用户名: 密码: 验证码:
柑橘转GFP、AP1和LFY基因植株群体的分子鉴定与基因表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转基因技术应用于改良农作物的特定性状,如耐除草剂、抗病性、抗虫性、抗环境胁迫、提高产量、改善品质等。还可以通过转基因植株超量或抑制特定基因的表达进行目的基因的功能验证。转基因植株能否广泛应用,其关键在于所转基因能否在遗传转化体内稳定整合和表达。本研究以转GFP、AP1、LFY柑橘为材料,分析外源基因的拷贝数、T-DNA整合、甲基化和外源基因表达之间的相关性;采用Real-time PCR在转基因桠柑中筛选单拷贝的转基因植株,以验证Real-time PCR在拷贝数分析上的可行性;分析转AP1和LFY柑橘的外源基因拷贝数和表达,研究早花转基因植株外源AP1或LFY及内源开花基因的表达。主要结果如下:
     1. Southern杂交分析118棵转基因植株外源基因的拷贝数。结果表明大部分转基因植株拷贝数为1-2个。转GFP基因8株冰糖橙中5株为多拷贝(拷贝数大于3),转AP1桠柑(43株)有超过一半植株为多拷贝;转GFP佛罗斯特脐橙、转AP1茶枝柑、转LFY改良橙与尾张有性杂种、转LFY冰糖橙的拷贝数均为1-2个;转GFP改良橙与尾张有性杂种和转AP1金柑各有一个株系为多拷贝,其它为1-2个拷贝。不同转基因柑橘株系中都有T-DNA整合缺失的出现,转AP1茶枝柑、转LFY冰糖橙各有一个株系的GUS基因缺失。
     2.转GFP柑橘荧光检测。转GFP基因佛罗斯特脐橙愈伤荧光稳定表达,在愈伤分化旺盛时绿色荧光表达较强。转GFP植株叶片荧光检测发现大部分转基因植株荧光正常表达,嫩叶荧光比老叶强;改良橙与尾张有性杂种有一个转基因株系荧光未检测到,即发生转基因沉默;一个株系的转基因冰糖橙荧光呈现斑驳化。
     3. Southern杂交和反向PCR分析转GFP柑橘的T-DNA整合情况。详细分析3个转GFP改良橙与尾张有性杂种株系,6个转GFP冰糖橙的T-DNA整合:在6棵多拷贝的转GFP植株中,4棵植株中有T-DNA正向重复的排列;3株转基因冰糖橙都有一个T-DNA正向重复,1株转基因沉默的改良橙与尾张有性杂种中发现至少两个T-DNA重复;进一步测序发现T-DNA重复的左右边界序列都有不同程度的缺失,而转基因的改良橙与尾张有性杂种的两个T-DNA重复中存在一个500 bp片段的缺失,缺失部分为Mos-pro和部分nptII序列。
     4.亚硫酸氢盐测序法分析转GFP柑橘的nptⅡ、GFP和CaMV35S启动子的甲基化程度。结果显示1-2个拷贝的转GFP柑橘外源基因和35S甲基化和质粒DNA甲基化程度类似;多拷贝转基因改良橙与尾张有性杂种其nptII序列有10%-20%的胞嘧啶甲基化,而该转基因植株的GFP和35S中胞嘧啶甲基化程度高达70%-90%,特别是CG和CNG类型的对称式的甲基化程度为90%。多拷贝转基因冰糖橙nptlI,GFP和CaMV 35S启动子序列的甲基化分别为10%-40%,20%-60%和60%-80%。
     5.转基因柑橘外源基因表达。Northern杂交和Real-time RT-PCR分析nptII和GFP基因的表达,不同拷贝之间nptII表达没有差异,GFP在大多数多拷贝植株表达较低,转基因沉默植株GFP表达非常低;转LFY的改良橙与尾张有性杂种和冰糖橙的外源基因表达与拷贝数也没有相关性。
     6.Real-time PCR在转AP1桠柑中筛选单拷贝植株。Real-time PCR分析结果表明43个转基因桠柑中有11株单拷贝,与Southern结果一致。Real-time PCR法检测的相对拷贝数与Southern杂交结果的相关系数分别为:AP1,0.7521;GUS,0.5856;nptlI,0.8222。
     7.转AP1或LFY柑橘开花情况。5株转AP1金柑植株中1株移栽温室11个月开花(段艳欣,2006),在随后两年均正常开花;另有2株第二年开花,随后一年也正常开花;第三年,一个转基因株系表现为比对照植株晚花,其它转化或未转化植株均开花。3个转LFY的改良橙与尾张有性杂种2个株系早花移栽温室一年后开花;8个转LFY冰糖橙1株早花移栽温室两年后开花;其它转化和未转化植株都没开花。
     8.外源开花基因和内源开花基因的表达。转AP1金柑的不同开花植株中外源AP1表达各有差异,部分开花植株的内源CiLFY上调表达,而内源CiAP1在开花植株中下调表达。在转LFY的冰糖橙和改良橙与尾张有性杂种中,早花植株的外源LFY表达相对较高,大部分转基因植株表现为内源CiAP1上调表达和CiLFY下调表达。早花转基因金柑可能与CiFT、CiLFY的上调表达和CiTFL1的下调表达有关,晚花与CiAP1和CiTFL1上调表达和CiFT的下调表达相关。转LFY的冰糖橙和改良橙与尾张有性杂种的早花转基因株系都表现为CiFT、CiWUS和CiTFL1下调表达。其它内源开花基因在转基因植株间没有规律性的变化。以上结果表明CiTFL1下调表达在调控转AP1或LFY柑橘开花时间上起着决定性的作用。
     本文还对外源基因拷贝数、T-DNA重复、启动子与外源基因甲基化对外源基因表达的影响,Real-time PCR分析拷贝数的可行性以及外源AP1和LFY与内源开花基因在调控花期中的相互作用进行了讨论。
Transgene technology could be applied to improve certain traits of crops such as herbicide, disease, insect or environmental stress-resistance, product yeild and quality improvement. Extensive application of transgenic plants depends on the integration of the exogenous gene into plant genome and its expression stability. In this study, GFP transgenic citrus plants were analyzed to characterize the correlation of exogenous gene expression with its copy number, the integration of T-DNA and methylation of transgene as well as its promoter. Real-time PCR was validated to be feasible on gene copy number analysis and applied to screen transgenic Ponkan(Citrus reticulata cv. Ponkan) plants of single copy. The transgene copy number and expression were analyzed in API or LFY transgenic citrus plants. Expression of exogenous API, LFY and endogenous flowering related genes were studied in early-flowing transgenic plants. The main results were listed as follows:
