用户名: 密码: 验证码:
NF-κB信号通路在中子辐射致肠上皮细胞损伤中的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中子辐射较γ射线损伤重,肠道是中子辐射高度敏感的靶器官,中子辐射肠道损伤重、难恢复。目前中子辐射肠道损伤的病理特点已基本明确,然而其损伤机制仍未完全阐明,尚缺乏有效的治疗措施。为此,本课题在既往研究的基础上,复制中子照射肠上皮细胞损伤整体和离体模型,以NF-κB信号通路在中子辐射肠道损伤中的作用为切入点,开展NF-κB信号通路在中子辐射致肠上皮细胞损伤中的调控作用研究,为阐明中子辐射肠上皮细胞损伤的分子机制、寻找新的防治措施和发现新的治疗靶点提供依据。
     材料与方法
     一、实验动物分组与模型制作方法
     选取二级雄性BALB/c小鼠120只,随机分为对照组(C组,n=30)、3Gy中子照射组(N组,n=60)和3Gy中子照射+姜黄素组(Cur组,n=30);采用3Gy中子全身均匀照射N组和Cur组小鼠;照射后即刻给予Cur组小鼠腹腔注射姜黄素混悬液1次,剂量为200 mg·kg-1·d-1,此后连续给药5d(1次/d),N组和C组小鼠腹腔注射同体积的生理盐水。
     二、小鼠整体行为和空肠组织结构光镜和电镜观察
     照射后每天观察并记录动物整体行为、体重变化、腹泻及死亡情况;分别于照射后6h、1d、3d和5d活杀C组和N组动物,Cur组于照射后3d和5d活杀,留取各组各时间点小鼠空肠组织;通过光镜和电镜观察3Gy中子照射及应用Cur后小鼠空肠组织结构以及超微结构的变化。
     三、小鼠空肠上皮细胞增殖与死亡的检测
     采用AgNOR和Feulgen染色方法检测中子照射及应用姜黄素后小鼠空肠上皮细胞的嗜银蛋白及DNA含量变化;采用TUNEL方法检测小鼠空肠上皮细胞凋亡改变。
     四、小鼠空肠组织NF-κB通路中信号分子检测
     通过IHC和EMSA方法检测中子照射及应用姜黄素后小鼠空肠上皮细胞NF-κB的表达及活性变化;采用WB检测小鼠空肠上皮细胞NF-κB、IKKβ、IκBα、PI3K和Akt的表达变化;通过Co-IP技术检测小鼠空肠组织中Akt和IKKβ相互作用;通过Real-time PCR方法检测IKKβmRNA的变化。
     五、IEC-6细胞培养、分组、照射及处理
     IEC-6细胞传代培养后,随机分为5组:对照组(C)、4Gy中子照射组(N)、4Gy+LY294002组(LY)、10Gyγ射线照射组(R)和10Gyγ射线+LY294002组(LY2);分别采用4Gy中子和10Gyγ射线对IEC-6细胞进行均匀照射;LY294002处理方法:于中子和γ射线照射前24h,LY组和LY2组细胞更换为含LY294002终浓度为10μmol/L的培养液。
     六、IEC-6细胞增殖与死亡检测
     于中子和γ射线照射后6h和24h,通过IPCM观察IEC-6细胞的形态变化;于中子照射后6h和24h收集细胞留取样品,γ射线照射后15min、30min、1h、6h和24h收集细胞留取样品;分别采用MTT方法和FCM检测IEC-6细胞的增殖活力以及凋亡与坏死率改变。
     七、IEC-6细胞NF-κB通路中信号分子检测
     通过WB方法检测中子和γ射线照射后IEC-6细胞中NF-κB、IKKα/β和IκBα的表达及其磷酸化水平改变。
     八、图像分析和定量方法
     (一)小鼠空肠细胞AgNOR、DNA含量及NF-κB免疫组化结果,采用CMIAS-Ⅱ系列多功能真彩色病理图像分析系统,在光镜10×40倍视野下,每组切片采集10个视野,检测其MOD和IOD。
     (二)WB结果采用Image Pro 5.0软件进行图像分析,测定电泳条带的IOD,将各目的蛋白条带与相应内参GAPDH的IOD比值进行定量分析。
     (三)IKKβ和相应GAPDH mRNA应用7300 system SDS软件进行定量分析。
     (四)Co-IP结果采用CMIAS-Ⅱ图像分析系统进行IOD测定和定量分析。
     九、统计学处理
     文中数据以均数和标准差(?X±s)表示;采用SPSS 13.0统计软件进行一元方差分析Excel软件作图;vs对照组,*示P<0.05,**示P<0.01;vs照射组,#示P<0.05,##示P<0.01。
     实验结果
     一、小鼠整体行为、空肠组织学及超微结构改变
     (一)小鼠整体行为的改变:3Gy中子照射及应用姜黄素后,小鼠精神状态逐渐变差,不进食水,体重进行性下降,并出现严重腹泻症状;于照射后3~5d内全部死亡,出现了肠型放射病典型的“三天半效应”。
     (二)小鼠空肠组织学改变:3Gy中子照射后,光镜下可见肠黏膜大面积坏死脱落,绒毛上皮细胞稀疏、排列较乱,细胞肿胀,隐窝细胞见核固缩、碎裂,其数量进行性减少;照射后3~5d可见隐窝细胞再生,但隐窝中细胞数目较少;姜黄素组在治疗3d和5d时隐窝细胞再生较明显,且可见丰富的绒毛深入肠腔。
     (三)小鼠空肠超微结构改变:3Gy中子照射后3d,电镜下,小鼠空肠隐窝细胞减少,可见胞核碎裂,核染色质浓缩边移,隐窝细胞呈空泡状,出现坏死和凋亡的细胞,以坏死为主,照射后5d可见小肠绒毛有轻度增生;Cur组于3Gy中子照射后3~5d,空肠组织中可见有新生微绒毛及隐窝,隐窝内细胞数目较照射组略有增加。
     二、小鼠空肠上皮细胞嗜银蛋白及凋亡改变
     (一)小鼠空肠上皮细胞嗜银蛋白和DNA含量:3Gy中子照射照射后6h~5d,N组和Cur组小鼠空肠上皮细胞嗜银蛋白和DNA含量进行性下降(P<0.01),照射后3~5d,Cur组小鼠空肠上皮细胞嗜银蛋白和DNA含量均较照射组增加(P<0.05)。
     (二)小鼠空肠上皮细胞凋亡TUNEL检测结果:3Gy中子照射照射后6h~1d,N组小鼠空肠上皮可见大量凋亡细胞;照射后3d,N组和Cur组小鼠空肠上皮细胞偶见凋亡细胞。
     三、小鼠空肠上皮细胞NF-κB及通路中信号分子的变化
     (一)小鼠空肠上皮细胞NF-κB的表达变化:NF-κB在正常肠绒毛及隐窝上皮细胞胞浆内呈弱阳性,3Gy中子照射后6h~5d,NF-κB于上皮细胞核呈阳性,并于照射后5d达到高峰(P<0.01),Cur组在照射后3d和5d,NF-κB在绒毛及隐窝上皮细胞核及浆内表达呈阳性,强度弱于照射组(P<0.05)。
     (二)小鼠空肠组织NF-κB的DNA结合活性变化:3Gy中子照射后6h~3d,N组小鼠空肠组织中NF-κB与DNA结合活性明显增强;Cur组在照射后3d,小鼠空肠组织中NF-κB与DNA结合活性较N组明显降低。
     (三)小鼠空肠组织NF-κB通路中信号分子的变化:(1)小鼠空肠组织NF-κB和IKKβ蛋白于3Gy中子照射后6h和1d表达上调(P<0.05),照射后3d和5d表达明显上调(P<0.01);Cur组在照射后3d和5d,NF-κB和IKKβ表达下调(P<0.05)。(2)小鼠空肠组织IκBα蛋白于3Gy中子照射后6h和1d表达下调(P<0.05),照射后3d和5d表达明显下调(P<0.01);Cur组在照射后3d和5d,IκBα表达上调(P<0.05)。(3)3Gy中子照射后6h小鼠空肠组织IKKβmRNA表达增加(P<0.05),至照射后24h表达明显增加(P<0.01);Cur组在照射后6h和24h,IKKβmRNA表达水平较N组明显降低(P<0.05)。
     四、小鼠空肠上皮细胞PI3K、Akt的表达及Akt和IKKβ相互作用变化
     (一)小鼠空肠组织PI3K和Akt的表达变化:小鼠空肠组织PI3K和Akt蛋白于3Gy中子照射后6h和1d表达上调(P<0.05),照射后3d和5d表达明显上调(P<0.01);Cur组在照射后3d和5d,PI3K和Akt表达下调(P<0.05)。
     (二)小鼠空肠组织Akt和IKKβ的相互作用:3Gy中子照射后6h和1d,小鼠空肠组织中Akt和IKKβ相互作用明显增强(P<0.01),照射后3d和5d,Akt和IKKβ的相互作用减弱(P<0.05);Cur组在照射后3d和5d,Akt和IKKβ相互作用较照射组减弱(P<0.05)。
     五、IEC-6细胞形态、增殖活力、凋亡及坏死率改变
     (一)IEC-6细胞形态的变化:4Gy中子和10Gyγ射线照射后6h和24h,细胞肿胀,形态变圆,折光性增强;应用LY294002处理后,培养液漂浮大量死细胞。
     (二)IEC-6细胞增殖活力、凋亡及坏死率改变:4Gy中子和10Gyγ射线照射后,细胞增殖活力较对照组明显下降(P<0.01),细胞凋亡与坏死率均显著增加(P<0.01),辐射后6h凋亡达高峰,24h以坏死为主;应用LY294002处理后,细胞的增殖活力较照射组明显降低(P<0.05),凋亡和坏死率增加(P<0.05)。
