ratio (%) was 49.69%,43.33%(P<0.01).0.16 g/L Rg1,1.28 mg/mL Re and 0.64 mg/mL Rf also showed a significant protective effect on ethanol-induced hepatic cell (L-02) injury, the inhibition ratio (%) was decreased to 23.31%,26.90%,26.58% compare to ethanol-induced control 50.37% (P<0.01), but 0.16 mg/mL Rd and 1.28 mg/mL F3 showed a more evident toxicity to ethanol-induced hepatic cell (L-02), the inhibition ratio was 83.18%,64.79%(P<0.01), respectively. Meanwhile,Rg1. Re and Rf also could decreased the level of MDA (1.17±0.04,1.21±0.03,1.21±0.05 compare to ethanol-induced control 1.35±0.05 mmol/; P<0.01) and increased the activities of SOD (38.32±4.85,35.58±4.43,38.96±3.27 compare to ethanol-induced control 26.45±2.78 kU/L; P<0.01) and GSH-PX (86.30±5.72,78.40±3.54,84.25±4.35 compare to ethanol-induced control 67.04±4.27 kU/L; P<0.01) in intracellular fluid of cell L-02. These results indicated that Rg1, Re and Rf have protective effect against ethanol-induced hepatic cells L-02 injury, the possible mechanism may relate to decline of MDA content, increase of antioxidant enzymes such as SOD and GSH-PX activities.
引文
[1]Abbondanza A, Battelli MG, Soffritti M. et al. Xanthine oxidase status in ethanol-intoxicated rat liver [J]. Alcoholism Clin Exp Res,1989,13(4):841-844.
    [2]Albano E. Free radical mechanisms in immune reactions associated with alcoholic liver disease [J]. Free Radical Biology & Medicine,2002,32:110-114.
    [3]Albano E, French SW, Ingelman-Sundberg M. Hydroxyethyl radicals in ethanol hepatotoxicity [J]. Front Biosci,1999,15:533-540.
    [4]Ali MB, Yu KW, Hahn EJ, et al. Differential responses of anti-oxidants enzymes, lipoxygenase activity, ascorbate content and the production of saponins in tissue cultured root of mountain Panax ginseng CA. Mayer and Panax quinquefolium L. in bioreactor subjected to methyl jasmonate stress [J]. Plant Science,2005,169:83-92.
    [5]Bailey SM, Cunningham CC. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease [J]. Free Radical Biology & Medicine,2002, 32(1):11-16.
    [6]Bocrelli F, Izzo AA. The plant kingdom as a source of anti-ulcer remedies [J]. Phytotherapy research,2000,14 (8):518-591.
    [7]Box HC, Budzuinski EE, Dawidizik JB, et al. Free radical induced tandem base damage in DNA oligomers [J]. Free Radical Biology and Medicine,1997,23 (7):1021-1030.
    [8]Buettner GR. The peaking order of free radicals and antioxidants:lipid peroxidation, alpha-tocopherol, and ascorbate [J]. Arch Biochem Biophys,1993,300(2):535-543.
    [9]Chan RY, Chen WF, Dong A, et al. Estrogen-like activity of ginsenoside Rgl derived from Panax notoginseng [J]. J Clin Endocrinol Metab,2002,87(8):3691-3695.
    [10]Chang MS, Lee SG, Rho HM. Transcriptional activation of Cu/Zn superoxide dismutase and catalase genes by panaxadiol ginsenosides extracted from Panax ginseng [J]. Phyt oyther Res,1999,13 (8):641-644.
    [11]Chang TL, Ding HY, Kao YW. Role of ginsenoside Rd in inhibiting 26S proteasome activity [J]. J Agric Food Chem,2008,56 (24):12011-12015.
    [12]Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer's amyloid beta peptide after oral administration of ginsenosides [J]. Faseb J,2006,20 (8):1269-1271.
    [13]Chen WF, Lau WS, Cheung PY, et al. Activation of insulin-like growth factor 1 receptor-mediated pathway by ginsenoside Rgl [J]. Br J Pharmacol,2006,147 (5):542-551.
    [14]Chen XC, Zhou YC, Chen Y, et al. Ginsenoside Rgl reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress [J]. Acta Pharmacol Sin, 2005,26(1):56-62.
    [15]Chen XC, Fang F, Zhu YG, et al. Protective effect of ginsenoside Rgl on MPP+-induced apoptosis in SHSY5Y cells [J]. J Neural Transm,2003,110 (8):835-845.
    [16]Chen XC, Chen Y, Zhu YG, et al. Protective effect of ginsenoside Rgl against MPTP-induced apoptosis in mouse substantia nigraneurons [J]. Acta Pharmacol Sin. 2002,23(9):829-834.
    [17]Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rgl and Rbl and its mechanism of action [J]. Acta Pharmacol Sin,2005,26 (2):143-149.
    [18]Choi SS, Lee JK, Suh HW. Effect of ginsenosides administered intrathecally on the antinociception induced by cold water swimming stress in the mouse [J]. Biol Pharm Bull,2003,26:858-861.
    [19]Chung E, Lee KY, Lee YJ, et al. Ginsenoside Rgl down-regulates glucocorticoid receptor and displays synergistic effects with cAMP [J]. Steroids,1998,63 (7-8):421-424.
    [20]Conway S, Ling Sy, Leidy TW, et al. Effect of fetal ethanol exposure on the in vivo release of growth hormone, somatostatin and growth hormone-releasing factor induced by clonidine and growth hormone feed back in male and female rats [J]. Alcohol Clin Exp Res,1997,21(5):826-839.
    [21]Couzin J. Parkinson's disease. Dopamine may sustain toxic protein [J]. Science,2001, 294(5545):1257-1258.
    [22]Dai JL, DL Lin, Zhang J. Chronic ethanol injestion induces osteoclastogenesis and bone loss through IL-6 in mice [J]. J Clin Invest,2000,106(7):887-895.
    [23]Diamond I, Messing RO. Neurologic effects of alcoholism [J]. West J Med,1994, 161 (3):279-287.