     1. Southern blot of 118 transgenic citrus to determine transgene copy number. Most transgenic plants got 1-2 copies of tansgene. Five of the eight GFP transgenic Bingtangcheng (C. sinensis cv. Bingtangcheng) had multiple copies (more than three) of exogenous gene; More than half of the API transgenic Ponkan (43 plants) had multiple copies of tansgene. The GFP transgenic Florest navel orange (C. sinensis cv. Florest), API transgenic Chazhigan tangerine, LFY transgenic GWZ (C. sinensis cv. GailiangchengxC. unshui), LFY transgenic Bingtangcheng all had copy number of 1-2. GFP transgenic GWZ and API transgenic 'Meiwa' kumquat(Fortunella crassifolia) each had one line with multiple copies of exogenous gene, while others had 1-2 copies. Truncated T-DNA inserts was observed in different transgenic citrus, absence of GUS was found in one line of API transgenic Chazhigan tangerine or LFY transgenic Bingtangcheng.
     2. GFP fluorescence detection of transgenic plants under stereomicroscope. The GFP expression was stable and bright in transgenic Florest navel orange calluses, brighter at activated differentiation state. GFP fluorescence was normally expressed in leaves of most transgenic plants; young leaves got stronger fluorescence than old ones. In one line of GFP transgenic GWZ, GFP fluorescence was not observed, indicating transgene silencing occured. One line of GFP transgenic Bingtangcheng showed mottled fluorescence.
     3 T-DNA integration analysis of GFP transgenic citrus was analyzed by Southern blot and inverse PCR. Detailed analysis of 3 GFP transgenic GWZ and 6 GFP transgenic Bingtangcheng revealed that four of the six GFP transgenic plants with multiple copies exhibited T-DNA direct repeats; each of three GFP transgenic Bingtangcheng had one T-DNA direct repeat, at least two T-DNA direct repeats were found in the GFP transgenic GWZ lines with multiple copies and transgene silencing. Truncated left border (LB) and right border (RB) was observed in T-DNA repeats by further sequencing. One of the two T-DNA repeats in GFP transgenic silencing GWZ was truncated 500 bp sequence, containing Nos-pro and part nptⅡ.
     4 Methylation of nptⅡ, GFP and 35S promoter in GFP transgenic citrus was analyzed by bisulfite sequencing. The methylation with GFP, nptⅡand 35S of 1-2 copies transgenic plants was similar with plasmid.10%-20% cytosines methylation of nptⅡwas found in the ransgenic GWZ line with multiple copies, while for GFP and 35S promoter were 70%-90%, in which symmetrical methylation of CG and CNG reached 90%. Cytosines methylation degree of nptⅡin multiple copies transgenic Bingtangcheng line was 10%-40%, GFP and 35S promoter in these lines were 20%-60% and 60%-80%, respectively.
     5. Expression of exogenous genes in transgenic citrus. Expression of GFP and nptⅡanalysis by Northern blot and Real-time RT-PCR showed no difference on nptⅡexpression among transgenic plants with different copy transgene numbers. GFP was low expressed in most of the multiple copies transgenic plants. Especially, GFP showed extremely low transcriptional level in transgene silenced plants. There was no correlation between the expression of transgene and copy number in LFY transgenic GWZ or Bingtangcheng.