     六、IEC-6细胞NF-κB通路中信号分子变化及蛋白磷酸化改变
     (一)IEC-6细胞NF-κB通路中信号分子变化:(1)IEC-6细胞内NF-κB、IKKα和IKKβ蛋白于4Gy中子照射后6h表达上调(P<0.05),24h表达明显上调(P<0.01);应用LY294002处理组,于照射后6h和24h,上述蛋白表达均下调(P<0.05)。(2)IκBα于4Gy中子照射后6h表达下调(P<0.05),24h表达明显下调(P<0.01);应用LY294002处理组,于照射后6h和24h,IκBα表达上调(P<0.05)。
     (二)IEC-6细胞NF-κB信号通路中蛋白磷酸化改变:(1)10Gyγ射线照射后15~30min,IEC-6细胞内磷酸化NF-κB和磷酸化IKKα/β蛋白表达上调(P<0.05),照射后1h表达明显上调(P<0.01);应用LY294002处理组,三种磷酸化蛋白的表达均下调(P<0.05)。(2)IEC-6细胞内磷酸化IκBα蛋白在10Gyγ射线照射后15~30min未见表达,1h见明显表达(P<0.01);应用LY294002处理组,于照射后1h磷酸化IκBα的表达较照射组明显上调(P<0.01)。
     结论
     一、3Gy中子照射可引起小鼠轻度肠型放射病,肠上皮严重损伤,上皮细胞凋亡与坏死并存,细胞增殖能力降低;表明3Gy中子照射成功建立了中子辐射小鼠空肠损伤的动物模型。
     二、姜黄素治疗可减轻中子辐射肠道损伤的程度,促进空肠粘膜上皮再生修复,对中子辐射肠上皮损伤具有保护作用。
     三、3Gy中子照射可使小鼠空肠NF-κB信号通路活化,通路中关键信号分子IKKβ表达上调,NF-κB表达上调且发生核转位,进而可能通过调控多种参与炎症反应的靶基因,促进炎症因子的表达,导致中子照射后肠道炎症发生。
     四、姜黄素可抑制中子照射后小鼠空肠NF-κB信号通路活化,下调NF-κB和IKKβ的表达水平,这可能是其发挥保护作用的机制之一。
     五、3Gy中子照射后,小鼠空肠Akt和NF-κB信号通路中关键激酶IKKβ存在相互作用,表明中子照射后NF-κB信号通路受到PI3K/Akt信号通路的调控。
     六、4Gy中子和10Gyγ射线照射均可使IEC-6细胞增殖活力降低,凋亡与坏死率增加,应用LY294002可以进一步降低照射后IEC-6细胞增殖活力,增加凋亡和坏死率。
     七、4Gy中子和10Gyγ射线照射均可使IEC-6细胞NF-κB信号通路活化,应用PI3K的抑制剂LY294002可相应抑制NF-κB信号通路的活化,表明NF-κB信号通路活化可对IEC-6细胞损伤发挥保护作用。
AIMS AND SIGNIFICANCE Neutron irradiation can cause bodies more severe damages thanγrays. Intestine is highly sensitive to neutron radiation. Intestine is severely injuried by neutron irradiation and is hard to recovers. As we all know, the pathological change of intestine induced by neutron irradiation is on the whole elucidated, while the mechanisms of the injury were not elucidated completely. Unfortunately, there is still no good cure so far. Therefore, this study was based on the previous studies. Intestinal epithelial cell(IEC) model in vitro and vivo injuried by neutron irradiation are made. In this study, we investigated NF-κB signaling pathway in the regulation of intestinal epithelial injury induced by neutron irradiation. This can be sought to elucidate the molecular mechanism of neutron irradiation-induced intestinal injury, which might help to find new potential therapies.
     MATERIAS AND METHODS
     1. Animal grouping and model-making method
     120 BALB/c mice were randomly divided into four groups: 30 of control group(C), 60 of neutron irradiation dose of 3Gy group(N), 30 of curcumin treatment group(Cur). The mice of N and Cur group were wholly irradiated by neutron irradiation of 3Gy. The mice of Cur group were injected through enterocoelia with curcumin at a dose of 200 mg·kg-1·d-1 body weight once per day for 5 days after irradiation. The same volume sodium chloride was injected through enterocoelia into the mice of C and N group.
     2. The overall behaviors of the mice, histology and ultrastructure of the mice jejunums observation
     The overall behaviors, body weight changes, diarrhea and mortality rates of the mice were observed after exposure to neutron irradiation. The mice of C and N group were sacrificed at 6 h, 1d, 3d and 5d after neutron irradiation. The mice of Cur group were sacrificed at 3d and 5d after neutron irradiation. The jejunums of the mice were stored in the -80℃refrigerator. The histology and ultrastructure of the mice jejunums were observed by means of light microscope and transmission electron microscope after neutron irradiation and therapied of curcumin.
     3. Proliferation and death of the jejunum epithelial cells of the mice assay
     The contents of argyrophilic of nucleaolar organizer regions(AgNOR) and DNA in the intestinal epithelial after neutron irradiation and therapied of curcumin were detected by means of AgNOR staining and Feulgen staining. The apoptosis of the jejunum epithelial cells were assayed through terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling(TUNEL) after neutron irradiation and therapied of curcumin.