    [24]Di'az Go'mez MI, Castro GD, Delgado de Layn~o AMA, et al. Cytochrome P450 reductase-mediated anaerobic biotransformation of ethanol to 1-hydroxyethyl-free radicals and acetaldehyde [J]. Toxicology,2000,154:113-122.
    [25]Dupont I, Bodenez P, Berthou F, et al. Cytochrome P450 2E1 activity and oxidative stress in alcoholic patients [J]. Alcohol and Alcoholism,2000,35(1):98-103.
    [26]Ekstrom G, Cronholm T, Ingelman-Sundberg M. Hydroxyl radical production and ethanol oxidation by liver microsomes isolated from ethanol-treated rats [J]. Biochem J,1986,233(1):755-761.
    [27]Fan L, ChenW. Increased expression of mitochondrial genes in human alcoholic brain revealed by different display [J]. Alcohol Clin Exp Res.2003,27:408-413.
    [28]Fei XF, Wang BX, Tashiro S, et al. Apoptotic effects of ginsenoside Rh2 on human malignant melanoma A375-S2 cells [J]. Acta Pharm Sin,2002,23(4):315-322.
    [29]Feig DI, Reid TM, Loeb LA. Reactive oxygen species in tumorigenesis [J]. Cancer research,1994,54 (1):1890-1894.
    [30]Fernandez-Checa JC. Alcohol-induced liver disease:when fat and oxidative stress meet [J]. Annals of Hepatology,2003,2(2):69-75.
    [31]Friedrich MW, Christoph K, Joerg M, et al. Ethyl glucuronide:a marker of recent alcohol consumption with clinical and forensic implications [J]. Alcohol,2000, 20:111-116.
    [32]Fujimoto J, Sakaguchi H, Aoki I, et al. Inhibitory effect of ginsenoside Rb2 on invasiveness of uterine endometrial cancer cells to the basement membrane [J]. Eur J Gynaecol Oncol,2001,22 (5):339-341.
    [33]Furukawa T, Bai CX, Kaihara A, et al. Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones [J]. Mol Pharmacol,2006,70 (6):1916-1924.
    [34]Gilman S, Adams K, Koeppe RA, et al. Cerebellar and frontal hypometabolism in alcoholic cerebellar degeneration studied with positron emission tomography [J]. Ann Neurol,1990,28 (6):775-785.
    [35]Godde WH, Agarwal DP. Alcoholism of medical and genetics aspects 1st edn. New York:Pergam Press,1989,3-57.
    [36]Gong Z, Wezeman FH. Inhibitory effect of alcohol on osteogenic differentiation in human bone marrow-derived mesenchymal stem cells [J]. Alcohol Clin Exp Res,2004, 28(3):468-479.
    [37]Guan YY, Zhou JG, Zhang Z, et al. Ginsenoside-Rd from Panax notoginseng blocks Ca2+ influx through receptor-and store-operated Ca2+ channels in vascular smooth muscle cells [J]. Eur J Pharmacol,2006,548:129-136.
    [38]Ham YM, Lim JH, Na HK, et al. Ginsenoside-Rh2-induced mitochondrial depolarization and apoptosis are associated with reactive oxygen species-and Ca2+ -mediated c-Jun NH2-terminal inase 1 activation in HeLa cells [J]. Pharmacol Exp Ther,2006,319(3):1276-1285.
    [39]Hard ML, Iqbal V, Brien JF, et al. Binding of acetaldehyde to human and guina pig placentae in vitro [J]. Plecenta,2003,24 (2-3):49-54.
    [40]Harada H, Hines IN, Flores S, et al. Role of NADPH oxidase-derived superoxide in reduced size liver ischemia and reperfusion injury [J]. Arch Biochem Biophys,2004, 423:103-108.
    [41]Hasegawa H, Matsumiya S, Llchiyama M, et al. Inhibitory effect of some triterpenoid saponins on glucose transport in tumor cells and its application to in vitro cytotoxic antivivral activities [J]. Planta medica,1994,60(3):240-243.
    [42]Hayakawa K, Kumagai H, Suzuki Y, et al. MR imaging of chronic alcoholism [J]. Acta Radiol,1992,33 (3):201-206.
    [43]Husain K, Scott BR, Reddy SK, et al. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system [J]. Alcohol,2001,25:89-97.
    [44]Iju WK, Xu SX, Che CT. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line [J]. Life Sci,2000,67(1):1297-1306.
    [45]Isayama F, Fron M, Bradford BU, et al. The CYP inhibitor 1-aminobenzotriazole does not prevent oxidative stress associated with alcohol-induced liver injury in rats and mice [J]. Free Radic Biol Med,2003,12:1568-1581.
    [46]Itoga S, Nakai T, Harada S, et al. Mutaions in the exons and exon-intron junction regions of human cytochrome P-4502E1 gene and alcoholism [J]. Alcohol Clin Exp Res,1999,23(4):13-16.
    [47]Jeong HG, Pokharel YR, Han EH, et al. Induction of cyclooxygenase-2 by ginsenoside Rd via activation of CCAAT-enhancer binding proteins and cyclic AMP response binding protein [J]. Biochem Biophys Res Commun,2007,359:51-56.
    [48]Kahraman A, N Erkasap, T Koken, et al. The antioxidative and antihistaminic properties of quercetin in ethanol2induced gastric lesions [J]. Toxicology,2003, 183:133-142.
    [49]Kim HS, Oh KW, Oh SK, et al. Antagonismof morphine analgesia by the pretreatment sites with ginseng total saponin [J]. Koryo Insam Hakhoechi,1991,15 (1):6-12.
    [50]Kim HS, Oh KW, Seong YH, et al. The role of ginseng total saponins in the inhibition of the development of analgesic tolerance to morphine [J]. Koryo Insam Hakhoechi,1991,15 (3):179-182.
    [51]Kim YS, Kim DS, Kim SI. Ginsenoside Rh2 and Rh3 induce differentiati on of HL-60 cells into granulocytes:modulati on of protein kinase C isoforms during differen tiation by ginsenoside Rh2 [J]. Int J Biochem Cell Biol, 1998.30(3):327-338.
