用户名: 密码: 验证码:
促进我国水稻育种创新的新品种保护政策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物新品种权是知识产权的一种重要形式,是实施国家知识产权战略和科教兴农战略的重要组成部分,是农业科技创新的重要原动力。植物新品种保护制度是农业知识产权保护制度最重要的组成部分,是推动农业育种创新、提高农产品国际竞争力、确保农业主权和植物遗传资源安全的重要制度保障。
     水稻是我国最重要的粮食作物,担负着确保我国粮食安全的重任。依靠科技进步提高水稻单产是人多地少的中国保障粮食安全的必然选择。提高水稻单产最有效的是加快良种培育、推广和应用。现代科学实践表明,每一次水稻育种的重大突破都与水稻优异种质的发掘和利用有着密切的联系。育种创新是获得水稻优良品种的关键所在。在继50年代后期矮化育种和70年代中期杂种优势利用使我国水稻单产实现两次飞跃后,自80年代中期以来,我国水稻产量一直没有新的突破。
     目前,研究者对于影响作物育种创新的研究大多停留在种质资源发掘、育种技术创新和加大资金投入层面,少有人从建立完善相关管理制度和技术标准等角度进行剖析。实际上在影响育种创新的三大因素中,制度建设相比于科技和投入影响更为深远,切实激励育种创新的效果更为明显。
     本研究通过对当前主要推广和申请保护的水稻品种相关数据进行分析,提出了我国水稻育种存在着遗传基础狭窄、种质资源利用水平不高、育成品种大多在低水平上重复、原始育种创新积极性不够、企业参与育种创新动力不足等问题。同时分析了植物新品种保护制度的缺陷是引起植物新品种审查、测试、侵权纠纷处理过程中难点问题的根源。由于育种过程简单,时间花费少,育种目标明确,利用目前的主要推广品种进行稍加改造就可以快速育成新的所谓自主知识产权品种。这种机制的直接后果使大量育种单位对投资育种研究缺乏动力。
     近年来如何保护实质性派生品种已经成为全世界普遍关注的理论问题和各国植物新品种保护实践中面临的重要现实问题。实质性派生品种制度缺失已经引起了社会的强烈关注。本文在借鉴国际育种创新模式和发达国家先进管理经验的基础上,提出了加强我国植物新品种保护制度创新,特别是建立实质性派生品种制度是当前激励水稻育种创新的核心任务。
     本文还对我国申请保护的949份水稻常规种和杂交种进行SSR分析,从DNA水平上再次验证水稻育种遗传基础越来越狭窄、原始育种创新不足的事实,通过对其遗传多样性分析、指纹图谱构建,并结合品种选育系谱和田间DUS测试报告结果进行综合分析的基础上,最后从建立和完善实质性派生品种制度、改进新品种测试技术措施、建立实质性派生品种鉴定标准等方面提出了促进水稻育种创新的具体对策和措施。
     具体结果如下:
     1.论证了我国水稻育种创新动力不足的制度根源
     本文对我国科研教学、企业和个人自1999年到2010年期间共申请公告的2214个水稻品种、对2005—2009年期间我国主要推广水稻品种、对经农业部审批认定通过的71个超级稻品种的遗传系谱进行分析后认为:我国围绕核心种质资源进行短平快改造的水稻育种方式越来越明显,水稻原始育种创新动力严重不足。经分析后我们认为,这与我国植物新品种保护制度不完善有着紧密联系。当前加强植物新品种保护制度创新特别是建立实质性派生品种制度是激励我国水稻育种创新的核心任务。
     2.分析了我国主要水稻品种的遗传多样性
     利用24对SSR引物对949份水稻材料进行PCR扩增,共扩增出清晰、重复性好、具有多态性的谱带211个。通过分别构建常规稻和杂交稻的系统发生树,可以明显地将籼稻和粳稻区分开来,揭示了常规稻和杂交稻的亲缘关系较远,基因型明显不同。通过DNA分析结果发现949份水稻品种的GS整体呈上升趋势,说明供试品种间基因型差异越来越小。这从DNA水平上再次验证了目前我国水稻主要品种遗传基础比较狭窄,品种单一化问题严重,急需选育新品种类型,以此丰富品种的遗传变异。
     3.构建了我国主要水稻品种DNA指纹图谱
     利用上述SSR多态性条带对供试材料进行了DNA指纹检测,构建了949个水稻品种×24个微卫星标记的DNA指纹图谱数据库。此项研究结果对今后开展水稻品种审定、种质质量鉴定、新品种保护和遗传资源评价等具具重要意义,同时也为植物新品种的科学审批、品种权科学执法等奠定基础。
     4.提出了促进水稻育种创新的政策和措施
     在借鉴国际育种创新模式和发达国家先进管理经验的基础上,提出了促进水稻育种创新的对策:考虑到《条例》修改周期长,中短期而言,可以考虑对实质性派生品种授权采取5年的“隔离期”的行政措施、通过修订水稻DUS测试指南限制不具生产意义的性状改良以及调控“性状距离”来控制对特异性的判断等技术措施;长期而言,我国应当修订《条例》,建立实质性派生品种制度,甚至针对每类作物,建立适合我国国情要求的实质性派生品种鉴定标准,布局具有中国特色的“植物新品种保护版图”。
     5.探讨了水稻实质性派生品种的鉴定标准
     对经DNA鉴定遗传相似度达到95%的共164对品种结合田间DUS测试结果和选育系谱分析后认为,根据目前我国水稻育种现状,在经过DUS测试明确判定申请品种具备特异性的前提下,可以将96%—98%作为鉴定实质性派生品种的阀值。在遗传相似度低于96%时,可以判定为不是实质性派生品种;当遗传相似系数高于98%时,可以判定为实质性派生品种;当遗传相似系数介于96%—98%时,需要进一步结合田间DUS测试结果和选育系谱等资料进行判定。
     6.提出了我国水稻育种策略合理化建议
     在分析UPOV1978年文本和UPOV1991年文本区别基础上,结合我国水稻育种现状,提出我国应当建立短中长期相结合的水稻育种策略。从短期来看,我国应该积极主动引进国外优良资源,通过物理辐射、化学诱变、回交、系统选育等短平快育种手段快速育成并在我国尽早申请品种权保护。从中长期来看,我国应当在积极引进国外优良种质资源的同时,注重对资源的评价鉴定与应用,特别应通过现代生物育种技术方式将其优良基因导入到本地优良品种中,培育一批具有重大应用前景和自主知识产权的突破性优良品种。同时提出,我国应该建立植物新品种权预警机制,特别在培育外向型品种时或者加入UPOV1991年文本后,应密切关注出口对象国执行UPOV文本的情况,尽量避免在授权品种基础上直接采用转基因、系统选育、连续回交、诱变等育种方式,以免引起不必要的侵权纠纷。
     目前国际上还没有发现其他研究者对水稻实质性派生制度及鉴定标准准进行过系统研究,该项研究填补了国际空白,并将为我国实质性派生品种制度建立、《条例》修订或上升为《新品种保护法》以及我国加入UPOV1991年文本做政策储备,为植物新品种权科学审批、植物新品种权执法等做技术准备,同时也为其他作物实质性派生品种制度和鉴定标准研究奠定基础。
The right of new plant varities is one form of the intellectual property rights. As the fundamental elements of protection system for agriculture intellectual property, new plant variety protection system is a guaranteeing system to accelerate the innovation of agricultural breeding, to improve the international competitive capacity of agricultural products, as well to safeguard the sovereignty over agriculture and safety overplant germplasm resources. The new plant variety's protection appears especially important, to encourage breeders to develop new varieties of plants for building a modern seed industry and promoting agricultural science and technology.