     4. NF-κB signaling pathway molecules in the jejunum tissues of the mice assay
     The expression and activity of NF-κB in the jejunum tissues of the mice were observed by means of immunohistochemistry(IHC) staining and electrophoretic mobility shift assay(EMSA). The expressiones of NF-κB, IKKβ, IκBα, PI3K and Akt in the jejunum tissues were assayed by western blot. The mRNA expression of IKKβin the jejunum tissues were detected by means of Real-time PCR. The interaction between Akt and IKKβin the jejunum tissues were assayed through co-immunoprecipitation(Co-IP).
     5. IEC-6 cells culture, group, irradiation and treatment
     IEC-6 cells were subcultured and randomly divided into five groups: control group(C), 4Gy neutron irradiation group(N), 4Gy neutron irradiation + LY294002 treatment group(LY), 10Gyγray irradiation group(R), 10Gyγray irradiation + LY294002 treatment group(LY2). The IEC-6 cells of N and LY group were exposed to neutron irradiation of 4Gy. The IEC-6 cells of R and LY2 group were radiated byγray irradiation of 10Gy. The IEC-6 cells of LY and LY2 group were treated by 10μmol/L LY294002 at 24 hours before neutron andγray irradiation.
     6. Proliferation and death of the IEC-6 cells assay
     The morphologic changes of the IEC-6 cells were observed by inverted phase contrast microscope (IPCM) at 6h and 24h after neutron andγray irradiation. The proliferation activity, apoptosis and necrosis of the IEC-6 cells were detected by MTT colorimetry and flow cytometry(FCM) at 6h and 24h after neutron irradiation of 4Gy. These datas were assayed by MTT colorimetry and FCM at 15min, 30min, 1h, 6h and 24h afterγray irradiation of 10Gy.
     7. NF-κB signaling pathway molecules in the IEC-6 cells assay
     The expressiones of NF-κB and phos-NF-κB, IKKα/βand phos-IKKα/β, IκBαand phos-IκBαin the IEC-6 cells were assayed by means of western blot after neutron andγray irradiation.
     8. Image analysis and quantitative methods
     (1) The MOD and IOD of AgNOR and DNA content, expression of NF-κB in in the jejunum tissues of the mice were analyzed by CMIAS-Ⅱmultifunctional true color pathological image analysis system.
     (2) The results of western blot were analyzed by means of Image Pro 5.0 soft. The IOD ratio of the electrophoretic bands of interest proteins and GAPDH were quantitatively analyzed.
     (3) The mRNA expressiones of IKKβand GAPDH in the jejunum tissues were analyzed by 7300 system SDS soft.
     (4) The results of Co-IP were analyzed by CMIAS-Ⅱpathological image analysis system.
     9. Statistical Analysis
     The datas were described using of mean and standard deviation (?X±s) which were analyzed significant differences by means of the SPSS13.0 software one-way ANOVA test. vs control group, * is P<0.05, ** is P<0.01; vs irradiation group, # is P<0.05, ## is P<0.01. Values of P<0.05 were considered statistically significant.
     RESULTS
     1. The changes of the mice overall behaviors, histology and ultrastructure of the jejunums
     (1) The changes of the mice overall behaviors: The mice mental state became worse and worse, and ate or drunk nothing, and them bodies weight decreased obviously, and all of the mice had severe diarrhea symptom after neutron irradiation of 3Gy and therapied of curcumin. All of the mice died at 3~5 day after neutron irradiation of 3Gy. It was the feature of intestinal radiation sickness which named "three days and a half effect".
     (2) The changes of the mice jejunums histology: After neutron irradiation of 3Gy, the small intestinal mucosa of the neutron irradiated mice showed marked destruction with villus epithelium decrease, disorder and swelling; cryptal cells number decreased sharply and the crypts were destructed with rare cell number. The epithelia and cryptal cells showed acidophily, pyknosis and karyorrhexis. Regeneration was rare at 3d and 5d. The curcumin treatment group cryptal regenerated obviously at 3d and 5d and there were lots of intestine villis in the enteric cavity.
     (3) The changes of the mice jejunums ultrastructure: The number of the intestine crypts decreased obviously. The epithelia cells showed karyorrhexis and chromatin condensation edging. The cryptal cells showed vacuolization. Apoptosisi and necrosis cells were found and necrosis cells were more than apoptosis cells. The intestine villis regenerated gently at 5d after neutron irradiation of 3Gy. Microvillus, novo-crypts and more Pents particles were found in the curcumin treatment group.
     2. The changes of the mice jejunums proliferation and death
     (1) The changes of the AgNOR and DNA content in the mice jejunums: The contents of AgNOR and DNA in the mice jejunums were decreased progressively at 6h~5d after neutron irradiation of 3Gy (P<0.01). Those of the curcumin treatment group were more higher than the irradiation group at 3~5d after neutron irradiation of 3Gy (P<0.05).
     (2) The changes of apoptosis in the mice jejunums epithelium: Lots of apoptosis cells were found in the mice jejunums epithelium of irradiation group at 6h~1d after neutron irradiation. There were scarcely apoptosis cells at 3d and 5d after neutron irradiation of 3Gy.
     3. The changes of NF-κB signaling pathway molecules in the jejunum tissues
     (1) The changes of the expression of NF-κB in the intestinal epithelial cells: NF-κB was weakly positive expression in the normal intestinal villi and crypt epithelial cells intracytoplasm, and positive expressiones in the intestinal villi epithelial cells nucleus and the value showed peak at 5d (P<0.01) after neutron irradiation of 3Gy. The expressions of NF-κB in the curcumin treatment group were weaker than those of the irradiation group (P<0.05).
     (2) The changes of NF-κB and DNA binding activity in the mice jejunum tissues: NF-κB and DNA binding activity in the mice jejunum tissues was increased obviously at 6h~1d after neutron irradiation of 3Gy. The data in the curcumin treatment group were fewer than those of the irradiation group.
     (3) The changes of NF-κB signaling pathway molecules in the jejunum tissues:①The expressiones of NF-κB and IKKβwere increased at 6h and 1d (P<0.05), and incresed obviously at 3d and 5d (P<0.01) after neutron irradiation of 3Gy. The expressiones of them in the curcumin treatment group were decreased at 3d and 5d (P<0.05) after neutron irradiation of 3Gy.②The expression of IκBαwas decreased at 6h and 1d (P<0.05), decresed obviously at 3d and 5d (P<0.01) and increased at 3d and 5d (P<0.05) in the curcumin treatment group after neutron irradiation of 3Gy.③The mRNA expression level of IKKβwas increased at 6h (P<0.05) and incresed obviously at 24h (P<0.01) after neutron irradiation of 3Gy. The mRNA expression level of IKKβin the curcumin treatment group were lower than those of the irradiation group (P<0.05) after neutron irradiation of 3Gy.
     4. The changes of PI3K and Akt in the mice jejunum tissues and the interaction between Akt and IKKβ
     (1) The changes of PI3K and Akt in the mice jejunum tissues: The expressiones of PI3K and Akt were increased at 6h and 1d (P<0.05), incresed obviously at 3d and 5d (P<0.01) and decreased at 3d and 5d in the curcumin treatment group (P<0.05) after neutron irradiation of 3Gy.
     (2) The interaction between Akt and IKKβin the mice jejunum tissues: The interaction between Akt and IKKβwas increased obviously at 6h and 1d (P<0.01), decresed at 3d and 5d (P<0.05) and decreased at 3d and 5d in the curcumin treatment group (P<0.05) after neutron irradiation of 3Gy.