    [52]Kimura T, Saunders PA, Kim HS, et al.Interactions of ginsenosides with ligand-bindings of GABA(A) and GABA(B) receptors[J].Gen Pharmacol,1994, 25(1):193-199.
    [53]Knecht KT, Bradford BU, Mason RP, et al. In vivo formation of a free radical metabolite of ethanol [J]. Molec Pharmacol,1990,38(1):26-30.
    [54]Koivisto H, Hietala J, Anttila P, et al. Co-occurrence of IgA antibodies against ethanolmetabolites and tissue transglutaminase in alcohol consumers:correlation with proinflammatory cytokines and markers of fibrogenesis [J]. Dig Dis Sci,2008,53(2): 500-505.
    [55]Kono H, Rusyn I, Uesugi T, et al. Diphenyleneiodonium sulfate, an NADPH oxidase inhibtor, prevents early alcohol-induced liver injury in the rat [J]. Am J Physiol Gastrointest Liver Physiol,2001,280:1005-1012.
    [56]Kono H, Rusyn I, Yin M, et al. NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease [J]. J Clin Invest,2000,106:867-872.
    [57]Lee YJ, Chung E, Lee KY, et al. Ginsenoside-Rgl, one of the major active molecules from Panax ginseng, is a functional ligand of glucocorticoid receptor [J]. Mol Cell Endocrinol,1997,133 (2):135-140.
    [58]Leung KW, Cheng YK, Mak NK, et al. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells [J]. FEBS Lett,2006, 580(13):3211-3216.
    [59]Li YG, Ji DF, Chen S, et al. Protective effects of sericin protein on alcohol-mediated liver damage in mice [J]. Alcohol and Alcoholism,2008,43:246-253.
    [60]Li YG, Ji DF, Zhong S, et al. Saponins from Panax Japonicus protect the alcohol-induced hepatic injury in mice by up-regulating the expression of Gpx3. Sodl and Sod3 [J]. Alcohol and Alcoholism,2010,45(4):320-331.
    [61]Liao B, Newmark H, Zhou R. Neuroprotective effects of ginseng total saponin and ginsenosides Rbl and Rgl on spinal cord neurons in vitro [J]. Exp Neurol,2002,173 (2):224-234.
    [62]Lieber CS. Ethanol metabolism, cirrhosis and alcoholism [J]. Clin Chim Acta,1997, 257:54-84.
    [63]Lieber CS. Microsomal ethanol-oxidizing system (MEOS):the first 30 years (1968-1998)--a review [J]. Alcohol Clin Exp Res,1999,23:9912-1007.
    [64]Lieber CS, Decarli LM. Hepatic microsomal ethanol-oxidizing system. In vitro characteristice and adaptive properties in vivo [J]. J Biol Chem,1970,245:2505-2512.
    [65]Lin SC, Chung CY, Chiang CL, et al. The influence of propolis ethanol extract on liver microsomal enzymes and glutathione after chronic alcohol administration [J]. Am J ChinMed,1999,27:83-93.
    [66]Ma ZC, Gao Y, Wang YG, et al. Ginsenoside Rgl inhibits proliferation of vascular smooth muscle cells stimulated by tumor necrosis factor-alpha [J]. Acta Pharmacol Sin, 2006,27(8):1000-1006.
    [67]Mansouri A, Gaou I, Kerguenec C, et al. An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice [J]. Gastroenterology,1999, 117(1):181-190.
    [68]Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase [J]. European Journal of Biochemistry,1974,47:469-474.
    [69]Matej K, Ivan M, Suzana L. Serum alcohol dehydrogenase levels in patients with mental disorders [J]. Clinica Chimica Acta,2005,361:86-94.
    [70]Melgaard B. Chronic encephalopathy and peripheral neuropathy associated with alcoholism. Dan Med Bull,1993,40 (1):31-38.
    [71]Melgaard B, Henriksen L, Ahlgren P, et al. Regional cerebral blood flow in chronic alcoholics measured by single photon emission computerized tomography. Acta Neurol Scand,1990,82 (2):87-93.
    [72]Mendez-Sanchez N, Villa AR, Chavez-Tapia NC, et al. Trends in liver disease prevalence in Mexico from 2005 to 2050 through mortality data [J]. Ann Hepatol, 2005,4(1):52-56.
    [73]McKillop IH, Schrum LW. Alcohol and liver cancer[J]. Alcohol,2005,35 (3): 195-203.
    [74]Mochizuki M, Yoo YC, Matsuzawa K, et al. Inhibitory effect of tumor metastasis in mice by saponins ginsenoside-Rb2,20 (R)-and20(S)-ginsenoside-Rg3, of red ginseng [J]. Biol pharm bull,1995,18 (9):1197-1202.
    [75]Mook-Jung I, Hong HS, Boo JH, et al. G insenoside Rbl and Rgl improve spatial learning and increase hippocampal synaptophysin level in mice [J]. J Neurosci Res, 2001,63 (6):509-515.
    [76]Morasco BJ, Pietrzak RN, Blanco C, et al. Health problems and medical utilization associated with gambling disorders:results from the National Epidemiologic Survey on Alcohol and Related Conditions [J]. Psychosom Med,2006,68 (6):976-984.
    [77]Nordmann R, Ribiere C, Rouach H. Implication of free radical mechanisms in ethanol-induced cellular injury [J]. Free Radical Biology & Medicine,1992,12 (3):219-240.
    [78]Ogilvie KM, Rivier C. Gender difference in hypothalamic-pituitary-adrenal axis response to alcohol in the rat:activational fole of role of gonadel steroids [J]. Brain Res,1997,766 (1-2):19-28.
    [79]Pendino GM, Mariano A, Surace P, et al. Prevalence and etiology of altered liver tests: a population-based survey in a Mediterranean town [J]. Hepatology,2005, 41(5):1151-1159.
    [80]Poli G. Liver damage due to free radicals [J]. Br Med Bull,1993,49(3):604-620.