     Rice is the most important food crops, shouldering the heavy responsibility to ensure the grain safety in China. Progress of support science and technology raises rice production in per hectare is an inevitable choice for ensuring food safety in china. Improve the yield of rice is the most effective to accelerate thoroughbred breed, promotion and application. Modern science and practice show that every time the rice breeding breakthrough is closely linked with the exploitation and utilization of rice germplasm innovation. Breeding innovation is the key to obtain fine varieties of rice.
     Since the dwarfing breeding in the late 50th century and heterosis utilization at the middle of the 70th century, our country paddy rice yield per unit to realize two time leap, but after 80 time metaphase, rice yields has been no new breakthrough.
     Currently, the researchers to affect crop breeding innovative research are mostly applied in germplasm resources and breeding excavation technology innovation and increasing investment level, few people from the establishment of a sound management system and technical standards related to the angle of the analysis. In fact, compared the influence of the three major factors in breeding innovation, the system construction technology and investment compared to more far-reaching impact, and the effect of incentive breeding innovation is more obvious.
     This study based on the current main promotion and application for protection of rice varieties related data, analyzes the following questions:the rice breeding in China there are genetic basis narrow, germplasm resources utilization level is not high, mostly in the low-level varieties bred to repeat, the original breeding enthusiasm for innovation not enough, companies involved in breeding innovation power shortage. It also analyzes the defects of the system of new plant variety protection is cause of examination, test and tort disputes in the process of difficulty of the source of the problem. Due to the breeding process is simple, takes less time and breeding targeted, the use of the current main varieties bred little can quickly transform the new so-called independent intellectual property varieties. The direct consequence of this mechanism makes the large number of breeding units lack of motivation for investment in breeding research.
     How to protect Essential Derived Varieties (EDV) has become one of the universal concerned theoretical problems and important practical problems in the practice of new plant varieties protection of all countries these years. Essentially derived variety system has already caused the intense attention of the society. On the basis of the international breeding innovative models and the advanced management experience of the developed country, we have given some suggestions to strengthen our protecting system of innovation of new plant varieties; Establishment of substantial current incentive system is innovative core tasks to encourage the rice breeding innovation. The study also applies for protection of the 949 copies of our regular species and hybrids of rice for SSR analysis. From the DNA level we have once again proven the genetic base of rice breeding is increasingly narrow, and the lack of original breeding innovation. Through analysis of their genetic diversity and fingerprinting mapping and combination with pedigree breeding and field results of DUS test reports on the basis of comprehensive analysis. Finally, the establishment and improvement of material derived from varieties of systems, improving testing technical measures of new varieties to establish standards of the substantive derived species identification. According to these we put forward to the specific policies and measures for promotion of innovation in rice breeding.
     The results are as follows:
     1 Proved our country rice breeding innovation power insufficient system root
     The study analysis rice genetic pedigree, including application bulletin 2214 rice varieties which are from the scientific research and teaching, enterprises and individuals from 1999 to 2010, and 71 the super rice which are from the main rice varieties, approvaled by Ministry of Agriculture from 2005 to 2009, in the author's opinion our country around the core germplasm basic transformation of rice breeding has become more and more obvious, the original innovation power insufficient rice breeding. To combine economic management theory analysis, rice original breeding innovation force inadequacy is closely linked to plant new variety protection system is not perfect in our country. Strengthening the protection of new varieties of plants system innovation is the core task for motivating rice breeding innovation in China.
     2 Analysis the genetic diversity of main rice varieties
     24 selected SSR primers were used in PCR amplification of 949 tested rice cultivars to identify genetic relationship. The resulted showed that 211 bands with distinct, good repeat ability and polymorphic were amplified. Through constructing the unrooted neighbor-joining tree of 409 accessions of inbred rice and 540 accessions of hybrid rice based on Nei's genetic distance using data for 24 SSR loci, it is very easy to distinguish indica cultivars and japonica cultivars. The result also showed that conventional rice and hybrid rice had a distant relationship, genotype was significantly different, there is a great difference between the genotype genetic.
     3 Construction the DNA fingerprint map for main rice varieties in our country
     A DNA fingerprint database containing genotypic data of 949 rice variety times 24 marker loci, was constructed. DNA fingerprinting is a useful tool for the registration and identification of new cultivars, the protection of cultivars' rights and evalution of genetic diversity. The results also laid the foundation for the new plant variety scientific approval and variety right science and law enforcement.