     5. The changes of the IEC-6 cells morphology, proliferation and death
     (1) The changes of the IEC-6 cells morphology: The IEC-6 cells swelled and beame rounded and their refraction ability enhanced after neutron andγray irradiation. Those features in the LY294002 treatment groups were worse than those in the irradiation groups. Lots of dead cells were found floating in the culture solution.
     (2) The changes of the IEC-6 cells proliferation and death: The IEC-6 cells proliferation activity was decreased obviously at after neutron andγray irradiation (P<0.01). The IEC-6 cells apoptosis and necrosis rate was increased obviously after irradiation (P<0.01). The IEC-6 cells showed apoptosis peak at 6h and necrosis was chief at 24h after irradiation. The IEC-6 cells proliferation activity in the LY294002 treatment groups was lower than those in the irradiation groups (P<0.05). Their apoptosis and necrosis rate in the LY294002 treatment groups was higher than those in the irradiation groups (P<0.05).
     6. The changes of the IEC-6 cells NF-κB signaling pathway molecules
     (1) The changes of the IEC-6 cells NF-κB signaling pathway molecules:①The expressiones of NF-κB, IKKαand IKKβwere increased at 6h (P<0.05), incresed obviously at 24h (P<0.01) and decreased at 6h and 24h in the LY294002 treatment group (P<0.05) after neutron irradiation of 3Gy.②The expressiones of IκBαwere decreased at 6h (P<0.05), decresed obviously at 24h (P<0.01) and increased at 6h and 24h in the LY294002 treatment group (P<0.05) after neutron irradiation of 3Gy.
     (2) The changes of the proteins phosphorylation in the IEC-6 cells NF-κB signaling pathway:①The expressiones of phos-NF-κB and phos-IKKα/βwere increased at 15~30min (P<0.05), incresed obviously at 1h (P<0.01) and decreased in the LY294002 treatment group (P<0.05) afterγirradiation of 10Gy.②The expressiones of phos-IκBαwere not found at 15~30min, incresed at 1h (P<0.01) and incresed obviously in the LY294002 treatment group (P<0.01) afterγirradiation of 10Gy.
     CONCLUSIONS
     1. Neutron irradiation of 3Gy caused the mice gently intestinal type of radiation sickness. The intestinal epitheliums were injuried seriously. The intestinal epithelium cells showed apoptosis and necrosis and their proliferation ability decreased. The intestinal damage animal model were made successfully by neutron irradiation of 3Gy.
     2. Curcumin can relieve the degree of intestine damage caused by neutron irradiation. It can promote regeneration and repair of intestinal mucosa and protect the intestinal epitheliums injuried by neutron irradiation.
     3. The NF-κB signaling pathway in the mice jejunums were activied by neutron irradiation. Upregulated NF-κB showed nuclear translocation. It maybe regulate the inflammation factors which led to intestinal inflammation caused by neutron irradiation.
     4. Curcumin can inhibit the activition of NF-κB signaling pathway in the mice jejunums caused by neutron irradiation and decrease the expression of NF-κB and IKKβ, which maybe one of the protetive mechanisms.
     5. The interaction between Akt and IKKβwas found in the mice jejunums after neutron irradiation of 3Gy, which indicates NF-κB signaling pathway is regulated by PI3K/Akt signaling pathway.
     6. The IEC-6 cells proliferation activity was decreased after neutron irradiation of 4Gy andγray irradiation of 10Gy, while the apoptosis and necrosis rate of the IEC-6 cells increased obviously after neutron andγray irradiation. LY294002 can aggravate the IEC-6 cells damage caused by neutron andγray irradiation.
     7. NF-κB signaling pathway in the IEC-6 cells can be activited by neutron irradiation of 4Gy andγray irradiation of 10Gy. LY294002, inhibitor of PI3K, can inhibite the activition of NF-κB signaling pathway caused by neutron andγray irradiation. It indicates that the activition of NF-κB signaling pathway can protect IEC-6 cells injuried by neutron andγray irradiation.
引文
[1]毛秉智,陈家佩.急性放射病基础与临床.军事医学科学出版社, 2002,第一版: 102-105, 163-197.
    [2] Gueulette J, Binns PJ, De Coster BM, et al. RBE of the MIT epithermal neutron beam for crypt cell regeneration in mice. Radiat Res, 2005, 164(6): 805-809.
    [3]马林,周桂霞,冯林春,主编.恶性肿瘤高LET(重离子、快中子)放射治疗学.军事医学科学出版社, 2007,第一版: 133-135.
    [4] Somosy Z, Horvatha G, Telbisza A, et al. Morphological aspects of ionizing radiation response of small intestine. Micron, 2002, 33(5):167-178.
    [5]王瑞娟. IL-11调控中子辐射肠上皮细胞损伤的ERK和PI3K/Akt信号转导机制研究.军事医学科学院博士学位论文, 2009.
    [6] Wang RJ, Peng RY, Fu KF, et al. Effect of recombinant human interleukin-11 on the expressions of interleukin-11 receptorα-chain and glycoprotein 130 in intestinal epithelium cell line-6 after neutron irradiation. World J Gastroenterol, 2006, 12(19): 3055-3059.
    [7]王瑞娟,彭瑞云,高亚兵,等. IL-11保护中子照射后肠上皮损伤的Jak/STAT信号转导机制研究.细胞与分子免疫学杂志, 2009, 25(1): 27-30.
    [8] Kucharczak J, Simmons MJ, Fan Y, et al. To be, or not to be: NF-κB is the answer-role of Rel/NF-κB in the regulation of apoptosis. Oncogene, 2003, 22(56): 8961-8982.
    [9] Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006, 25(51): 6680-6684.
    [10] Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest, 2005, 115(10): 2625-2632.
    [11] Dajani R, Sanlioglu S, Zhang Y, et al. Pleiotropic functions of TNF-alpha determine distinct IKKbeta-dependent hepatocellular fates in response to LPS. Am J Physiol Gastrointest Liver Physiol, 2007, 292(1): G242-252.
    [12] Karrasch T, Jobin C. NF-kappaB and the intestine: friend or foe? Inflamm Bowel Dis, 2008, 14(1): 114-124.
    [13] Andy W. Role of NF-kB activation in intestinal immune homeostasis. Int J Med Microbio, 2010, 300(6): 49-56.
    [14] Wang Y, Meng A, Lang H, et al. Activation of nuclear factor kappaB in vivo selectively protects the murine small intestine against ionizing radiation-induced damage. Cancer Res, 2004, 64(17): 6240-6246.
    [15] Egan LJ, Eckmann L, Greten FR, et al. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A, 2004, 101(8): 2452-2457.
    [16] Peng Z, Peng L, Fan Y, et al. A critical role for IkappaB kinase beta in metallothionein-1 expression and protection against arsenic toxicity. J Biol Chem, 2007, 282(29): 21487-21496.
    [17] Zaph C, Troy AE, Taylor BC, et al. Epithelial-cell-intrinsic IKK-beta expression regulates intestinal immune homeostasis. Nature, 2007, 446(7135): 552-556.
    [18] Radhakrishna PG, Srivastava AS, Hassanein TI, et al. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett, 2004, 208(2): 163-170.
    [19] Khor TO, Keum Y S, Lin W, et al. Combined inhibitory effects of curcumin and phenethyl isothiocyanate on growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res, 2006, 66(2): 613-621.
    [20] Reuter S, Eifes S, Dicato M, et al. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol, 2008, 76(11): 1340-1351.
    [21]魏小娣,韦红,贾盛华,等.姜黄素对新生大鼠坏死性小肠结肠炎模型NF-κB, TNF-α及IL-6表达的影响.第四军医大学学报, 2009, 30(22): 2537-2540.