    [81]Poschi G, Seitz HK. Alcohol and cancer[J]. Alcohol and Alcoholism,2004,39 (3):155-165.
    [82]Reinke LA, Lai EK, DuBose CM, et al. Reactive free radical generation in vivo in heart and liver of ethanol-fed rats:correlation with radical formation in vitro [J]. Proc Natl Acad Sci (USA),1987,84(24):9223-9227.
    [83]Rouach H, Houze P, Orf anelli MT, et al. Effect of acute ethanol administration on the subcellular distribution of iron in rat liver and cerebellum [J]. Biochem Pharmacol, 1990,39(6):1095-1100.
    [84]Rubino FA. Neurologic complications of alcoholism [J]. Psychiatr Clin North Am, 1992,15 (2):359-372.
    [85]Rudakewich M, Ba F, Benishin CG. Neurotrophic and neuroprotective actions of ginsenosides Rb (1) and Rg (1) [J]. Planta Med,2001,67 (6):533-537.
    [86]Sampey BP, Korourian S, Ronis MJ, et al. Immunohistochemical characterization of hepatic malondialdehyde and 4-hydroxynonenal modified protein during early stages of ethanol-induced liver injury [J]. Alcohol Clin Exp Res,2003,27:1015-1022.
    [87]Sampson HW, Spears H. Osteopenia due to chronic alcohol consumption by young actively growing rats is not completely reversible [J]. Alcohol Clin Exp Res,1999, 23(2):324-327.
    [88]Santra A, Das S, Maity A, et al. Prevention of carbon tetrachloride-induced hepatic injury in mice by picrorhiza kurrooa [J]. Indian Junal of Gastroenterology,1998,17 (1):6-9.
    [89]Seitz HK, Poschl G, Simanowski UA. Alcohol and cancer[J]. Recent Dev Alcohol, 1998,14:67-95.
    [90]Sellers TA, Vierkant RA, Cerhan JA, et al. Interaction of dietary folate intake, alcohal, and risk of hormone receptor-defined brest cancer in a prospective study of post menopausal women [J]. Cancer Epidemiol Biomarkers Prev,2002,11: 1104-1107.
    [91]Shi DY, Deng Y, Liu SL, et al. Redox stress regulates cell proliferation and apotosis of human hepatoma through Akt protein phosphorylation [J]. FEBS Lett,2003,542: 60-64.
    [92]Shimoda R, Nagashima M, Sakamoto M, et al. Increased formation of oxidative DNA damage,8-hydroxydeoxyguanosine, in human live with chronic hepatitis[J]. Cancer Research,1994,54:3171-3172.
    [93]Shin YH, Jung OM, Nah JJ, et al. Ginsenosides that produce differential antinociception in mice [J]. Gen Pharmacol,1999.32:653-659.
    [94]Shinkai K, Akedo H, Mukai M, et al. Inhibition of in vitro tumor cell invasion by ginsenoside Rg3 [J]. Jpn J Cancer Res,1996.87 (4):357-362.
    [95]Spinozzi F, Agea E, Bassotti G, et al. Ethanol-specific impairment of T-lymphocyte activation is caused by a transitory block in signal-transduction pathway [J]. Gastroenterology,1993,105:1490-1501.
    [96]Such HW, Song DK, Kim YH, et al. Effects of ginsenosides injected intrathecally or intracere broventricularly on antinociception induced by morphine administered intralere brobentricularly in the mouse [J]. Gen pharmacol,1997,29 (5):873-877.
    [97]Vignais PV. The superoxide-generating NADPH oxidase:structural aspects and activation mechanism [J]. Cell Mol Life Sci,2002,59:1428-1459.
    [98]Wang W, Zhao YQ, Rayburn ER, et al. In vitro anti-cancer activity and structure activity relationships of natural products isolated from fruits of Panax ginseng [J]. Cancer Chemother Pharmacol.2007,59:589-601.
    [99]Wei WL, Guan YY, He H. The characteristic of Cl-current induced by ATP in bovine aortic endothelial cells[J]. Drug Dev Res,2003,58 (1):53-56.
    [100]Wrenn KD, Slovis CM, Facep F. Neurologic eomplieatiorm of aleohollis emerge [J]. Emerg Med Clin North Am,1990,8 (4):835-858.
    [101]Xie X, Eberding A, Madera C, et al. Rh2 synergistically enhances paclitaxel or mitoxantrone in prostate cancer models [J]. J Urol,2006,175:1926-1931.
    [102]Yan M, Zhu P. Liu HM, et al. Ethanol induced mitochondria injury and permeability transition pare opening; Role of mitochondria in alcoholic liver disease [J]. World J Gastroenterol,2007,13 (16):2352-2356.
    [103]Yang ZG, Sun HX, Ye YP. Ginsenoside Rd from Panax notoginseng is cytotoxic towards HeLa cancer cells and induces apoptosis [J]. Chem B iodivers,2006, 3:187-197.
    [104]Yi JS, Choo HJ, Cho BR, et al. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption [J]. Biochem and Biophy Res commun,2009, 385(2):154-159.
    [105]Yokozawa T, Satoh A, Cho EJ. Ginsenoside-Rd attenuates oxidative damage related to aging in senescence-accelerated mice [J]. J Pharm Pharmacol,2004,56:107-113.
    [106]Yokozawa T, Liu ZW, Dong E. A study of ginsenoside-Rd in a renal ischemia-reperfusion model [J]. Nephron,1998,78:201-206.
    [107]Yokozawa T, Kobayashi T, Oura H, et al. Studies on the mechanism of the hypoglycemic activity of ginsenoside Rb2 in streptozotocin diabetic rats [J]. Chem Pharm Bull,1985,33 (2):869-872.
    [108]Yokozawa T, Fujistuka N, Yasui T, et al. Effects of ginsenoside Rb2 on adenine mucleotide content of rat hepatic tissue [J]. J pharm pharmacol,1991,43 (4):290-291.
    [109]Zhang HS, Wang SQ. Ginsenoside Rg1 inhibits tumor necrosis factor-alpha (TNF-alpha)-induced human arterial smooth muscle cells (HASMCs) proliferation [J]. J Cell Biochem,2006,98 (6):1471-1481.