     4 Put forward to promote rice breeding innovation policies and measures
     On the basis of the international breeding innovative models and the advanced management experience of the developed country, put forward to promote the countermeasure of innovation in rice breeding. Considering the modify the regulations cycle is long, in the short to medium term, could be considered to be essentially derived varieties authorized to take 3 to 5 years of quarantine administrative measures. Through the revision of rice DUS testing guidelines limit productive role traits and regulation characteristics distance to control the specificity judgments and other technical measures; in the long term, our country should be revised regulations and establish the system of essentially derived variety.
     5 Discuss the rice essentially derived varieties identification standard
     The DNA identification of genetic similarity reaches 96% of the total 164 species with field test results for DUS and pedigree analysis, according to our current situation of rice breeding, the 96%-98% can be used as identification of essentially derived variety threshold. The genetic similarity is lower than 96%, can be judged as not essentially derived varieties; when genetic similarity coefficient is higher than the 98%, can be judged to be essentially derived varieties; when genetic similarity coefficient between 96%-98%, DUS needs to be further combined with field test result.
     6 Put forward rational suggestions of rice breeding in China
     On the basis of analyzing the difference between UPOV 1978 Act and UPOV 1991 Act, combining with the current situation in breeding, the author put forward that the short appearance combined rice breeding strategy should to be established in our country. First of all, China formulate regulations framework in accordance with the UPOV 1978 Act, did not build essentially derived variety system. In the short term, China should actively introducing the foreign academic resource, through some short smooth fast breeding method including physical radiation, chemical mutation, backcross, system breeding and so on, in order to breed some rice germplasm resources, apply for plant variety right as soon as possible, and obtain a complete independent intellectual property rights. Secondly, in view of the foreign varieties in our adaptive problems, from the point of view, foreign germplasm resources should also hybridized with the local fine varieties at the same time, obtained a great deal of fine varieties which are suitable for popularization in our country. At last, in view of it is an inevitable trend to access the UPOV 1991 text for plant new variety protection system, our country should establish the long-term goal of rice breeding. Through the positive development of modern biology breeding technology, cultivating some breakthrough varieties which have great application prospect and independent intellectual property rights.
     It is not found in other studies on rice essentially derived system identification standard and systematic study; this study will fill gaps in the international, and which lays the policy preparation foundation for our country essentially derived variety system establishment, regulations of protection of new plant varieties revised and China's accession to the UPOV 1991 Act, lays the technical preparation for plant variety rights scientific approval and the right of new plant variety law enforcement and lays the preparation for other crops essentially derived variety system and identification standard. There are only some principled provisions about EDV in UPOV 1991 Act at present, thus leaving a large room for various countries to make their own system design. In order to meet the challenge of UPOV 1991 Act, we'd better establish EDV system as early as possible.
引文
[1]中华人民共和国国务院.中华人民共和国植物新品种保护条例[M].北京:中国农业出版社,1997:10-18.
    [2]陈红,刘伟,郑金贵.我国植物新品种DUS测试指南研制策略探讨[J].福建农林大学学报(哲学社会科学版),2011(3)期.
    [3]UPOV. UPOV Report on the Impact of Plant Variety Protection [M].2005:5-10.
    [4]陈红,刘平,吕波,等.我国建立实质性派生品种制度的必要性讨论[J].农业科技管理,2009,(1):10-12.
    [5]李初军,刘建萍,贾丽颖,等.我国水稻育种的现状与展望[J].中国种业,2007,(1):11-12.
    [6]Khush G S, Brar D S. Rice [M]//ChopraV L, Prakash S. Evolution and adaptation of crops Vol I, New Delhi Oxford and IBH Public Co,2002,1-41.
    [7]Nevo E. Genetic resources of wild emmer, Triticum dicoccoides, for wheat improvement: news and views [M]. In:Z S Li and Z Y Xin (eds.), Proceedings of the 8th International Wheat Genetic Symposium. China Agricultural Science and Technology Press, Beijing,1995, 79-872.
    [8]Singh R K. Genetic resource and the role of international collaboration in rice breeding [J]. Genome,1999,42:635-641.
    [9]Witcombe J R. Do farmer-participatory methods apply more to high potential areas than marginal ones [J]. Outl Agric,1999,28:43-49.
    [10]卢宝荣,朱有勇,王云月.农作物遗传多样性农家保护的现状及前景[J].生物多样性,2002,10(4):409-415.
    [11]Gepts P. Crop domestication as a long-term selection experiment [M]. In:John Wiley, sons (ed). Plant breeding reviews,2004, pp:1-43.
    [12]万建民.超级稻的分子设计育种[J].沈阳农业大学学报,2007.38(5):652-661.
    [13]Francis C.A. Multiple cropping systems [M]. Macimillan. New York,1986.
    [14]Gepts P. A comparison between crop domestication, classical plant breeding, and genetic engineering [J]. Crop Science,2002,42 (6):1780-1790.
    [15]Wright S. The interpretation of population structure by F-statistics with special regard to systems of mating [J]. Evolution,1965,19:395-420.
    [16]海关总署.中国海关统计年鉴2009[M].北京:中国海关出版社,2010.
    [17]袁隆平.杂交水稻培育的实践和理论[J].中国农业科学,1977,1:27-31.
    [18]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,12(6):1-6.
    [19]袁隆平,唐传道.杂交水稻选育的回顾、现状与展望[J].中国稻米,1999,(4):3-6.
    [20]谢华安.福建省重大科技专项《粮食作物新品种选育研究与产业化》可行性研究报告,2006.
    [21]Zhu Y Y, Chen H R. Fan J H. et al. Genetic diversity and disease control in rice [J]. Nature, 2000,406(6797):718-722.
    [22]Londo J P, Chiang Y C, Hung K H, et al. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa L [J]. Proceedings of the National Academy of Sciences, USA,2006,103(25):9578-9583.
    [23]Zhao W G, Chung J W, Ma K H, et al. Analysis of genetic diversity and population structure of rice cultivars from Korea, China and Japan using SSR markers [J]. Genes and Genomics, 2009,31(4):283-292.
    [24]Hoisington D, Khairallah M, Reeves T, et al. Plant genetic resources:What can they contribute toward increased crop productivity [J]. Proceedings of the National Academy of Sciences, USA,1999,96(11):5937-5943.
    [25]魏兴华,汤圣祥,余汉勇,等.中国水稻国外引种概况及效益分析[J].中国水稻科学,20]0,24(1):5-11.