     6 Real-time PCR was applied to screen transgenic Ponkan with single copy. The result indicated that 11 of 43 AP1 transgenic Ponkan had single copy, consistent with the result of Southern blot. The correlation coefficient between results of Real-time PCR and Southern blot of API, GUS and nptⅡwas 0.7521,0.5856 and 0.8222, respectively.
     7 Flowering of AP1 or LFY transgenic citrusplants also were investigated. One of the five AP1 transgenic 'Meiwa' kumquat started flowering 11 months after transfer to greenhouse (Duan,2006) and continued to flower in the next two years, other two transgenic plants and three of seven non-transformed plants flowered after 23 months and continued to flower in the next year, In the third year, one transgenic plants delayed flowering when other transgenic or no transgenic plants all flowered. Two of the three LFY transgenic GWZ started flowering one year after transfer to greenhouse. One of the eight LFY transgenic Bingtangcheng was early flowering after transfer to greenhouse two years. Other transgenic or non-transgenic plants did not flower.
     8 Expression of exogenous AP1, LFY and endogenous flowering related genes. The expression of exogenous AP1 was different among AP1 transgenic 'Meiwa' kumquat which flowered. CiLFY was up-regulated in some of the flowering transgenic plants, while CiAP1 was down-regulated. In LFY transgenic GWZ and Bingtangcheng, the expression of exogenous LFY was higher in early flowering transgenic plants. Endogenous CiAPl up-regulation and CiLFY down-regulation were found in most LFY transgenic plants. Endogenous CiLFY and CiFT up-regulation, CiTFL1 down-regulation may be related to early flowering of AP1 transgenic 'Meiwa' kumquat. CiAP1 and CiTFL1 up-regulation, CiFT down-regulation may be assosiated with delay flowering of AP1 transgenic 'Meiwa' kumquat. CiFT, CiWUS and CiTFL1 were down-regulated in all early flowering LFY transgenic GWZ and Bingtangcheng. The results indicated that down-regulated of CiTFL1 play a decisive role in flowering time regulation of transgenic AP1 or LFY citrus.
     In this study, impact on transgene expression by exogenous gene copy number, T-DNA repeat, methylation of tansgene and its promoter was explored. Additionaly, feasibility of Real-time PCR on gene copy number analysis, the interaction of AP1 or LFY and endogenous flowering genes in controlling juvenile phase were discussed.
引文
1.程运江.柑橘体细胞胞质遗传及叶绿体SSR引物开发研究.[博士学位论文].武汉:华中农业大学图书馆,2004
    2.段艳欣.根癌农杆菌介导的柑橘转化体系优化与转LFY, API基因植株的培育.[博士学位论文].武汉:华中农业大学图书馆,2006
    3.李鼎立.柑橘遗传转化受体系统优化与抗溃疡病转基因植株培育.[博士学位论文].武汉:华中农业大学图书馆,2008
    4.刘歆.绿色荧光蛋白基因(GFP)转化柑橘及植株再生.[硕士学位论文].武汉:华中农业大学图书馆,2005
    5.南楠,曾凡锁,詹亚光.植物DNA甲基化及其研究策略.植物学通报,2008,25(1):102-111
    6.彭秀玲,袁汉英,谢毅,王洪海.基因工程实验技术,第二版,长沙,湖南科学技术出版社,1997
    7.石玮,李东栋,邓秀新,伊华林.根癌农杆菌介导绿色荧光蛋白基因转化印度酸橘的研究.园艺学报,2002,29(2):109-112
    8.谭彬.早实枳模式转化体系建立及基因工程创造柑橘无核新种质.[博士学位论文].武汉:华中农业大学图书馆,2009
    9. Adrian J, Torti S, Turck F. From decision to commitment:the molecular memory of flowering. Mol Plant,2009,4:628-642
    10. Agrawal P K, Kohli A, Twyman R M, Christou P. Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol Breeding,2005,16:247-260
    11. Ahn J H, Miller D, WinterV J, Banfield M J, Lee J H, Yoo S Y, Henz S R, Brady R L, Weigel D. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J,2006,25:605-614
    12. Ahuja M R. Genetic engineering in forest trees:state of the art and future perspectives. Molecular biology of woody plants,2000,1:31-49
    13. Ahuja M R. Transgene stability and dispersal in forest trees. Trees,2009,23: 1125-1135
    14. Anand A,Trick H N, Gill B S, Muthukrishnan S. Stable transgene expression and random gene silencing in wheat. Plant Biotechnology Journal,2003,1:241-251
    15. Andrew F. RNA-triggered gene silencing. Trends in Genetics,1999,15(9):358-363
    16. Araki T:Transition from vegetative to reproductive phase. Curr Opin Plant Biol, 2001,4:63-68
    17. Assaad F F, Tucker K L, Singer E R. Epigenetic repeat induced gene silencing (RIGS) in Arabiodopsis. Plant Mol Biol,1993,22:1067-1085
    18. Ayalew M. Genomics using transgenic plants. In:C.N. Stewart Jr, Editor, Transgenic Plants:Current Innovations and Future Trends, Horizon Scientific Press,2003, 265-291
    19. Bhat S R, Srinivasan S. Molecular and genetic analyses of transgenic plants: considerations and approaches. Plant Sci,2002,163:673-681