    [110]Zhang G, Liu A, Zhou Y Panax ginseng ginsenoside Rg2 protectsmemory impairment via anti-apoptosis in a rat model with vascular dementia [J]. J Ethnopharmacol,2008,115 (3):441-449.
    [111]Zhang YW, Morita I, Shao G, et al. Screening of anti-hypoxia/reoxygenation agents by an in vitro model. Part1:Natural inhibitors for protein tyrosine kinase activated by hypoxia/reoxygenation in cultured human umbilical vein endothelial cells [J]. Planta Med,2000,66 (2):114-118.
    [112]Zhang YW, Morita I, Zhang L, et al. Screening of anti-hypoxia/reoxygenation agents by an in vitro method. Part2:Inhibiton of tyrosine kinase activation prevented hypoxia/reoxygenation-induced injury in endothelial gap junctional intercellular communication [J]. Planta Med,2000,66 (2):119-123.
    [113]Zhou XM, Cao YL, Dou DQ. Protective effect of ginsenoside-Re against cerebral ischemia/reperfusion damage in rats [J]. Biol Pharm Bull,2006,29(12):2502-2505.
    [114]Zhou JG, Qiu QY, Zhang Z, et al. Evidence for capacitative and non-capacitative Ca2+ entry pathways coexist in A10 vascular smooth muscle muscle cells [J]. Life Sci,2006,78(14):1558-1563.
    [115]Zima T, Fialova L, Mestek O, et al. Oxidative stress, metabolism of ethanol and alcohol-related diseases [J]. Journal of Biomedical Science,2001,8(1):59-70.
    [116]曹霞,谷欣权,陈燕萍,等.人参皂苷Re对肾脏缺血再灌注损伤大鼠肾功能及ATP酶的影响[J].中国实验诊断学,2009,13(8):1025-1027.
    [117]陈迪,倪劲松,王心蕊,等.20(S)-人参皂苷Rg3对乳腺癌MCF-7细胞的诱导凋亡作用[J].吉林大学学报(医学版),2008,34(4):610-614.
    [118]陈俊霞,彭惠民,蒲淑萍,等.人参皂苷Rg3诱导膀胱癌细胞系EJ的凋亡作用[J].中国中药杂志,2007,32(16):1680-1683.
    [119]陈龙全,袁德培,孟卫星,等.复方竹节参片镇痛抗炎作用的实验研究[J].江苏中医,1998,19(9):47-48.
    [120]陈龙全,陈朝俊.复方竹节参片抗风湿作用的免疫调节机制研究[J].中国医药学报,2003,18(4):247-248.
    [121]陈龙全,陈朝俊.复方竹节参片抗风湿作用的免疫调节机制研究[J].中国医药报,2003,18(4):247-247.
    [122]陈龙全,郜红利.复方竹节参片对大鼠佐剂性关节炎治疗作用的实验研究[J].中国实验方剂学杂志,2003,9(3):25-26.
    [123]陈明伟,倪磊,赵小革,等.人参皂苷Rg3对肿瘤血管生长调控因子蛋白表达抑制作用的研究[J].中国中药杂志,2005,30(5):357-360.
    [124]陈明伟,杨岚,倪磊,等.Rg3对肺腺癌A549细胞及其内源性VEGF的影响[J].四川大学学报(医学版),2006,37(1):60-62.
    [125]陈声武,王丽娟,王岩,等.人参皂苷Rb1和Rd对不同类型记忆障碍模型小鼠学习记忆功能的影响[J].中国药理学与毒理学杂志,2001,15(5):30-32.
    [126]陈淑清,余立江,江帆.土家族药神参(竹节参)总皂苷的镇痛、镇静抗惊及解痉作用和毒性试验[J].华西药学杂志,1987,2(2):85-85.
    [127]陈艳,廖进民,吴铁.酒精摄入对小鼠不同骨骼形态学参数的影响[J].中国临床解剖学杂志,2008,26(4):416-418.
    [128]程俊霖,周黎明,朱玲,等.人参茎叶总皂苷对衰老小鼠的作用研究[J].四川生理科学杂志,2004,26(3):97-99.
    [129]崔新明,李艳茹,吕文伟,等.人参皂苷Rg2对急性心源性休克犬心肌的保护作用[J].吉林大学学报(医学版),2003,29(4):392-394.
    [130]崔永锋,陈彩虹,张永斌.酒精对机体多系统影响的研究进展[J].中华医学与健康,2005,1:79-83.
    [131]邓源,班春林,武晓琼.乙醇诱导肝损伤作用机制的研究进展[J].华北国防医药,2005,17(4):242-244.
    [132]范建高,朱军,李建新,等.上海市成人脂肪肝患病率及其危险因素流行病学调查[J].中华肝脏病杂志,2005,13(2):83-88.
    [133]冯毅翀,赵自明,陈媛,等.人参皂苷Re对运动性疲劳模型大鼠MDA含量和SOD活性的影响[J].中药新药与临床药理,2009,20(6):542-544.
    [134]高船舟,曲淑贤,吕广艳,等.20(R)-人参皂苷Rg3对K562/ADM细胞凋亡诱导的研究[J].大连医科大学学报,2001,23(3):172-173.
    [135]高瑛瑛,刘文丽,周炳荣,等.人参皂苷Rg1对细胞光老化模型中p53信号转导途径的影响[J].中国药理学通报,2010,26(3):383-390.
    [136]郭佳,刘小康,武文,等.人参皂苷Rbl预适应对肥厚乳鼠心肌细胞缺氧复氧损伤的保护作用[J].中国临床药理学与治疗学,2005,10(9):1010-1014.
    [137]中华人民共和国药典委员会.中国药典-第1版[M].北京:化学工业出版社,2000,106-106.
    [138]郭群,喻秀兰,胡晓雪.竹节参的化学及药理研究进展[J].中药研究与信息,2004,6(12):17-19.