    [26]魏兴华,汤圣祥,江云珠,等.中国栽培稻选育品种等位酶多样性及其与形态学性状的相关分析[J].中国水稻科学,2003,17(2):123-128.
    [27]华蕾,袁筱萍,余汉勇,等.我国水稻主栽品种SSR多样性的比较分析[J].中国水稻科学,2007,21(2):150-154.
    [28]Scherer-Lorenzen M, Schulze E D, Siamantziouras A S D, et al. Plant diversity and productivity experiments in European grasslands [J]. Science,1999,286:1123-1127.
    [29]程侃声.亚洲稻籼粳亚种的鉴别[M].昆明:云南科技出版社,1993:56-69.
    [30]刘万友,杨振玉.应用程氏指数法进行籼粳交F1分类[J].沈阳农业大学学报,1991,22(增刊):82-86.
    [31]徐正进,陈温福,张龙步,等.水稻穗颈维管束性状的类型间差异及其遗传的研究[J].作物学报,1996,(2):167-172.
    [32]陈跃进,丁效华,杨长寿,等.水稻粳型亲籼系籼粳属性的程氏指数鉴定[J].湖南农业大学学报,2002,28(4):283-286.
    [33]于恒秀,程祝宽.李欣,等.两种水稻四体的分离和细胞学鉴定[J].中国水稻科学,1999,13(4):193-196.
    [34]张静,吴先军,汪旭东,等.特异同源三倍体水稻材料SAR-3细胞学研究[J].作物学报,2002,28(5):704-708.
    [35]龚志云.高清松,于恒秀,等.水稻端四体的分子细胞学鉴定及染色体行为分析[J].中国水稻科学,2008,22(4):335-339.
    [36]王象坤,孙传清.中国栽培稻起源与演化研究专集[M].中国农业大学出版社,1996,85-91.
    [37]孙新立,才宏伟,王象坤.水稻同工酶基因多样性及非随机组合现象的研究[J].遗传学报,1996,23(4):276-285.
    [38]汤圣祥,江云珠,魏兴华,等.中国栽培稻同工酶的遗传多样性[J].作物学报,2002,28(2):203-207.
    [39]陶芳,张文明,姚大年.酯酶同工酶鉴定杂交水稻品种及其亲本纯度的研究[J].种子2007,26(2):28-32.
    [40]Beckmann J S, Soller M. Restriction fragment length polymorphism in plant genetic improvement [J]. Oxford Surveys of Plant Molecular and Cell Biology,1986,3:196-250.
    [41]Weising K, Nybom H, Wolff K, et al. DNA fingerprinting in plants and fungi [M]. CRC press, Inc., Boca Raton, USA,1995.
    [42]Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene [J]. American Journal of Human Genetics,1989,44:397-401.
    [43]Tautz D. Hypervariability of simple sequences as a general polymorphic DNA markers [J]. Nucleic Acids Research,1989,17(16):6463-6471.
    [44]McCouch S R, Chen X. Microsatellite marker development, mapping and application in rice genetics and breeding [J]. Plant Molecular Biology,1997,35(1-2):89-99.
    [45]Panaud O, Chen X, Mccouch S R. Development ofmicrosatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.) [J]. Molecular and General Genetics,1997,252:597-607.
    [46]Chen X, Temnykh S, Xu Y, et al. Developmentof amicrosatellite frameworkmap providing genome-wide coverage in rice (Oryza sative L.) [J]. Theoretical and Applied Genetics,1997, 95:553-567.
    [47]Temnykh S, ParkW D, Ayers N, et al. Mapping and genome organization ofmicrosatellite sequences in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics,2000,100: 697-712.
    [48]Susan R, Mccouch, Leonid Teytelman, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.) [J]. DNA Research,2002,9(6):199-207.
    [49]彭锁堂,庄杰云,颜启传,等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定[J].中国水稻科学,2003,17(1):1-5.
    [50]辛业芸,张展.熊易平,等.应用SSR分子标记鉴定超级杂交水稻组合及其纯度[J].中国水稻科学.2005,19(2):95-100.
    [51]李进波,方宣钧,杨国才,等.两系杂交稻亲本SSR指纹图谱的建立及其在种子纯度鉴定中的应用[J].杂交水稻,2005,20(2):50-53.
    [52]苏顺宗,黄玉碧,杨俊品,等.利用SSR鉴定水稻杂交种子纯度的研究[J].种子,2003.(1):23-25.
    [53]McCouch S R, Kochert G, Yu Z H, et al. Molecular mapping of rice chromosomes [J]. Theoretical and Applied Genetics,1988,76(6):815-829.
    [54]Harushima Y, Yano M, Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population [J]. Genetics,1998,148:479-494.
    [55]朱立煌,何平.水稻分子连锁图谱及重要性状的基因定位[J].复旦学报(自然科学版),1998,37(4):509-512.
    [56]Rupesh D, Humira S, Anshuman T, et al. Identification of quantitative trait loci for yield and related traits in rice [J]. Guangxi Agriculture Sciences,2008,39(5):561-564.
    [57]姜华,赵江红,郭龙彪,等.水稻高节位分蘖的QTL定位和互作分析[J].中国水稻科学,2011,25(2):157-162.
    [58]郑景生,江良荣,曾建敏,等.应用明恢86和佳辐占的F2群体定位水稻部分重要农艺性状和产量构成的QTL[J].分子植物育种,2003,1(5/6):633-639.
    [59]Ahn S, Anderson J A, Sorrells M E, et al. Homoeologous relationships of rice, wheat and maize chromosomes [J]. Molecular and General Genetics,1993,241(5-6):483-490.
    [60]Moore G, Foote T, Helentjaris T, et al. Was there a single ancestral cereal chromosome [J]? Trends Genet,1995,11(3):81-82.
    [61]Gale M D, Devos K M. Comparatives genetics in the grasses [J]. Proceedings of the National Academy of Sciences, USA,1998,95(5):1971-1974.
    [62]陈峰,张士永,朱文银,等.分子标记辅助选择改良圣稻13和圣稻14的条纹叶枯病抗性[J].中国农业科学,2010,43(16):3271-3279.