    20. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev,2002,16 (1): 6-22
    21. Blazquez M A, Ferrandiz C, Madueno F, Parcy F. How floral meristems are built. Plant Mol Biol,2006,60:855-870
    22. Bowman J L,Alvarez J, Weigel D, Meyerowitz E M, Smyth D R. Control of flower development in Arabidopsis thaliana by APETALA 1 and interacting genes. Development,1993,119 (3):721-743
    23. Bradley D, Vincent C, Carpenter R, Coen E. Pathways for inflorescence and floral induction in Antirrhimun. Development,1996,122:1535-1544
    24. Brodersen P and Voinnet O. The diversity of RNA silencing pathways in plants. Trends Genet,2006,22:269-278
    25. Brunner A M, Li J, Di Fazio S P, Shevchenko O, Montgomery B E, Mohamed R, Wei H, Ma C, Elias A A, Van Wormer K and Strauss S H. Genetic containment of forest plantations. Tree Genetic Genome,2007,3:75-100
    26. Bubner B, Baldwin I T. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep,2004,23:263-271
    27. Buck S D, Podevin N, Nolf J, Jacobs A and Depicker A. The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J,2009,60:134-145
    28. Butaye K M J, Cammue B P A, Delaure S L and De Bolle M F C. Approaches to minimize variation of transgene expression in plants. Mol Breeding,2005,16:79-91
    29. Callaway A S, Abranches R. Scroggs J, Allen G C. Thompson W F. High-throughput transgene copy number estimation by competitive PCR. Plant Mol Biol Rep,2002, 20:265-277
    30. Carmona M J, Calonje M and Martinez-Zapater M J. The FT/TFL1 gene family in grapevine. Plant Mol Biol,2007,63:637-650
    31. Carthew R W and Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs. Cell,2009,136:642-655
    32. Cervera M, Navarro L and Pena L.Gene stacking in 1-year-cycling APETALA1 citrus plants for a rapid evaluation of transgenic traits in reproductive tissues. Journal Biotechnol,2009,140:278-282
    33. Cervera M, Pina J A, Juarez J, Navarro L, Pena L. A broad exploration of a transgenic population of citrus:stability of gene expression and phenotype. Theor Appl Genet,2000,100:670-677
    34. Chawla R, Ariza Nieto M, Wilson A J, Moore S K, Srivastava V. Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J,2006,4: 209-218
    35. Cheng Y J, Guo W W, Yi H L, Pang X M, and Deng X X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep,2003,21: 177a-177g
    36. Conti L and Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis Architecture. Plant Cell,2007,19:767-778
    37. Crete P, Leuenberger S, Iglesias V A, Suarez V, Schob H, Holtorf H, van Eeden S, Meins F. Graft transmission of induced spontaneous posttranscriptional silencing of chitinase genes. Plant J,2001,28 (5):493-501
    38. Cutler S R, Ehrhardt D W, Griffitts J S, Somerville C R. Random GFP-cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc Natl Acad Sci U S A,2000,97:3718-3723
    39. Das P, Ito T, Wellmer F, Vernoux T, Dedieu A, Traas J, Meyerowitz E M.Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development,2009,136:1605-1611
    40. Day C D, Lee E, Kobayashi J, Holappa L D, Albert H and Ow D W. Transgene integration into the same chromosome location can produce alleles that express at a predictable level or alleles that are differentially silenced. Gene Dev,2000,14: 2869-2880
    41. De Bolle M F C, Butaye K M J, Coucke W J W, Goderis I J W M, Wouters P F J, van Boxel N, Broekaert W F and Cammue B P A. Analysis of the influence of promoter elements and a matrix attachment region on the inter-individual variation of transgene expression in populations of Arabidopsis thaliana. Plant Sci,2003,165: 169-179
    42. Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P, Pena L. Efficient production of transgenic citrusplants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep,2000,19:427-433
    43. Dominguez A, Cervera M, Perez R M, Romero J, Fagoaga C, Cubero J, Lopez M M, Juarez J A, Navarro L, Pena L. Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breeding,2004,14:171-183
    44. Dominguez A, Fagoaga C, Navarro L, Moreno P, Pena L. Regeneration of transgenic citrus plants under non selective conditions results in high-frequency recovery of plants with silenced transgenes. Mol Genet Genomics,2002,267:544-556
    45. Dornelas M C, Camargo R L B, Figueiredo L H M, Takita M A.A genetic framework for flowering-time pathways in Citrus spp. Genet Mol Biol. 2007,30(3) (suppl): 769-779