    [22] Bandyopadhaya A, Bhowmick S, Chaudhuri K. Activation of proinflammatory response in human intestinal epithelial cells following Vibrio cholerae infection through PI3K/Akt pathway. Can J Microbiol, 2009, 55(11): 1310-1318.
    [23] Mascanfroni ID, Montesinos Mdel M, Alamino VA, et al. Nuclear factor (NF)-kappaB-dependent thyroid hormone receptor beta1 expression controls dendritic cell function via Akt signaling. J Biol Chem, 2010, 285(13): 9569-9582.
    [24] Yu HG, Ai YW, Yu LL, et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer, 2008, 122(2): 433-443.
    [25] Esfandiarei M, Boroomand S, Suarez A, et al. Coxsackievirus B3 activates nuclear factor kappa B transcription factor via a phosphatidylinositol-3 kinase/protein kinase B-dependent pathway to improve host cell viability. Cell Microbiol, 2007, 9(10): 2358-2371.
    [26] Dagia NM, Agarwal G, Kamath DV, et al. A preferential p110alpha/gamma PI3K inhibitor attenuates experimental inflammation by suppressing the production of proinflammatory mediators in a NF-kappaB-dependent manner. Am J Physiol Cell Physiol, 2010, 298(4): C929-941.
    [27] Gupta AK, Cerniglia GJ, Mick S, et al. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int J Radiat Oncol Biol Phys, 2003, 56: 846-853.
    [28] Chao X, Zao J, Xiao YG, et al. Blocking of PI3K/AKT induces apoptosis by its effect on NF-κB activity in gastric carcinoma cell line SGC7901. Biomed Pharmacother, 2010, 64(9): 600-604.
    [29] Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol, 2006, 6(2): 111-130.
    [30]王瑞娟,彭瑞云,高亚兵,等.中子辐射致肠道损伤的差异基因筛选研究.解放军医学杂志, 2009, 34(1): 98-101.
    [1]毛秉智,陈家佩.急性放射病基础与临床.军事医学科学出版社, 2002,第一版: 102-105, 163-197.
    [2] Dikshit P, Coswamin A, Mishra A. et al. Curcumin induces stress reponse, neurite outgrowth and prevent NF-kappaB activiation by inhibiting the proteasome function. Neurotxo Res, 2006, 9(1): 29-37.
    [3]吴萍,许树长.姜黄素的研究进展及其在消化系统疾病中的应用前景.中国临床营养杂志, 2008, 16(2): 106-110.
    [4]龚志锦,詹溶洲.病理组织切片和染色技术.上海科学技术出版社, 1994,第一版: 348-353.
    [5]王伯沄,李玉松,黄高昇,等.病理学技术.人民卫生出版社, 2001,第一版: 37-40.
    [6]熊红梅,郑雪梅. Feulgen染色方法改良.诊断病理学杂志. 2001, 8(5): 307-308.
    [7]马林,周桂霞,冯林春,主编.恶性肿瘤高LET(重离子、快中子)放射治疗学.军事医学科学出版社, 2007,第一版: 133-135.
    [8] Gueulette J, Binns PJ, De Coster BM, et al. RBE of the MIT epithermal neutron beam for crypt cell regeneration in mice. Radiat Res, 2005, 164(6): 805-809.
    [9] Somosy Z, Horvath G, Telbisz A, et al. Morphological aspects of ionizing radiation response of small intestine. Micron, 2002, 33(2): 167-178.
    [10] Janets R, Sara M, Norma N, et al. Response of mouse tissues to neutron and gamma radiation: protection by WR-3698 and WR-77913. Radiother Oncol, 1990, 17(3): 167-173.
    [11] Booth C, Potten CS. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest, 2000, 105(11): 1493-1499.
    [12] Potten CS, Booth C, Hargreaves D: The small intestine as a model for evaluating adult tissue stem cell drug targets. Cell Prolif, 2003, 36(6): 115-129.
    [13] Gorbunov NV, Garrison BR, Kiang JG. Response of crypt paneth cells in the small intestine following total-body gamma-irradiation. Int J Immunopathol Pharmacol, 2010, 23(4): 1111-1123.
    [14] Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays, 2002, 24(8): 91-98.
    [15] Deng W, Viar MJ, Johnson LR. Polyamine depletion inhibits irradiation-induced apoptosis in intestinal epithelia. Am J Physiol Gastrointest Liver Physiol, 2005, 289(3): 599-606.
    [16] Gueulette J, Octave-Prignot M, De Costera BM, et al. Intestinal crypt regeneration in mice: a biological system for quality assurance in non-conventional radiation therapy. Radiother Oncol, 2004, 73(2): 148-154.
    [17] Carr KE. Effects of radiation damage on intestinal morphology. Inter Rev of Cytology, 2001, 208(6): 110-119.
    [18] Merritt AJ, Potten CS, Kemp CJ, et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res, 1994, 54(3): 614-617.
    [19] Labejof LP, Galle P, Mangabeira PA, et al. Histological changes in rat duodenum mucosa after whole-body gamma irradiation. Cell Mol Biol (Noisy-le-grand), 2002, 48(5): 537-545.
    [20] Polistena A, Johnson LB, Ohiami-Masseron S, et al. Local radiotherapy of exposed murine small bowel: apoptosis and inflammation. BMC Surg, 2008, 3(8): 121-126.
    [21]金日男,夏潮涌.三种Feulgen染色方法的比较.中国体视学与图像分析, 2006, 11(1): 39-45.
    [22] Derenzini M, TrerèD. AgNOR proteins as a parameter of the rapidity of cell proliferation. Zentralbl Pathol, 1994, 140(1): 7-10.
    [23] Lumachi F, Ermani1 M, Marino F, et al. Relationship of AgNOR counts and nuclear DNA content to survival in patients with parathyroid carcinoma. Endo-Relat Cancer, 2004, 11(3): 563-569.
    [24] Pfau A, Eckert F, Schr?pfer T, et al. Value of nucleolus organizer regions (AgNORs) in dermatologic oncology. Hautarzt, 1994, 45(11): 762-768.
    [25] Derenzini M. The AgNORs. Micron, 2000, 31(2): 117-120.
    [26]张忠新,贾伟丽.放疗对直肠癌组织核仁形成区嗜银蛋白( Agnor)的影响.现代肿瘤医学, 2007, 15(3): 371-372.
    [27] Radhakrishna PG, Srivastava AS, Hassanein TI, et al. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Lett, 2004, 208(2): 163-170.
    [28] Khor TO, Keum Y S, Lin W, et al. Combined inhibitory effects of curcumin and phenethyl isothiocyanate on growth of human PC-3 prostate xenografts in immunodeficient mice. Cancer Res, 2006, 66(2): 613-621.
    [29] Aggarwal BB, Shihodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res, 2005, 11(20): 7490-7498.
    [30] Belakavadi M, Salimath BP. Mechanism of ascites tumor growth in mice by curcumin is mediated by NF-κB and caspase activated DNase. Mol Cell Biochem, 2005, 273(1-2): 57-67.
    [31] Fuller B, Dijk S, Butler P, et al. Pro-inflammatory agents accumulate during donor liver cold preservation:a study on increased adhesion molecule expression and abrogation by curucmin in cultured endothelial cells. Cryobiology, 2003, 46(3): 284-288.
    [32] Notarbartolo M, Poma P, Perri D, et al. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-κB activation levels and in IAP gene expression. Cancer Lett, 2005, 224(1): 53-65.
    [33] Reuter S, Eifes S, Dicato M, et al. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem Pharmacol, 2008, 76(11): 1340-1351.