    [63]殷得所,夏明元.李进波,等.抗稻瘟病基因Pi9的STS连锁标记开发及在分子标记辅助育种中的应用[J].中国水稻科学,2011,25(1):25-30.
    [64]裴庆利,王春连,刘丕庆,等.分子标记辅助选择在水稻抗病虫基因聚合上的应用[J].中国水稻科学,2011,25(2):119-129.
    [65]朱作峰,孙传清,付云彩,等.用SSR标记比较亚洲栽培稻与普通野生稻的遗传多样性[J].中国农业科学,2002,35(12):1437-1441.
    [66]赵勇,杨凯,Akbar Ali Cheema,等.利用水稻功能基因SSR标记鉴定水稻种质资源[J].中国农业科学,2002,35(4):349-353.
    [67]刘炜,李自超,史延丽,等.利用标记进行粳稻品种的遗传多样性研究[J].西南农业学报,2005,18(5):509-513.
    [68]王金花,罗文永,陈建伟,等.应用SSR和ISSR标记分析栽培香稻品种的遗传多样性[J].分子植物育种,2005,3(1):37-42.
    [69]张涛,郑家奎,徐建第,等.香稻品种的遗传多样性研究[J].中国农业科学,2008,41(3):625-635.
    [70]陆贤军,任光俊,李勤修,等.籼型杂交水稻恢复系选育研究进展[J].西南农业学报,1998,11:58-62.
    [71]王三良,许可.我国籼型杂交水稻育种现状、问题与对策[J].杂交水稻,1996,(3):1-4.
    [72]何光华,唐梅,裴炎,等.四川主要水稻恢复系的DNA多态性研究[J].杂交水稻,1999,14(6):39-40.
    [73]李云海,肖晗,张春庆,等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异[J].植物学报,1999,41(10):1061-1066.
    [74]段世华,毛加宁,朱英国.用微卫星DNA标记对我国杂交水稻主要恢复系遗传差异的检测分析[J].遗传学报,2002,29(3):250-254.
    [75]贺浩华,罗小金,朱昌兰,等.杂交稻部分不育系与恢复系的SSR分类[J].作物学报,2006,32(2):169-175.
    [76]齐永文,张冬玲,张洪亮,等.中国水稻选育品种遗传多样性及其近50年变化趋势[J].科学通报,2006,51(6):693-699.
    [77]王胜军,陆作媚.中国杂交籼稻遗传多样性演变及其分析[J].江苏农业学报,2006,6(22):192-198.
    [78]彭锁堂,王海岗,魏兴华,等.我国三系杂交稻主要不育系的微卫星标记多样性和遗传结构分析[J].中国水稻科学,2008,22(4):365-369.
    [79]刘传光,张桂权.用SSR标记分析1949—2005年华南地区常规籼稻主栽品种遗传多样性及变化趋势[J].作物学报,2010,36(11):1843-1852.
    [80]姜树坤,下政海,钟鸣.辽宁省近15年的部分水稻主栽品种的简单重复序列(SSR)多态性分析[J].植物生理学通讯,2007,43(2):69-73.
    [81]应杰政,施勇烽,庄杰云,等.用微卫星标记评估中国水稻主栽品种的遗传多样性[J].中国农业科学,2007,40(4):649-654.
    [82]张媛嫒,曹桂兰,韩龙植.中国不同地理来源籼稻地方品种的亲缘关系研究[J].作物学报,2007,33(5):757-762.
    [83]束爱萍,张媛媛,曹桂兰,等.中国不同省份粳稻选育品种的遗传相似性[J].中国农业科学,2009,42(10):3381-3387.
    [84]甘晓燕,李苗,关雅静,等.宁夏89份粳稻种质遗传多样性的SSR分析[J].西北植物学报.2009,29(9):1772-1778.
    [85]金伟栋,程保山,洪德林.基于SSR标记的太湖流域粳稻地方品种遗传多样性研究[J]. 中国农业科学,2008,41(11):3822-3830.
    [86]刘宝海,宋福金,高存启,等.黑龙江大面积推广水稻品种遗传基础研究[J].作物杂志,2004,2:48-52.
    [87]杨静,刘海英,钱春荣,等.黑龙江省水稻品种SSR标记遗传多样性分析[J].东北农业大学学报,2008,39(6):1-10.
    [88]郝伟,张旭,徐门进,等.东北三省水稻遗传多样性和亲缘关系的SSR分析[J].河南农业科学,2008,4:18-24.
    [89]玄英实,姜文沫,刘宪虎,等.中国东北地区水稻主要栽培品种的遗传多样性分析[J].植物遗传资源学报,2010,11(2):206-212.
    [90]孙健,王敬国,刘化龙,等.黑龙江省主栽水稻品种的遗传多样性分析[J].作物杂志,2011,(1):63-67.
    [91]赵庆勇,张亚东,朱镇.等.30个粳稻品种SSR标记遗传多样性分析[J].植物遗传资源学报,2011,11(2):218-223.
    [92]束爱萍,金钟焕,张三元,等.世界不同地理来源粳稻品种的遗传相似性研究[J].中国农业科学,2008,41(7):1879-1886.
    [93]李丹婷,夏秀忠,农保选,等.地中海地区稻种资源的籼粳分类及遗传多样性[J].植物遗传资源学报,2011,12(1):25-30,36.
    [94]李晶熠,何平,李仕贵,等.利用微卫星标记鉴定杂交水稻冈优22种子纯度的研究[J].生物工程学报,2000,16(2):211-213.
    [95]于永红,李云海,马荣荣,等.用微卫星DNA标记建立宁2A的指纹图谱[J].中国水稻科学,2001,15(3):215-217.
    [96]詹庆才.应用SSR技术鉴定杂交水稻种子纯度的研究[J].杂交水稻,2002,(3):15-18.
    [97]李稳香,詹庆才.杂交水稻种子纯度SSR指纹图谱标记鉴定技术研究[J].中国种业,2006,(3):21-22.
    [98]马红勃,许旭明,韦新宇,等.基于SSR标记的福建省若干水稻品种DNA指纹图谱构建及遗传多样性分析[J].福建农业学报,2010,25(1):33-38.