    46. Duan Y X, Guo W W, Meng H J, Tao N G, Li D D, Deng X X. High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis. Biol Plant,2007,51:212-216
    47. Duan Y X, Fan J, Guo W W. Regeneration and characterization of transgenic kumquat plants containing the Arabidopsis APETALA1 gene. Plant Cell Tiss Org, 2010,100:273-281
    48. Ellul P, Angosto T, Garcia-Sogo B, Garcia-Hurtado N, Martin-Trillo M, Salinas M, Moreno V, Lozano R, Martinez-Zapater J M. Expression of Arabidopsis APETALA1 in tomato reduces its vegetative cycle without affecting plant production. Mol Breed, 2004,13:155-163
    49. Elmayan T and Vaucheret H. Expression of single copies of a strongly expressed 35S transgene can be silenced posttranscriptionally. Plant J,1996,9:787-797
    50. Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M and Sopanen T. BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol Plant,2007,131:149-158
    51. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Trans Res,2005,14:703-712
    52. Esumi T, Tao R and Yonemori K.Expression Analysis of the LFY and TFL1 Homologs in Floral Buds of Japanese Pear(Pyrus pyrifolia Nakai) and Quince (Cydonia oblonga Mill.). J Japan Soc Hort Sci,2008,77 (2):128-136
    53. Ewald D, Hu J, Yang M. Transgenic forest trees in China. Tree transgenes is:recent developments.2006,25-45
    54. Fagoaga C, Lopez C, Hermoso de Mendoza A, Moreno P, Navarro L, Flores R, Pena L. Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol,2006,60:153-165
    55. Febres V J, Lee R F and Moore G A. Transgenic resistance to Citrus tristeza virus in grapefruit. Plant Cell Rep,2008,27:93-104
    56. Fischer R, Stoger E, Schillberg S, Christou P and Twyman R M. Plant-based production of biopharmaceuticals. Curr Opin Plant Biol,2004,7:152-158
    57. Flachowsky H, Hattasch C, Hofer M, Peil A, Hanke M-V. Ov erexpression of LEAFY in apple leads to a columnar phenotype with shorter internodes. Planta,2010,231: 251-263
    58. Flachowsky H, Hanke MV, Peil A, Strauss S H, Fladung M. A review on transgenic approaches to accelerate breeding of woody plants. Plant Breeding,2009, 128:217-226
    59. Flachowsky H, Peil A, Sopanen T, Elo A and Hanke V. Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early flowering in apple (Malus domestica Borkh.).Plant Breeding,2007,126:137-145
    60. Fladung M,1999. Gene stability in transgenic aspen (Populus). I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet,260:574-581
    61. Fojtova M, Bleys, A, Bedrichova J, Van Houdt H, Kfizova K, Depicker A, Kovarik A The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res,2006,34:2280-2293
    62. Forsbach A, Schubert D, Lechtenberg B, Gils M and Schmidt R. Transgene integration, organization and interaction in plants. Plant Mol Biol,2003,52:247-258
    63. Francis K E and Spiker S. Identification of Arabidopsis thaliana transformants without selection reveals a high occurrence of silenced T-DNA integrations. Plant J, 2005,41:464-477
    64. Freeman W M, Walker S J, Vrana K E. Quantitative RT-PCR:pitfalls and potential. Biotechniques,1999,26:112-125
    65. Fu X, Kohli A, Twyman R M, Christou P. Alternative silencing effects involve distinct types of non-spreading cytosine methylation at a three-gene single-copy transgenic locus in rice. Mol Gen Genet,2000,263:106-118
    66. Gambino G, Chitarra W, Maghuly F, Laimer M, Boccacci P, Marinoni DT, Gribaudo I. Characterization of T-DNA insertions in transgenic grapevines obtained by Agrobacterium-mediated transformation. Mol Breeding,2009,24:305-320
    67. Gambino G, Perrone I, Carra A, Chitarra W, Boccacci P, Torello Marinoni D, Barberis M, Maghuly F, Laimer M, Gribaudo I. Transgene silencing in grapevines transformed with GFLV resistance genes:analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res,2010,19(1):17-27
    68. Gasciolli V, Mallory A C, Bartel D P and Vaucheret H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol,2005,15:1494-1500
    69. Ghorbel R, JuaHrez J, Navarro L, Pena L. Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet,1999,99:350-358
    70. Goll M G, Anderson R, Stainier D Y R, Spradling A C, Halpern M E. Transcriptional silencing and reactivation in transgenic Zebrafish. Genetics,2009,182:747-755
    71. Gruntman E, Qi YJ, Slotkin RK, Roeder T, Martienssen RA, Sachidanandam R. Kismeth:Analyzer of plant methylation states through bisulfite sequencing. BMC Bioinformatics,2008,9:371