    [34]魏小娣,韦红,贾盛华,等.姜黄素对新生大鼠坏死性小肠结肠炎模型NF-κB, TNF-α及IL-6表达的影响.第四军医大学学报, 2009, 30(22): 2537-2540.
    [35]沈金龙.姜黄素对大鼠放射性损伤的保护作用.中国当代医药, 2009, 16(23): 18-20.
    [36] Akpolat M, Kanter M, Uzal MC. Protective effects of curcumin against gamma radiation-induced ileal mucosal damage. Arch Toxicol, 2009, 83(6): 609-617.
    [1] Biswas S, Rahman I. Modulation of steroid activity in chronic inflammation: a novel anti-inflammatory role for curcumin. Mol Nutr Food Res, 2008, (9): 987-994.
    [2] Li Q, Withoff S, Verma IM. Inflammation associated cancer: NF-κB is lychpin. Trends Immunol, 2005, 26(6): 318-325.
    [3] Tian F, Song M, Xu P R, et al. Curcumin promotes apoptosis of esophageal squamous carcinoma cell lines through inhibition of NF-κB signaling pathway. Cancer Res, 2008, 27(6): 566-570.
    [4] Sen R, Baltimore D. Inducibility of kappa B immunoglobulin enhance-binding protein NF-kappa B by a posttranslational mechanism. Cell, 1986, 47(6): 921-928.
    [5] Tietze MK, Wuestefeld T, Paul Y, et al. KappaB alpha gene therapy in tumour necrosis factor-alpha and chemotherapy mediated apoptosis of hepatocellular carcinoma. Cancer Gene Ther, 2000, 7(10): 1315-1323.
    [6]何淑杰,刘树铮. NF-κB不同二聚体的活化与辐射诱导凋亡的关系.国外医学放射医学核医学分册, 2001, 25(2):74-77.
    [7] Dixit V, Mak TW. NF-kappaB signaling: Many roads lead to madrid. Cell, 2002, 111(5):615-619.
    [8] Pikarsky E, Porat RM, Stein I. NF-κB functions as a tumour promoter in inflammation associated cancer. Nature, 2004, 431(7007): 461-466.
    [9] Andy W. Role of NF-kB activation in intestinal immune homeostasis. Int J Med Microbio, 2010, 300(6): 49-56.
    [10] Vermeulen L, Wilde G, Notebaert S, et al. Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol, 2002. 64(5-6): 963-970.
    [11] Brasier AR. The NF-kappaB regulatory network. Cardiovasc Toxicol, 2006, 6(2): 111-130.
    [12] Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death, a newapproach to cancer therapy. J Clin Invest, 2005, 115(10): 2625-2632.
    [13] Li N, Banin S, Ouyang H, et al. ATM is required for IkappaB kinase(IKKk) activiation in response to DNA double strand breaks. J Biol Chem, 2001, 276(12): 8898-8903.
    [14] Russo SM, Tepper JE, Baldwin AS, et al. Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys, 2001, 50(1): 183-193.
    [15]王锋超,冉新泽,杜智勇,等.电离辐射对肠上皮细胞NF-κB p65和Akt表达的影响.中华放射医学与防护杂志, 2006, 26(4):317-319.
    [16] Raju U, Gumin GJ, Tofilon PJ. Radiation-induced transcription factor activiation in the rat cerebral cortex. Int J Radiat Biol, 2000, 76(8): 1045-1053.
    [17]何淑杰,叶飞,刘树铮. X射线诱导转录因子活化与凋亡的关系.中华放射医学与防护杂志, 2002, 22(1):4-6.
    [18] Morotti A, Cilloni D, Pautasso M, et al. NF-κB inhibition as a strategy to enhance etoposide induced apoptosis in K562 cell line. Am J Hematol, 2006, 81(12): 938-945.
    [19]邢丽娜,刘晓. NF-κB抑制对宫颈癌Hela细胞放疗敏感性影响的观察.中华肿瘤防治杂志, 2008, 15(21):1636-1638.
    [20]王瑞娟,彭瑞云,高亚兵,等.中子辐射致肠道损伤的差异基因筛选研究.解放军医学杂志, 2009, 34(1):98-101.
    [21] Shishodia S, Singh T, Chaturvedi MM. Modulation of transcription factors by curcumin. Adv Exp Med Biol, 2007, 595(6): 127-148.
    [22] Aggarwal B B, Shihodia S, Takada Y, et al. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res, 2005, 11(20): 7490-7498.
    [23] Meryem A, Mechemt K, Mustafa CU. Protective effects of curcumin against gamma radiation-induced ileal mucosal damage. Arch Toxicol, 2009, 83(6): 609-617.
    [24]夏剑,邓长生,张明,等.姜黄素对溃疡性结肠炎小鼠肠黏膜内NF-κB及TNF-α表达的影响.世界华人消化杂志, 2005, 13(2): 255-257.
    [25] Wern HL, Hwee YL, Kim PW, et al. Uncoupling of oxidative phosphorylation by curcumin: Implication of its cellular mechanism of action. Bioche and Biophy Res Commu, 2009, 389(1): 187-192.
    [1] Pikarsky E, Porat RM, Stein I, et al. NF-kappa B functions as a tumor promoter in inflammation-associated cancer. Nature, 2004, 431(7007): 461-467.
    [2] Romashkova JA, Makarov SS. NF-kB is a target of AKT in anti-apoptotic PDGF signaling. Nature, 1999, 401(6748 ): 86-90.
    [3] Yang CH, Murti A, Pfeffer SR, et al. Interferonα/βpromotes cell survival by activating nuclear factorκB through phosphatidylinositol 3-Kinase and Akt. J Biol Chem, 2001, 276(17): 13756-13761.
    [4]司徒镇强,吴军正主编.细胞培养,世界图书出版公司, 2004,修订第1版: 79-81, 250-252.
    [5]王瑞娟. IL-11对中子辐射肠上皮的保护作用及其信号转导机制研究.军事医学科学院硕士学位论文, 2006.
    [6]冉新泽,粟永萍,程天民,等.大鼠小肠上皮细胞系的建立及其影响因素的探讨.中国现代医学杂志, 1997, 7(5): 8-11.
    [7] Hinz M, Krappmann D, Eichten A, et al. Nuclear factor-kappa B, cancer and apopotosis. Mol Cell Biol, 2004, 64(4): 2690-2698.
    [8] Kucharczak J, Simmons MJ, Fan Y, et al. To be, or not to be: NF-κB is the answer-role of Rel/NF-κB in the regulation of apoptosis. Oncogene, 2003, 22(56): 8961-8982.
    [9] Angileri FF, Aguennouz M, Conti A, et al. Nuclear factor-kappaB activation and differential expression of survivin and Bcl-2 in human grade 2-4 astrocytomas. Cancer, 2008, 112(10): 2258-2266.
    [10] Manna SK, Babajan B, Raghavendra PB, et al. Inhibiting TRAF2-mediated activation of NF-kappaB facilitates induction of AP-1. J Biol Chem, 2010, 285(15): 11617-11627.
    [11] Jin HS, Lee DH, Kim DH, et al. cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kappaB activation. Cancer Res, 2009, 69(5): 1782-1791.
    [12] Diessenbacher P, Hupe M, Sprick MR, et al. NF-kappaB inhibition reveals differential mechanisms of TNF versus TRAIL-induced apoptosis upstream or at the level of caspase-8 activation independent of cIAP2. J Invest Dermatol, 2008, 128(5): 1134-1147.