    [139]何胜虎,张晶.过氧化氢体外诱导人血管内皮细胞损伤与人参皂苷Rb1的保护效应[J].中国组织工程研究与临床康复,2008,12(2):254-257.
    [140]华海清,沈小昆,秦叔逵,等.人参皂苷Rg3抗人肝癌细胞株侵袭和转移的实验研究[J].中国癌症杂志,2005,15(4):326-330.
    [141]黄广文,李锦,王玮.酒精诱导的氧化应激[J].中国公共卫生管理,2009,25(1):86-89.
    [142]黄庆科,林菊生.乙醇性肝病[J].医学综述,2008,14(1):84-87.
    [143]黄顺玲,戴水奇,张雪红,等.湖南省酒精性肝病流行病学调查概况[J].中国医师杂志,2005,7(3):426-427.
    [144]姜红柳,杨振,孟勤,等.人参皂苷Re对小鼠学习记忆障碍的作用[J].中国药 理学通报,2008,24(10):1399-1340.
    [145]江红接,钟山,邱中民.成都地区体检人群脂肪性肝病流行病学调查[J].解放军预防医学杂志,2003,21(6):427-428.
    [146]江沛,孙培吾,麦惠成.人参皂苷Rb1对肺缺血再灌注损伤的保护作用[J].中国胸心血管外科临床杂志,1997,4(3):151-153.
    [147]姜新,曲雅勤,贾晓晶,等.人参皂苷Rg3抑制B16黑色素瘤生长和诱导凋亡的实验研究[J].中国实验诊断学,2006,10(6):593-595.
    [148]金鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H202/Fe2+产生的羟自由基[J].生物化学与生物物理进展,1996,23(6):55.
    [149]李博,杨威,郑永晨.人参皂苷Rg3对乳腺癌细胞表达MMP-2和MMP-9的影响[J].中国老年学杂志,2005,25(8):953-954.
    [150]李殿友,罗毅男,杨红,等.人参皂苷Rh2诱导C6胶质瘤细胞凋亡的实验研究[J].中国肿瘤临床,2003,30(7):474-477.
    [151]李杰,李月白,王义生,等.酒精对骨髓基质细胞成脂与成骨分化的影响[J].中华骨科杂志,2003,23(8):493-495.
    [152]李丽,齐凤英,刘俊茹,等.人参皂苷Rh2对食管癌细胞Eca-109细胞周期的影响[J].中国中药杂志,2005,30(20):1617-1621.
    [153]李南珠.乙醇在肝脏中的代谢与乙醇性肝损伤[J].中国现代医药杂志,2008,10(3):128-129.
    [154]李有贵,徐刚,陈诗,等.竹节人参对小鼠乙醇性胃黏膜损伤的保护作用[J].中国中药杂志,2007,32(21):2282-2285.
    [155]李想.人参皂苷Rg3对人胃癌细胞Pim-3及Bad凋亡蛋白表达的影响[J].江西医药,2009,44(6):555-557.
    [156]李秀敏,李慧莉.乙醇诱导肝损伤作用机制概述[J].中国药师,2008,11(9):1114-1116.
    [157]厉有名.国内外酒精性肝病诊断标准的比较分析[J].临床肝胆病杂志,2010,26(3):249-252.
    [158]厉有名,陈卫星,虞朝辉,等.浙江省酒精性肝病流行病学调查概况[J].中华肝脏病杂志,2003,11(11):647-649.
    [159]刘红.竹节人参提取物对胃缺血再灌注损伤的防护[J].湖北民族学院学报(医 学版),2002,19(2):1-3.
    [160]刘家兰,李德清.竹节人参提取物对衰老模型小鼠的作用[J].湖北民族学院学报(医学版),2006,23(1):8-10.
    [161]刘家兰,李德清,段先宇.竹节人参提取物对大鼠和小鼠脑缺血再灌注损伤的保护作用[J].湖北民族学院学报(医学版),2002,19(1):35-37.
    [162]刘家兰,李德清,刘红.竹节人参提取物对实验性心肌缺血的保护作用[J].湖北民族学院学报(医学版),1999,16(1):6-9.
    [163]刘建文,魏东芝,杜长斌,等.人参皂苷Rb2促进牛主动脉内皮细胞纤维蛋白细胞溶解酶的活性[J].中国药理学报,2003,24(2):102-108.
    [164]刘基巍,赵翌,富力,等.PCNA、p16、MMP9在人参皂苷Rg3抗肝癌淋巴道转移中的表达及意义[J].临床肿瘤学杂志,2004,9(3):225-228.
    [165]刘江,李冉,刘丽娜,等.JNK通路介导帕金森病小鼠黑质神经元丢失及人参皂甙Rg1的保护作用[J].现代预防医学,2008,35(10):1973-1975.
    [166]刘洁,吕文伟,张志伟,等.人参皂苷Rg2对犬急性心源性休克的治疗作用[J].中国病理生理杂志,2001,17(9):913-915.
    [167]刘霞,包翠芬,魏嘉,等.参皂苷Rg1对脑缺血-再灌注大鼠海马CAl区神经元的保护作用及机制[J].解剖科学进展,2010,16(2):177-180.
    [168]刘霞,包翠芬,魏嘉,等.人参皂苷Rg1对抗脑缺血-再灌注大鼠脑组织p-JN K蛋白表达的定量分析[J].数理医药学杂志,2010,23(1):37-38
    [169]刘霞,包翠芬,魏嘉,等.人参皂苷Rgl对脑缺血再灌注大鼠Caspase-3蛋白表达的影响[J].中国组织化学与细胞化学杂志,2010,19(1):88-92.
    [170]鲁晓岚,陶明,罗金燕,等.饮酒与肝病流行病学调查[J].中华肝脏病杂志,2002,10(6):467-468.
    [171]路雪雅.乙醇诱导肝脏损伤的自由基机理[J].新消化病学杂志,1997,5(3):200-202.
    [172]吕学儒,宋晓风,王长庚.醒酒冲剂作用的研究[J].职业与健康,2002,18(1):137-137.
    [173]吕俊华,黄丰,刘月丽,等.人参皂苷Rg1对LPS诱导的SK -N-SH细胞株脑啡肽酶表达的影响[J].中药材,2005,28(2):117-119.