    72. Gyorgy H, Phillip D Z. RNAi:nature abhors a double-strand. Curr Opin Genet Dev, 2002,12(2):225-232.
    73. Halfhill M D, Millwood R J, Weissinger A K, Warwick S I, Stewart C N Jr. Additive transgene expression and genetic introgression in multiple GFP transgenic crop x weed hybrid generations, Theor Appl Genet,2003,107:1533-1540
    74. Halfhill MD, Millwood R J, Rufty T W, Weissinger A K, Stewart C N. Spatial and temporal patterns of green fluorescent protein (GFP) fluorescence during leaf canopy development in transgenic oilseed rape, Brassica napus L. Plant Cell Rep,2003,22: 338-343
    75. Hamilton A J, Voinnet O, Chappell L, Baulcombe D C. Two classes of short interfering RNA in RNA silencing. EMBO J,2002,21(17):4671-4679
    76. Hanhineva K J and Karenlampi S O. Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR.BMC Biotechnology,2007,7:11
    77. Hanke M-V, Flachowsky H, Peil A, and Hattasch C. No flower no fruit-genetic potentials to trigger flowering in fruit trees. Gene Genome Genomic,2007,1:1-20
    78. Haseloff J, Kirby R S, Douglas C P and Hodge S. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci,1997,94:2122-2127
    79. Hawkins S, Leple J C, Cornu D, Jouanin L and Pilate G. Stability of transgene expression in poplar:a model forest tree species. Ann For Sci,2003,60:427-438
    80. Hayama R and Coupland G. Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol,2003,6:13-19
    81. Hendricks C A and Engelward B P.'Recombomice':the past, present and future of recombination-detection in mice, DNA Repair (Amst),2004,3:1255-1261
    82. Hetzl J, Foerster AM, Raidl G, Scheid OM. CyMATE:a new tool for methylation analysis of plant genomic DNA after bisulfite sequencing. Plant J,2007,51:526-536
    83. Hily J M, Scorza R, Malinowsk T, Zawadzka B and Ravelonandro M. Stability of gene silencing-based resistance to Plum pox virus in transgenic plum(Prunus domestica L.) under field conditions. Transgenic Res,2004,13:427-436
    84. Hily J M, Scorza R, Webb K and Ravelonandro M. Accumulation of the Long Class of siRNA Is Associated with Resistance to Plum pox virus in a Transgenic Woody Perennial Plum Tree. Mol. Plant Microbe In,2005,18:794-799
    85. Hily J Mi, Liu Z R.A simple and sensitive high-throughput GFP screening in woody and herbaceous plants. Plant Cell Rep,2009,28:493-501
    86. Himber C, Dunoyer P, Moissiard G, Ritzenthal C, Voinnet O. Transitivity-dependent and -independent cell-to-cellmovement of RNA silencing. EMBD J,2003,22(17): 4523-4533
    87. Hobbs S L A, Warkentin T D, DeLong C M O. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol,1993, 21:17-26
    88. Hohn B. and Puchta H. Some like it sticky:targeting of the rice gene WAXY. Trends Plant Sci,2003,8:51-53
    89. Hsu C Y, LiuY, Luthe D S, and Yuceera C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell,2006,18:1846-1861
    90. Igasaki T, Watanabe Y, Nishiguchi M and Kotoda N.The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in lombardy poplar. Plant Cell Physiol,2008,49(3): 291-300
    91. Ingham D J, Beer S, Money S, Hansen G. Quantitative realtime PCR assay for determining transgene copy number in transformed plants. Biotechniques,2001,31: 132-140
    92. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, and Yano M, Shimamoto K. Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev,2002,16:2006-2020
    93. Jaeger K E and Wigge P A. FT protein acts as a long-range signal in Arabidopsis. Curr Biol,2007,17:1050-1054
    94. James C. Global status of commercialized Biotech/GM crops 2008. The international service for the acquisition of agri-biotech applications.2008, Ithaca, NY. http://www.isaaa.org
    95. Jiang L, Wang J, Liu Z, Wang L, Zhang F, Liu G C, Zhong Q. Silencing induced by inverted repeat constructs in protoplasts of Nicotiana benthamiana. Plant Cell Tiss Org,2010,100:139-148
    96. Johansen L K and Carrington J C. Silencing on the spot. Induction and supression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol,2001,126:930-938
    97. Jung C and. Muller A E. Flowering time control and applications in plant breeding. Trends Plant Sci,2009,14:563-573
    98. Kalantidis K, Tsagris M, Tabler M. Spontaneous short-range silencing of a GFP transgene in Nicotiana benthamiana is possibly mediated by small quantities of siRNA that do not trigger systemic silencing. Plant J,2006,45:1006-1016
    99. Kardailsky I, Shukla V K, Ahn J H, Dagenais N, Christensen S K, Nguyen J T, Chory J, Harrison M J, and Weigel D. Activation tagging of the floral inducer FT. Science, 1999,286,1962-1965
    100.Kelly A J, Bonnlander M B and Meeks-Wanger D R. NFL, the tabacoo homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell,1995,7:225-234
    101.Kim J H, Woo J G, Kim K O and Sung S K. Agrobacterium-mediated transformation of Fuji apple using MdAPl-likel Gene. Abstracts of the 27th International Horticultural Congress & Exhibition,2006,219-220. ISHS, Seoul, Korea.