    [99]陈树林,王海燕,丁震乾,等.2个杂交籼稻和2个粳稻品种SSR指纹图谱的构建及双重PCR技术的初步研究[J].中国水稻科学,2011,25(1):19-24.
    [100]张彦,郭士伟,何冰,等.利用SSR标记建立杂交水稻分子指纹图谱数据库[J].江苏农业学报,2006,22(2):181-183.
    [101]庄杰云,施勇峰,应杰政,等.中国主栽水稻品种微卫星标记数据库的初步构建[J].中国水稻科学,2006,19(5):460-468.
    [102]程保山,万志兵,洪德林.35个粳稻品种SSR指纹图谱的构建及遗传相似性分析[J].南京农业大学学报,2007,30(3):125-132.
    [103]程本义,吴伟,夏俊辉,等.浙江省水稻品种DNA指纹数据库的初步构建及其应用[J].浙江农业学报,2009,21(6):555-560.
    [104]马琳,余显权,赵福胜.贵州地方水稻品种“禾”的SSR指纹图谱构建[J].西南农业学报,2010,23(1):5-10.
    [105]朱珊,黄仁良,孙娜,等.江西省2009年水稻区试品种的DNA指纹图谱构建及遗传多样性分析[J].江西农业学报,2010,22(9):20-23.
    [106]许彦.水稻品种SSR指纹身份证系统的建立[D].福建农林大学硕士学位论文,2010.
    [107]朱勇良,黄凌哲,乔中英,等.我国部分香稻SSR指纹图谱的构建及遗传相似性分析[J].江西农业学报,2011,23(4):5-9.
    [108]Wilson E O. The biological diversity crisis [J]. BioScience,1985,35(11):700-706.
    [109]Magurran A E. Ecological diversity and its measurement [M]. New Jersy:Princeton University Press,1988.
    [110]胡志昂.遗传多样性的定义、研究新进展和新概念,生物多样性与人类未来[M].北京:中国林业出版社,1998,1-30.
    [111]马克平.论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [112]Moritz C, Hillis D M. Molecular systematic:content and controversies [M]. In Hillis D M and Moritz C (eds). Sunderland Sinauer,1990,1-11.
    [113]Huenneke L F. Ecological implications of genetic variation in plant populations In Falk D A and K E Holsinger (eds) Genetics and Conservation of Rare Plants [M]. New York Oxford University Press,1991,31-44.
    [114]Soltis P S and Soltis D E. Genetic variation in endemic and widespred plant species examples from Saxifragaceae and Polystichum [J]. Aliso,1991, (13):215-223.
    [115]卢新雄,曹永生.作物种质资源保存现状与展望[J].中国农业科技导报,2001,3(3):43-47.
    [116]卢新雄,陈晓玲.我国作物种质资源保存与研究进展[J].中国农业科学,2003,36(10):1125-11.
    [117]Walsh J. Genetic vulnerability down on the farm [J]. Science,1981,214:161-164.
    [118]Porceddu E, Ceoloni C, Lafiandra D, et al. Genetic resources and plant breeding:problems and prospects [M]. In:Miller T E, Koebner R M. eds. Proceedings of the Seventh International Wheat Genetics Symposium, Institute of Plant Science Research, Cambridge, 1988, pp 7-22.
    [119]Reif J C, Hamrit S, Heckenberger M. et al. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years [J]. Theoretical and Applied Genetics,2005,111:838-845.
    [120]Reif J C, Zhang P, Dreisigacker S, et al. Wheat genetic diversity trends during domestication and breeding [J]. Theoretical and Applied Genetics,2005,110:859-864.
    [121]Maccaferri M. Sanguineti M C, Donini P, et al. Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm [J]. Theoretical and Applied Genetics,2003,107:783-797.
    [122]Khlestkina E K, Huang X Q, Quenum F J. Genetic diversity in cultivated plants-loss or stability [J]? Theoretical and Applied Genetics,2004,108:1466-1472.
    [123]Khlestkina E K, Rider M S, Efremova T T, et al. The genetic diversity of old and modern Siberian varieties of common spring wheat as determined by microsatellite markers [J]. Plant Breeding,2004,123:122-127.
    [124]Dobrotvorskaya T V, Martynov S P, Pukhalskyi V A. Trends in genetic diversity change of spring bread wheat cultivars released in Russia in 1929-2003 [J]. Russian Journal of Genetics,2004,40:1245-1257.
    [125]Fu Y B, Peterson G W, Scoles G, et al. Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001 [J]. Crop Sciencee,2003,43:1989-1995.
    [126]葛颂.遗传多样性及其检测方法—生物多样性原理与方法[M].北京:中国科技出版社,1994,38-43.
    [127]Jeffreys A J, Wilson V, Thein S L. Hypervariable minisatellite regions in human DNA [J]. Nature,1985,314:67-73.
    [128]郭晓强,冯志霞.DNA指纹图谱的创造者—杰弗里[J].生物学通报,2008,43(1):60-61.
    [129]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1995,29:1-10.
    [130]Roder M S, Wendehake K, Korzun V, et al. Construction and analysis of a microsatellite-based database of European wheat varieties [J]. Theoretical and Applied Genetics,2002,106:67-73.
    [131]Bredemeijer G M M, Cook R J, Ganal M W, et al. Construction and testing of microsatellite database containing more than 500 tomato varieties [J]. Theoretical and Applied Genetics, 2002,105:1019-1026.
    [132]王凤格,赵久然,郭景伦,等.中国玉米新品种DNA指纹库建立系列研究Ⅰ.玉米品种纯度及真伪鉴定中SS技术标准实验体系的建立[J].玉米科学,2003,11(1):3-6.
    [133]赵久然,王凤格,郭景伦,等.中国玉米新品种DNA指纹库建立系列研究Ⅱ.适于玉米自交系和杂交种指纹图潜绘制的SSR核心引物的确定[J].玉米科学,2003,11(2):3-5.
    [134]王凤格,赵久然.佘花娣,等.中国玉米新品种DNA指纹库建立系列研究Ⅲ.多重PCR技术在玉米SSR引物扩增中的应用[J].玉米科学,2003,11(4):3-6.