    [13] Kim MK, Chung SW, Kim DH, et al. Modulation of age-related NF-kappaB activation by dietary zingerone via MAPK pathway. Exp Gerontol, 2010, 45(6): 419-426.
    [14] Granado AB, Martín MA, Bravo L, et al. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells. Nutr Cancer, 2010, 62(3): 390-401.
    [15] Natarajan A, Rakhesh M, Salahuddin A, et al. Curcumin inhibits NF-κB mediated radioprotecion and modulate apoptosis related genes in human neuroblastoma cells. Cancer Biol Thera, 2008, (4): 1-8.
    [16]金吴东,陈龙华,穆峰,等. mIκBα基因转染肝癌细胞HepG2的放射增敏作用.南方医科大学学报, 2008, 28(3): 413-416.
    [17] Gupta AK, Cerniglia GJ, Mick S, et al. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int J Radiat Oncol Biol Phys, 2003, 56: 846-853.
    [18] Li HF, Kim JS, Waldman T. Radiation-induced Akt activation modulates radioresistance in human glioblastoma cells. Radiat Oncol, 2009, 14(4) : 43-52.
    [19] Edwards E, Geng L, Tan J, et al. Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res, 2002, 62(16): 4671-4677.
    [20] Yang CH, Murti A, Pfeffer SR, et al. Interferonα/βpromotes cell survival by activating nuclear factorκB through phosphatidylinositol 3-Kinase and Akt. J Biol Chem, 2001, 276(17): 13756-13761.
    [21] Zhang X, Jin B, Huang C. The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr Cancer Drug Targets, 2007, 7(4): 305-316.
    [22] Yu HG, Ai YW, Yu LL, et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer, 2008, 122(2): 433-443.
    [23] Esfandiarei M, Boroomand S, Suarez A, et al. Coxsackievirus B3 activates nuclear factor kappa B transcription factor via a phosphatidylinositol-3 kinase/protein kinase B-dependent pathway to improve host cell viability. Cell Microbiol, 2007, 9(10): 2358-2371.
    [24] AK, Cerniglia GJ, Mick R, et al. Radiation sensitization of human cancer cells in vivo by inhibiting the activity of PI3K using LY294002. Int J Radiat Oncol Biol Phys, 2003, 56(3): 846-853.
    [25] Chao X, Zao J, Xiao YG, et al. Blocking of PI3K/AKT induces apoptosis by its effect on NF-κB activity in gastric carcinoma cell line SGC7901. Biomed Pharmacother, 2010, 64(9): 600-604.
    [1] Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA, 2005, 102: 802-807.
    [2] Osaki M, Oshinura M, Ito H. PI3K-Akt pathway:its functions and alterations in human cancer. Apoptosis, 2004, 9(6): 667-676.
    [3] Falasca M. PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des, 2010, 16(12): 1410-1416.
    [4] Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer, 2009, 9(8): 550-562.
    [5] Kawauchi K, Ogasawara T, Yasuyama M, et al. The PI3K/Akt pathway as a target in the treatment of hematologic malignancies. Anticancer Agents Med Chem, 2009, 9(5): 550-559.
    [6] Steelman LS, Abrams SL, Whelan J, et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/AKT/mTOR and Jak/STAT pathway to leukemia. Leukemia, 2008, 22(4):686-707.
    [7] Bertelsen BI, Steine SI, Sandvie R, et al. Moecular analysis of the PI3K-AKT pathway in uterine cervical neoplasia frequent PIK3CA amplification and AKT phosphorylation. Int J Cancer, 2006, 118(8): 1877-1883.
    [8] Plastaras JP, Dorsey JF, Carroll K, et al. Role of PI3K/Akt signaling in TRAIL- and radiation-induced gastrointestinal apoptosis. Cancer Biol Ther, 2008, 7(12): 2047-2053.
    [9] Zhang L, Xing D, Gao X, et al. Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol, 2009, 219(3): 553-562.
    [10] Sivalokanathan S, Charles EM, Jagadananda G. MK591, a leukotriene biosynthesis inhibitor, induces apoptosis in prostate cancer cells: Synergistic action with LY294002, an inhibitor of phosphatidylinositol 3’-kinase. Cancer Letters, 2010, 291(2): 167-176.
    [11] Vandermoere F, EI Yazidi-Belkoura I, Adriaenssens E, et al. The antiapoptotic effect of fibroblast growth factor-2 is mediated through nuclear factor-κB avtiviation induced via interaction between Akt and IkappaB kinase-beta in breast cancer cells. Oncogene, 2005, 24(35): 5482-5491.
    [12] Garcia M G, Alaniz L D, Cordo Russo R I, et al. PI3K/Akt inhibition modulates multidrug resistance and activates NF-kappaB in murune lymphoma cell lines. Leuk Res, 2009, 33(2): 288-296.
    [13]王瑞娟. IL-11调控中子辐射肠上皮细胞损伤的ERK和PI3K/Akt信号转导机制研究.军事医学科学院博士学位论文, 2009.
    [14]夏蜀,于世英.抑制PI3K/Akt信号转导通路提高化疗效果的实验研究.肿瘤, 2006, 26(4): 311-313.
    [15] Donato J Jr, Fraz?o R, Elias CF. The PI3K signaling pathway mediates the biological effects of leptin. Arq Bras Endocr Metabol, 2010, 54(7): 591-602.
    [16] Rudner J, Ruiner CE, Handrick R, et al. The Akt-inhibitor Erufosine induces apoptotic cell death in prostate cancer cells and increases the short term effects of ionizing radiation. Radiat Oncol, 2010, 16(5): 108-119.
    [17] Yu HG, Ai YW, Yu LL, et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer, 2008, 122(2): 433-443.
    [18] Esfandiarei M, Boroomand S, Suarez A, et al. Coxsackievirus B3 activates nuclear factor kappa B transcription factor via a phosphatidylinositol-3 kinase/protein kinase B-dependent pathway to improve host cell viability. Cell Microbiol, 2007, 9(10): 2358-2371.
    [1] Shishodia S, Aggarwal BB. Nuclear factor-kappa B activiation mediates cellular transformation, proliferation, invasion angiogenesis and metastasis of cancer. Cancer Treat Res, 2004, 119(6): 139-173.
    [2] Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhance-binding protein NF-kappa B by a posttranslational mechanism. Cell, 1986, 47(6): 921-928.
    [3]何淑杰,刘树铮. NF-κB不同二聚体的活化与辐射诱导凋亡的关系.国外医学放射医学核医学分册, 2001, 25(2): 74-77.
    [4] Dixit V, Mak TW. NF-kappaB signaling: Many roads lead to madrid. Cell, 2002, 111(5): 615-619.
    [5] Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death-a new approach to cancer therapy. J Clin Invest, 2005, 115(10): 2625-2632.
    [6] Ferreiro DU, Komives EA. Molecular mechanisms of system control of NF-kappaB signaling by IkappaB alpha. Biochemistry, 2010, 49(8): 1560-1567.
    [7] Bates PW, Miyamoto S. Expanded nuclear roles for IkappaBs. Sci STKE, 2004, 25 (4): 48-62.
    [8] Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci, 2004, 29(2): 72-79.
    [9] Schmid JA, Birbach A. IkappaB kinase beta (IKKbeta/IKK2/IKBKB)-a key molecule in signaling to the transcription factor NF-kappaB. Cytokine Growth Factor Rev, 2008, 19(2): 157-165.
    [10] Karin M. The IkappaB kinase: a bridge between inflammation and cancer. Cell Res, 2008, 18(3): 334-342.