    102.Klahre U, Crete P, Leuenberger S A, Iglesias V A, Meins F J. High molecular weight RNA and small interfering RNAs induce systemic post-transcriptional gene silencing in plants. Proc Natl Acad Sci USA,2002,99(18):11981-11986
    103.Klimaszewska K, Lachance D, Bernier-Cardou M, Rutledge R G. Transgene integration patterns and expression levels in transgenic tissue lines of Picea mariana, P. glauca and P. abies. Plant Cell Rep,2003,21:1080-1087
    104.Kobayashi K and Zambryski P. RNA silencing and its cell-to-cell spread during Arabidopsis embryogenesis. Plant J,2007,50:597-604
    105.Kobayashi Y, Kaya H, Goto K, Iwabuchi M, and Araki T. A pair of related genes with antagonistic roles in mediating flowering signals. Science,1999,286: 1960-1962
    106.Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol,2004,55:521-535
    107.Kooter J M, Matzke M A, Meyer P. Listening to the silent genes:transgene silencing, gene regulation and pathogen control. Trends Plant Sci,1999,4:340-347
    108.Kotake T, Takada S, Nakahigashi K, Ohto M, Goto K. Arabidopsis Terminal Flower 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS to regulate flowering time and several floral homeotic genes. Plant Cell Physiol,2003,44 (6):555-564
    109.Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Amer Soc Hort Sci,2006, 131(1):74-81
    110.Kotoda N, Wada M, Kusaba S, Kano-Murrakami Y, Masuda T, Soejima J. Ovcrexpression of MdMADS5, an APETALAI-like gene of apple, causes early flowering in transgenic Arabidopsis. Plant Sci,2002,162 (5):679-687
    111.Kotoda N, Wada M, Masuda T and Soejima J. The breaktrough in the reduction of juvenile phase in apple using transgenic approaches. Acta Hortic,2003,625:337-343
    112.Kramer E M and Hall J C. Evolutionary dynamics of genes controlling floral development. Curr Opin Plant Bio,2005,8:13-18
    113.Krayer von Krauss M P, Kaiser M, Almaas V, van der Sluijs J, Kloprogge P. Diagnosing and prioritizing uncertainties according to their relevance for policy:The case of transgene silencing. Sci Total Environ,2008,390:23-34
    114.Kundu J K, Hily M J, Ravelonandro M and Scorza R. Role of the 25-26 nt siRNA in the resistance of transgenic Prunus domestica graft inoculated with plum pox virus. Virus Genes,2008,36:215-220
    115.Kumar S and Fladung M. Gene stability in transgenic aspen (Populus). Ⅱ. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta, 2001,213:731-740
    116.Kumar S and Fladung M. Transgene integration in aspen:structures of integration sites and mechanism of T-DNA integration. The Plant Journal,2002,31(4):543-551
    117.Kumar S and Fladung M. Transgene repeats in aspen:molecular characterisation suggests simultaneous integrationof independent T-DNAs into receptive hotspots in the host genome. Mol Gen Genet,2000,264:20-28
    118.Kusaba M. RNA interference in crop plants. Curr Opin Biotech,2004,15:139-143
    119.Lanfranco L. Engineering crops, a deserving venture. Riv.Biol,2003,96:31-54
    120.Lange M, Vincze E, Moller M G, Holm P B. Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation. Plant Cell Rep,2006,25(8):815-820
    121.Lechtenberg B, Schubert D, Forsbach A, Gils M, Schmidt R. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant J,2003,34:507-517
    122.Lee H, Suh S-S, Park E, Cho E, Ahn J H, Kim S-G, Lee J S, Kwon Y M, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev,2000,14:2366-2376
    123.Lee J, Oh M, Park H and Lee I. SOCl translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J,2008,55:832-843
    124.Leibbrandt N B and Snyman S J. Stability of gene expression and agronomic performance of a transgenic herbicide-resistant sugarcane line in South Africa. Crop Sci,2003,43:671-677
    125.Li J, Brunner A M, Meilan R, Strauss SH. Matrix attachment region elements have small and variable effects on transgene expression and stability in field-grown Populus. Plant Biotech J,2008,6:887-896
    126.Li J Y, Brunner A M, Meilan R, Strauss S H. Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol, 2009,29(2):299-312
    127.Liu Q, Xu J, Liu Y Z, Zhao X L, Deng X X, Guo L L and Gu J Q. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit(Citrus sinensis L. Osbeck). J Exp Bot,2007,58:4161-4171
    128.Livak K J, Schmittgen T D. Analysis of relative gene expressiondata using real-time quantitative PCR and the 2-ddCt method. Methods,2001,25:402-408
    129.Liljegren S J, Stafson-Brown C, Pinyopich A, Ditta G S, Yanofsky M F. Interactions among APEATALA1, LEAFY and TERMINAL FLOWER1 specify meristem fate. Plant Cell,1999,11:1007-1018