    [135]程本义,施勇烽,沈伟峰,等.南方稻区国家水稻区域试验品种的微卫星标记分析[J].中国水稻科学,2007,21(1):7-12.
    [136]肖小余,王玉平,张建勇,等.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用[J].中国水稻科学, 2006,20(1):1-7.
    [137]何芳,肖小余,邓丽.DNA指纹图谱技术在我省种子管理中的应用[J].种子世界,2009,(2):3-4.
    [138]陈英华,侯昱铭,李宏宇,等.东北地区水稻区试新品种的DNA指纹图谱构建及遗传多样性分析[J].种子,2009,28(3):28-35.
    [139]邱福林,庄杰云,华泽田,等.北方杂交粳稻骨干亲本遗传差异的SSR标记检测[J].中国水稻科学,2005,19(2):101-104.
    [140]农业部植物新品种测试中心.植物新品种特异性、一致性和稳定性审查及性状统一描述总则[M].北京:中国农业出版社,2002,5-8.
    [141]中华人民共和国农业部.植物新品种特异性、一致性和稳定性测试指南:玉米[S].北京:中华人民共和国农业部,2002:1-5.
    [142]韩天富,周新安,王继安,等起草.中华人民共和国农业部.植物新品种特异性、一致性和稳定性测试指南:大豆[M].北京:中华人民共和国农业部,2002:3-6.
    [143]王汝锋,崔野韩,朱智伟,等起草.中华人民共和国农业部.植物新品种特异性、一致性和稳定性测试指南:水稻[M].北京:中华人民共和国农业部,2004:2-6.
    [144]万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462.
    [145]王建军,曾亚文,等.植物新品种保护和农业生物技术发展探讨[J].农业科技管理,2002(3):35-36.
    [146]邓勿.论我国农业植物新品种保护[D].长沙:湖南农业大学,2005.
    [147]万宜珍.植物新品种保护与杂交水稻育种创新的思考[J].农业科技管理,2008,27(6):74-77.
    [148]朱智勇,李萍,郑维威,等.我国水稻品种权保护现状及存在的问题探析[J].农业科技通讯,2010,(11):5-7.
    [149]刘丽军,宋敏.中国杂交水稻知识产权保护的方式、现状及挑战[J].杂交水稻,2011,26(2):1-6.
    [150]吴俊生,彭慕良.日本稻种在山东水稻生产和品种改良中的作用[J].山东农业科学,1993,(6):50-51.
    [151]朴钟泽,罗志祥,韩龙植,等.上海和韩国粳稻品种米质特性比较[J].上海交通大学学报:农业科学版,2002,20(4):296-301.
    [152]余汉勇,魏兴华.袁筱萍,等.水稻国外引种的探讨和建议[J].植物遗传资源学报,2005,6(1):96-100.
    [153]Luce C, Noyer J L, Tharreau D, et al. The use of microsatellite markers to examine the diversity of the genetic resources of rice (Oryza sativa) adapted to European conditions [J]. Acta Horticul,2001,546:221-235.
    [154]詹映,朱雪忠.国际法视野下的农民权问题初探[J].法学,2003,(8):108-116.
    [155]UPOV. Act of 1991 International Convention for the Protection of New Varieties of Plants [EB/OL].(2008-12-10)[2011-01-25].http:www.upov.int/en/publications/conventions/1991/p df/actl 991.pdf.
    [156]全国农业技术推广服务中心.2006年全国农作物主要品种面积推广情况统计汇编[R].2007.
    [157]郭嘉骥.关于对所有农作物品种均实行国家保护的设想[J].中国种业,2002,(3):19.
    [158]WRI. Global biodiversity strategy [M]. USA,1992,32-35.
    [159]郑景生,吕蓓.PCR技术及实用方法[J].2003,1(3):381-394.
    [160]许绍斌,陶玉芬,杨昭庆,等.简单快速DNA银染和胶保存方法[J].遗传,2002,(24):335-336.
    [161]Zheng K L, Subudhi P K, Domingo J, et al. Rapid DNA isolation for marker assisted selection in rice breeding [J]. Rice Genet Newsl,1995,12:255-258
    [162]Jack Liu. PowerMarker v3.0 manual. http://www.powermarker.net.
    [163]Botstein D, White R L, Skolnick M, et al. Construction of genetic linkage map in man using restriction fragment length polymorphisms [J]. American Journal of Human Genetics,1980, 32:314-331.
    [164]Anderson J A, Churchill G A, Sutrique J E. Optimizing parental selection for genetic linkage maps [J]. Genome,1993.36:181-186.
    [165]Nei M. Analysis of gene diversity in subdivided populations [J]. Proceedings of the National Academy of Sciences of the United States of America,1973,70:3321-3323.
    [166]Rohlf F J. NTSYS-pc Numerical taxonomy and multivariate analysis system. Version 2.01 [M]. Setauket, New York:Exter Software,1998.
    [167]Nei M. Molecular Evolutionary Genetics [M]. New York:Columbia University Press,1987: 190-191.
    [168]Kimura M. Ohta T. Mutation and evolution at the molecular lever [J]. Genetics,1973,73: 19-35.
    [169]ISF:Guidelines for the handling of a dispute on essential derivation in lettuce [EB/OL].
    [170]http://www.worldseed.org/cms/medias/file/Rules/EssentialDerivation/Archive/Guidelines_f or_the_Handling_of_a_Dispute_on_Essential_Derivation_in_Lettuce_(En)_Archives_2008 0911.pdf.
    [171]ISF:Guidelines for the handling of a dispute on essential derivation in cotton [EB/OL]. http://www.worldseed.org/cms/medias/file/PositionPapers/OnIntellectualProperty/Archives/ Guidelines_for_the_Handling_of_a_Dispute_on_Essential_Derivation_in_Cotton_(En).pdf.
    [172]ISF:Guidelines for the handling of a dispute on essential derivation of maize lines[EB/OL].http://www.worldseed.org/cms/medias/file/PositionPapers/OnIntellectualProp erty/Archives/Guidelines_for_the_Handling_of_a_Dispute_on_Essential_Derivation_of_M aize_Lines_(En).pdf.