    [174]马玲,谭德福.竹节参的研究概况[J].时珍国医国药,2005,16(12):1306.
    [175]磨红玲,邝晓聪,张明安,等.酒精中毒大鼠全身性细胞免疫功能的测定[J].广西医科大学学报,2000,17(3):428-429.
    [176]倪观锋.竹节参不同提取部位体外抗肿瘤活性实验研究[J].浙江中医杂志,2007,42(4):230-231.
    [177]倪劲松,辛颖,王心蕊,等.20(S)-人参皂苷Rg3对Lewis肺癌生长及转移的抑制作用[J].肿瘤防治研究,2006,33(5):311-313.
    [178]潘建秋,蒲朝煜.氧自由基与肝细胞损伤[J].贵州医药,2000,24(12):756-758.
    [179]潘子明,叶子风,谢辛,等.人参皂苷-Rg3对荷卵巢癌的严重联合免疫缺陷鼠的抗肿瘤血管生成作用的研究[J].中华妇产科杂志,2002,37(4):202-204.
    [180]钱丽娜,陈平,李小莉,等.鄂产竹节参总皂苷成分抗氧化活性研究[J].武汉植物学研究,2008,26(6):674-676.
    [181]孙桂波,徐惠波,温富春.去葡萄糖竹节参皂苷IVa抗实验性心律失常作用[J].中国药理学与毒理学杂志,2006,20(5):377-380.
    [182]孙桂波,徐惠波,温富春.去葡萄糖竹节参皂苷IVa对心肌电生理特性的影响[J].中国药理学通报,2006,22(11):1407-1409.
    [183]孙庆文.酒精饮料在人体内的代谢及适宜饮量[J].酿酒科技,2006,8(146):126-129.
    [184]童学飞,尹文仲,陈科力.栽培和野生竹节参中人参皂苷含量比较[J].时珍国医国药,2006,17(10):1919-1920.
    [185]田建明,郑淑秋,郭伟芳,等.人参皂苷Rg2对大鼠心肌缺血再灌注损伤诱发心肌细胞凋亡的保护作用[J].中国药理学通报,2004,20(4):480-480.
    [186]王本祥,张树臣,曲淑岩.三七水煎剂对实验性关节炎的影响[J].药学学报,1965,12(7):446-451.
    [187]王兵,高勇,许青,等.人参皂苷Rg3对肺癌诱导血管内皮细胞增殖的抑制作用[J].中国新药杂志,2002,11(9):700-702.
    [188]王红丽,吴铁,吴志华,等.人参皂苷抗皮肤衰老作用实验研究[J].广东药学院学报,2003,19(1):25-28.
    [189]王强,吴美清,赵玲辉,等.人参皂苷Rh2对小鼠移植瘤生长及对细胞间连接黏附分子表达的影响[J].中国中药杂志,2008,33(18):2116-2119.
    [190]王晓明,齐咏,孙成文,等.人参Rb2对心肌作用的单钙通道分析及ESR谱研 究[J].中国中药杂志,1994,19(10):621-624.
    [191]王晓英,陈霁,张均田.人参皂苷Rg对p2淀粉样肽(25-35)侧脑室注射所致小鼠学习记忆障碍的改善作用及其机制[J].药学学报,2001,36(1):1-4.
    [192]文德鉴,张松,张翠兰,等.竹节人参皂苷对小鼠低氧/复氧损伤后抗氧化功能的影响[J].中国应用生理学杂志,2008,24(3):318-319.
    [193]文德鉴,张松,张翠兰,等.竹节人参总皂苷对I/R损伤大鼠抗氧化作用的观察[J].中国应用生理学杂志,2008,24(2):195-196.
    [194]吴镝,张琦.酒精肝的造模与发病机制[J].中国社区医师·医学专业半月刊,2008,20(10):35-35.
    [195]吴歌,杨世杰.人参皂苷单体Rh2对小鼠前胃癌MFC细胞的增殖抑制作用[J].吉林大学学报(医学版),2008,34(1):101-104.
    [196]吴瑕,陈东,雷玲.竹节人参抗炎镇痛作用研究[J].中药药理与临床,2007,23(1):43-45.
    [197]向东山,翟琨.竹节人参中总皂苷提取工艺研究[J].中国中药杂志,2008,33(16):2053-2056.
    [198]辛颖,倪劲松,姜新,等.20(S)-人参皂苷Rg3抑制肿瘤生长的作用[J].吉林大学学报(医学报),2005,32(1):61-65.
    [199]许浩,葛亚坤,邓同乐,等.人参皂苷Rbl对H2O2诱导新生大鼠心肌细胞凋亡的保护作用[J].中国药理学通报,2005,21(7):803-806.
    [200]薛东波.人参皂苷Rg3抗肿瘤转移作用的研究进展[J].中国中西医结合外科杂志,2001,7(4);289-290.
    [201]鄢丰,杨频.从竹节三七、肉桂、大黄中提纯的天然活性成分的镇痛作用研究[J].中国新医药,2003,2(5):19-20.
    [202]姚凤祥,麻世迹,陈阳.现代风湿病学[M].北京:人民军医出版社,1995,200-200.
    [203]姚树坤.酒精性肝病发病机理的研究进展[J].现代消化及介入诊疗,2007,12(4):232-236.
    [204]杨慧科,吕艳华,刘慧冬,等.人参皂甙Rh2对小鼠移植瘤血管内皮生长因C及淋巴管生成的影响[J].解剖学报,2009,40(2):265-268.
    [205]杨晓明,崔慧先.酒精对神经及内分泌系统作用的研究进展[J].白求恩军医学 院学报,2003,1(1):48-50.
    [206]叶勇.植物天然抗氧化成分及其效果[J].中国食品添加剂,2000,4:45-48.
    [207]尹文仲,童学飞,陈科力.不同海拔条件下竹节参中人参皂苷含量的比较[J].湖北民族学院学报·医学版,2006,23(2):12-14.