    [11] Tietze MK, Wuestefeld T, Paul Y, et al. KappaB alpha gene therapy in tumour necrosis factor-alpha and chemotherapy mediated apoptosis of hepatocellular carcinoma. Cancer Gene Ther, 2000, 7(10): 1315-1323.
    [12] Pikarsky E, Porat RM, Stein I. NF-κB functions as a tumour promoter in inflammation associated cancer. Nature, 2004, 431(7007): 461-466.
    [13] Andy W. Role of NF-kB activation in intestinal immune homeostasis. Int J Med Microbio, 2010, 300(6): 49-56.
    [14] Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol, 2009, 1(4): a000034.
    [15] Orlowski RZ, Baldwin AS. NF-kappaB as a therapeutic target in cancer. Trends Mol Med, 2002, 8(8): 385-389.
    [16] Demchenko YN, Glebov OK, Zingone A, et al. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood, 2010, 115(17): 3541-3552.
    [17] Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol, 2010, 2(6): a000109.
    [18] Zarnegar B, Yamazaki S, He JQ, et al. Control of canonical NF-kappaB activation through the NIK-IKK complex pathway. Proc Natl Acad Sci U S A, 2008, 105(9): 3503-3508.
    [19] Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene, 2006, 25(51): 6680-6684.
    [20]史艳晖,卢圣栋.转录因子NF-κB的研究现状及其应用前景.中国生物工程杂志, 2007, 27(4): 110-114.
    [21]李琦,于颖彦,朱正纲. NF-κB及其调控基因在胃肠道肿瘤发生发展中的作用.国外医学?消化系疾病分册, 2003, 23: S52-55.
    [22] Rho HS, Kim SH, Lee CE. Mechanism of NF-kappaB activation induced by gamma-irradiation in B lymphoma cells : role of Ras. J Toxicol Environ Health A, 2005, 68(23-24): 2019-2031.
    [23] Baud V, Jacque E. The alternative NF-kB activation pathway and cancer: friend or foe? Med Sci (Paris), 2008, 24(12): 1083-1088.
    [24] Chang EJ, Kundu JK, Liu L, et al. Ultraviolet B radiation activates NF-κB and induces iNOS expression in HR-1 hairless mouse skin: Role of IκB kinase-β. Mol Carcinog, 2011, 50(4): 310-317.
    [25] Chung SW, Kim JM, Kim DH, et al. Molecular delineation of gamma-ray-inducedNF-kappaB activation and pro-inflammatory genes in SMP30 knockout mice. Radiat Res, 2010, 173(5): 629-634.
    [26] Xu Y, Fang F, St Clair DK, et al. SN52, a novel nuclear factor-kappaB inhibitor, blocks nuclear import of RelB:p52 dimer and sensitizes prostate cancer cells to ionizing radiation. Mol Cancer Ther, 2008, 7(8): 2367-2376.
    [27]刘晓,邢丽娜.抑制NF-κB的表达对射线诱导HeLa细胞株凋亡的影响.中国癌症杂志, 2007, 17(7): 521-523.
    [28] Yu HG, Ai YW, Yu LL, et al. Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer, 2008, 122(2): 433-443.
    [29] Esfandiarei M, Boroomand S, Suarez A, et al. Coxsackievirus B3 activates nuclear factor kappa B transcription factor via a phosphatidylinositol-3 kinase/protein kinase B-dependent pathway to improve host cell viability. Cell Microbiol, 2007, 9(10): 2358-2371.
    [30] Chao X, Zao J, Xiao YG, et al. Blocking of PI3K/AKT induces apoptosis by its effect on NF-κB activity in gastric carcinoma cell line SGC7901. Biomed Pharmacother, 2010, 64(9): 600-604.
    [31] Ahmed KM, Nantajit D, Fan M, et al. Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes. Free Radic Biol Med, 2009, 46(11): 1543-1550.
    [32] Puszynski K, Bertolusso R, Lipniacki T. Crosstalk between p53 and nuclear factor-B systems: pro- and anti-apoptotic functions of NF-κB. IET Syst Biol, 2009, 3(5): 356-367.
    [33] Ivanov VN, Ghandhi SA, Zhou H, et al. Radiation response and regulation of apoptosis induced by a combination of TRAIL and CHX in cells lacking mitochondrial DNA: A role for NF-κB-STAT3-directed gene expression. Exp Cell Res, 2011, Apr 2, [Epub ahead of print].
    [34] Spehlmann ME, Eckmann L. Nuclear factor-kappa B in intestinal protection and destruction. Curr Opin Gastroenterol, 2009, 25(2): 92-99.
    [35] Kucharczak J, Simmons MJ, Fan Y, et al. To be, or not to be: NF-κB is the answer-role of Rel/NF-κB in the regulation of apoptosis. Oncogene, 2003, 22(56): 8961-8982.
    [36] Karrasch T, Jobin C. NF-kappaB and the intestine: friend or foe? Inflamm Bowel Dis, 2008, 14(1): 114-124.
    [37] Atreya I, Atreya R, Neurath MF. NF-kappaB in inflammatory bowel disease. J Intern Med, 2008, 263(6): 591-596.
    [38] Sbragia L, Schmidt AF, Moraes S, et al. Inflammatory response in a rat model of gastroschisis is associated with an increase of NF-kappaB. Braz J Med Biol Res, 2010, 43(2): 160-165.
    [39] Ha YM, Chung SW, Kim JM, et al. Molecular activation of NF-kappaB, pro-inflammatory mediators, and signal pathways in gamma-irradiated mice. Biotechnol Lett, 2010, 32(3): 373-378.
    [40] MollàM, Gironella M, Miquel R, et al. Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. Int J Radiat Oncol Biol Phys, 2003, 57(1): 264-273.
    [41] Mowat AM, Millington OR, Chirdo FG. Anatomical and cellular basis of immunity and tolerance in the intestine. J Pediatr Gastroenterol Nutr, 2004, 39(Suppl 3): S723-724.
    [42] Sheikh MR, Kuznetsova LV, Bojenko VB. Affects of ionizing radiation on T-cell population lymphocyte: a risk factor of irritable bowel syndrome. Toxicol Ind Health, 2010, 26(6): 323-330.
    [43] Andy W. Role of NF-κB activation in intestinal immune homeostasis. Int J Med Microbio, 2010, 300(6): 49-56.
    [44] Ferguson AR, Corley RB. Accumulation of marginal zone B cells and accelerated loss of follicular dendritic cells in NF-kappaB p50-deficient mice. BMC Immunol, 2005, 6(2): 328-339.
    [45] Lahat A, Ben HS, Lang A, et al. Lidocaine down-regulates nuclear factor-kappaB signalling and inhibits cytokine production and T cell proliferation. Clin Exp Immunol, 2008, 152(2): 320-327.
    [46]刘彬果,杨本明,高骥. NF-κB在肠道炎症和免疫应答中的作用.胃肠病学和肝病学杂志, 2009, 18(10): 886-888.
    [47] Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol, 2009, 27(5): 693-733.
    [48] Wang Y, Meng A, Lang H, et al. Activation of nuclear factor kappaB in vivo selectively protects the murine small intestine against ionizing radiation-induced damage. Cancer Res, 2004, 64(17): 6240-6246.
    [49] Egan LJ, Eckmann L, Greten FR, et al. IkappaB-kinasebeta-dependent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad Sci U S A, 2004, 101(8): 2452-2457.
    [50]王锋超.电离辐射与内毒素致小肠上皮细胞损伤机制的实验研究.第三军医大学博士学位论文, 2006.
    [51] Kunumakara AB, Diagaradjane P, Guha S, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res, 2008, 14(7): 2128-2136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700