    [173]ISF:Guidelines for the handling of a dispute on essential derivation in Oilseed rape. http://www.worldseed.org/cms/medias/file/PositionPapers/OnlntellectualProperty/Archives/ Guidelines_for_the_Handling_of_a_Dispute_on_Essential_Derivation_in_Oilseed_Rape_(E n).pdf
    [174]刘莉.对植物新品种保护中实质性衍生品种的探讨[J].工作研究,2005,(10):9.
    [175]郭菁伦.依赖性派生玉米品种DNA指纹鉴定标准研究[J].华北农学报,2006,(1):48
    [176]Nandakumar N, Singh A K, Sharma R K, et al. Molecular fingerprinting of hybrids and assessment of genetic purity of hybrid seeds in rice using microsatellite markers [J]. Euphytica,2004,136:257-264.
    [177]从夕汉,李莉,滕斌,等.56个杂交水稻骨干亲本SSR指纹图谱的构建及遗传相似性分析[J].生物学杂志,2010,27(1):87-91.
    [178]陆永法,马荣荣,王晓燕,等.甬优系列杂交水稻SSR标记指纹图谱和籼粳属性[J].中国水稻科学,2007,21(4):443-446.
    [179]武文,邓启云,周丽洁,等.利用SSR分子标记构建Y58S及部分重要两系杂交水稻亲本的DNA指纹图谱[J].杂交水稻.2008,23(3):52-56.
    [180]高方远,陆贤军,周良强,等.香优1号DNA指纹分析及种子纯度鉴定[J].西南农业学报,2002,15(4):22-25.
    [181]戴剑.李华勇.丁奎敏,等.植物新品种DUS测试技术的现状与展望[J].种子,2007,26(9):44-47.
    [182]魏兴华,朱智伟.余汉勇.水稻新品种DUS测试技术[J].中国稻米,2004,(4):1 5-16.
    [183]王凤格,赵久然,戴景瑞,等.利用SSR标记进行玉米品种一致性检测研究[J].分子植物育种,2007,5(1):95-104.
    [184]张金渝,张建华,杨晓洪,等.玉米DUS测试标准品种的SSR分子指纹图谱的构建[J].玉米科学,2006,14(4):47-52.
    [185]陆光远,伍晓明,张冬晓,等.SSR标记分析国家油菜区试品种的特异性和一致性[J].中国农业科学,2008,41(1):32-42.
    [186]石海波,王立新,李宏博,等.利用SSR标记区别小麦品种种子混杂和SSR位点不纯的 研究[J].分子植物育种,2006,4(4):513-519.
    [187]工立新,季伟,李宏博,等.以DNA位点纯合率评价小麦品种的一致性和稳定性[J].作物学报,2009a,35(12):2197-2204.
    [188]王立新,常利芳,李宏博,等.小麦种子纯度的分子标记检测方法[J].麦类作物学报,2009b,29(1):1-8.
    [189]王立新,常利芳,李宏博,等.小麦区试品系DUS测试的分子标记[J].作物学报,2010,36(7):1114-1125.
    [190]张晗,姚凤霞,刘永杰,等.EST-SSR标记在冬小麦品种DUS测试中的应用[J].麦类作物学报,2010,30(5):801-806.
    [191]段艳凤,刘杰,卞春松,等.中国88个马铃薯审定品种SSR指纹图谱构建与遗传多样性分析[J].作物学报,2009,(8):1451-1457.
    [192]UPOV. General introduction to the examination of distinctness, uniformity and stability and the development of harmonized descriptions of new varieties of plants [M]. Geneva, Switzerland:UPOV,2002:1163-1188.
    [193]UPOV. Development of test guidelines [M]. Geneva, Switzerland:UPOV,2004:989-1011.
    [194]UPOV. Act of 1978 International Convention for the Protection of New Varieties of Plants [R/OL].(2009-09-01)[2011-01-21].http://www.upov.int/export/sites/upov/en/publications/co nventions/1978/pdf/actl978.
    [195]农业部植物新品种保护办公室.农业植物新品种保护公报:总第1-65期[R].北京:农业部植物新品种保护办公室,2005.
    [196]国家林业局植物新品种保护办公室.关于授权品种的公告[R/OL].(2009-12-31)[2-11-01-22].http://www.cnpvp.net/cnpvp/main/cn/view.asp?ar_id=3336&anclassid=4&ncla ssid=5.
    [197]李纪元,倪穗,李辛雷,等.Developing the international test guideline of distintness, uniformity and stability for Ornamental Camellia Varieties [J]. Proceeding of International Camellia Congress, Falmouth, Cornwall, England,2008:64-73.
    [198]陈亮,虞富莲,姚明哲,等.1国际植物新品种保护联盟茶树新品种特异性、一致性、稳定性测试指南的制定[J].中国农业科学,2008,41(8):2400-2406.
    [199]杨锦忠,郝建平,杜天庆,等.基于种子图像处理的大数目玉米品种形态识别[J].作物学报,2008(6):1069-1073.
    [200]周少川,王家生,李宏,等.我国水稻育种回顾与思考[J].中国稻米,2001,8(2):5-7.
    [201]黄明明.中国农业科学院作物科学研究所所长万建民:推动“经验育种”向“精确育种”发展《科学时报》(2009-10-12 B1区域周刊).
    [202]李睿.谭学林.水稻种质资源遗传多样性保护和利用研究进展[J].福建稻麦科技,2005, 23(1):33-35.
    [203]全国农业技术推广服务中心.2007年全国农作物主要品种推广情况统计表[R].2008.
    [204]全国农业技术推广服务中心.2008年全国农作物主要品种推广情况统计表[R].2009.
    [205]人民网.农业部副部长:创新育种技术做大做强种业[EB/OL].) http://nc.people.com.cn/ GB/11950120. html, [2010-06-23].
    [206]万宜珍.植物新品种保护与杂交水稻育种创新的思考[J].农业科技管理.2008,27(6):74-77.
    [207]滕海涛,吕波,赵久然,等.利用DNA指纹图谱辅助新品种保护的可能性[J].生物技术通报,2009,(1):1-6.
    [208]Tanksley S D, McCouch S R. Seed banks and molecular maps:unlocking genetic potential from the wild [J]. Science,1997,277:1063-1066.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700