    [208]袁丁,左锐,张长城.竹节参总皂苷抑制小鼠肿瘤生长的实验研究[J].时珍国医国药,2007,18(2):277-278.
    [209]庄莹,石博,田歆.人参皂苷Rg2对Alzheimer病模型大鼠学习记忆能力和老年斑形成的影响[J].中国老年学杂志,2010,30(1):202-204.
    [210]曾飒,关永源,刘德育,等.人参皂苷Rd C12差向异构体的合成及其对大鼠主动脉环收缩反应的影响[J].中国药理学通报,2003,19(3):282-286.
    [211]曾飒,关永源,刘德育,等.人参皂苷Rd及其C12手性异构体对缺氧/再复氧后蛋白酪氨酸磷酸化的抑制作用[J].中国药理学与毒理学杂志,2004,18(4):274-278.
    [212]翟红梅,肖颖,肖霄,等.酒在人体内的代谢及酒精中毒[J].石家庄学院学报,2010,12(3):27-29.
    [213]张宝恒,齐治,温淑荣,等.竹节人参提取物对心血管的作用及对cAMP和cGMP含量的影响[J].中华心血管病杂志,1986,14(2):100-103.
    [214]张翠兰,文德鉴,董兴高,等.竹节人参总皂苷对脑缺血大鼠兴奋性氨基酸的影响[J].中国应用生理学杂志,2008,24(4):473-475.
    [215]张晖,孔棣,吴咸中,等.人参皂苷Rh2致MCF-7/ADM凋亡的实验研究[J].中国中西医结合外科杂志,2007,13(3):261-264.
    [216]张嘉麟,徐文安,杨荫康,等.人参皂苷对老年鼠血液中抗氧化酶活力影响的研究[J].昆明医学院学报,2000,21(2):63-65.
    [217]张洁,刘庆生,王小奇,等.三七对酒精性肝病大鼠血清和肝组织SOD和MDA的实验研究[J].中华中医药学刊,2009,27(11):2387-2390.
    [218]张均田,刘云,屈志炜,等.人参皂苷Rb1和Rg1对小鼠中枢神经递质和脑内蛋白质合成的影响[J].药学学报,1988,23(1):12-15.
    [219]章培军,吕永利,赖红,等.氧自由基对胎鼠海马神经元ATPase和SOM的影响及人参皂甙的保护作用[J].中国医科大学学报,2000,29(3):170-171.
    [220]张如升,张馥敏,杨志键,等.三七皂甙Rg1对SD乳鼠心肌细胞缺血/再灌注 性损伤的保护作用及其机制[J].南京医科大学学报(自然科学版),2006,26(4):242-245.
    [221]张文杰,战术,钟国赣,等.Rg2与Rf对钙通道作用的单通道分析[J].白求恩医科大学学报,1995,21(5):444-446.
    [222]张馨木,曲绍春,睢大员.人参Rb组皂苷对高脂血症大鼠血脂代谢的影响及其抗氧化作用[J].中国中药杂志,2004,29(11):1085-1088.
    [223]张艳.人参皂苷Rg3的抗疲劳作用研究[C].吉林大学硕士学位论文,2007.
    [224]张有为,窦得强,陈英杰.人参皂苷对人体肉瘤细胞U20S细胞增殖的影响[J].中草药,2001,32(3):233-236.
    [225]张仲苗,江波,郑筱祥,等.人参皂苷Rg3对肿瘤化疗患者外周血淋巴细胞的免疫增强作用[J].中国药学杂志,2004,39(4):261-264.
    [226]张仲苗,江波,章荣华,等.人参皂甙Rg3对小鼠免疫功能的影响[J].中药药理与临床,2004,20(6):4-6.
    [227]赵晖,张秋霞,穆阳.竹节参总皂苷对局灶性脑缺血大鼠模型的保护作用[J].中国中医药信息杂志,2005,12(3):43-44.
    [228]赵文杰,陈迪,倪劲松,等.20(S)-人参皂苷Rg3对前列腺癌PC-3M细胞的诱导凋亡作用[J].中国药理学通报,2009,25(2):235-238.
    [229]赵听,李智,曹云鹏,等.人参皂甙Rg1对缺氧豚鼠心肌细胞游离钙浓度降低作用的研究[J].中国医科大学学,2001,30(6):431-433.
    [230]赵莹,刘金平,卢丹,等.人参皂苷Re促进自然衰老大鼠学习记忆作用及其机理的研究[J].中药新药与临床药理,2007,18(1):20-22.
    [231]赵朝晖,陈晓春,朱元贵,等.人参皂苷Rg1延缓细胞衰老过程中端粒长度和端粒酶活性的变化[J].中国药理学通报,2005,21(1):61-66.
    [232]赵自明,潘华山,冯毅翀.人参皂苷Rg1抗氧化能力的实验研究[J].江西中医学院学报,2009,21(1):36-38.
    [233]周桂华,孟艳,李杨,等.人参单体皂苷Rh2对前列腺癌细胞株PC-3M细胞移行周期的影响[J].中国病理生理杂志,2002,18(7):823-825.
    [234]周志焕,王秀云,钟佩茹,等.人参皂苷Rgl对体外培养胚胎神经干细胞增殖作用的影响[J].中国中医药信息杂志,2010,17(2):28-30.
    [235]钟国赣,孙成文,李云义,等.人参二醇组皂苷Rb1,Rb2,Rb3,Rc和Rd的 钙通道阻滞作用和抗自由基作用[J].中国药理学报,1995,16(3):255-260.
    [236]朱浩,岳志健,周晓平,等.人参皂苷Rg3对大鼠脑胶质瘤VEGF表达的影响[J].中国神经肿瘤杂志,2008,6(2):119-122.
    [237]朱君荣,孙建国,谢海棠,等.人参皂苷Rh2对人乳腺癌T47D细胞的生长抑制作用及对Caspase-3表达的影响[J].中国临床药理学与治疗学,2007,12(6):630-634.
    [238]左锐,袁丁.竹节参化学成分和药理活性研究进展[J].时珍国医国药,2005,16(9):838-840.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700