    130.Lloyd A. Vector construction for gene overexpression asa tool to elucidate gene function. In:Grotewold E. (ed.), Methods in Molecular Biology-Volume 236, Plant FunctionalGenomics. Humana Press, Totowa,2003,329-344
    131.Long J Z, Lackan C S, Hadjantonakis A K. Genetic and spectrally distinct in vivo imaging:embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnol,2005,5:20
    132.Lopez C, Cervera M, Fagoaga C, Moreno P, Navarro L, Flores R and Pena L. Accumulation of transgene-derived siRNAs is not sufficient for RNAi-mediated protection against Citrus tristeza virus in transgenic Mexican lime. Mol Plant Pathology,2010,11(1):33-41
    133.Maghuly F, Machado A C, Leopold S, Khan M A, Katinger H and Laimer M. Long-term stability of marker gene expression in Prunus subhirtella:a model fruit tree species. J Biotechnol,2007,127:310-321
    134.Mallory A C, Ely L, Smith T H, Marathe R, Anandalakshmi R, Fagard M, Vaucheret H, Pruss G, Bowman L and Vance V B. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. Plant Cell,2001,13:571-583
    135.Maqbool S B and Christou P. Multiple traits of agronomic importance in transgenic indica rice plants:analysis of transgene integration patterns, expression levels and stability. Mol Breeding,1999,5:471-480
    136.Mason G, Provero P, Varia A M, Acotto G P. Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC Biotechnol,2003,2:20
    137.Matsuda N, Ikeda K, Kurosaka M, Isuzugawa K, Endo T, Omura M and Takashina T. In vitro flowering on transgenic pears (Pyrus communis L.) expressing CiFT, a Citrus ortholog of the Arabidopsis FT gene. Abstract Book of the 3rd Intl. Rosaceae Genomics Conf.,2006,45. ISHS, Napier, New Zealand
    138.Mayer K F X, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998,95:805-815
    139.Mette M F, Aufsatz W, van der Winden J, Matzke M A, Matzke A J. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J, 2000,19:5194-5201
    140.Meyer P. Stabilities and instabilities in transgene expression. Transgenic plant research. Harwood Academic, Amsterdam,1998,263-275
    141. Meyer P. Transcriptional transgene silencing and chromatin components. Plant Mol Biol,2000,43:221-234
    142.Mishiba K, Nishihara M, Nakatsuka T, Abe Y, Hirano H, Yokoi T, Kikuchi A, Yamamura S. Consistent transcriptional silencing of 35S-driven transgenes in gentian. Plant J,2005,44:541-556
    143.Mocz G. Fluorescent proteins and their use in marine biosciences, biotechnology and proteomics. Marine Biotechnol,2007,9:305-328
    144.Murashige T and Tucker D P H. Growth factor requirements of citrus tissue culture. Proc 1st Int Citrus Symp,1969,3:1155-1161
    145.Muskens MW, Vissers AP, Mol JN, Kooter JM. Role of inverted DNA repeats in transcriptional and posttranscriptional gene silencing. Plant Mol Biol.2000,43: 243-260
    146.Napoli C, Lemieux C, Jorgensen R A. Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell,1990,2(4):279-289
    147.Nazmul-Haque A K M, Tanaka Y, Sonoda S, Nishiguchi M. Analysis of transitive RNA silencing after grafting in transgenic plants with the coat protein gene of Sweet potato feathery mottle virus. Plant Mol Biol,2007,63:35-47
    148.Nazmul-Haque A K M, Yamaoka N. Nishiguchi M. Cytosine methylation is associated with RNA silencing in silenced plants but not with systemic and transitive RNA silencing through grafting. Gene,2007,96:321-331
    149.Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Kobayashi Y, Araki T, Omura M. Transcriptional changes in CiFT-introduced transgenic trifoliate orange (Poncirus trifoliata L. Raf.). Tree Physiol,2010,30(3):431-439
    150.Okano Y, Miki D, and Shimamoto K. Small interfering RNA (siRNA) targeting of endogenous promoters induces DNA methylation, but not necessarily gene silencing, in rice. Plant Jl,2008,53:65-77
    151. Omar A A and Grosser J W. Comparison of endoplasmic reticulum targeted and non-targeted cytoplasmic GFP as a selectable marker in citrus protoplast transformation. Plant Sci,2008,174:131-139
    152. Omar A A, Dekkers M G H, Graham J H and Grosser J W. Estimation of Transgene Copy number in transformed citrus plants by quantitative multiplex real-time PCR. Biotechnol Prog,2008,24:1241-1248
    153.Ow D W. Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol,2002,48:183-200
    154.Palauqui J C, Elmayan T, De Borne F D, Crete, P, Charles C and Vaucheret H. Frequencies, timing, and spatial patterns of co-suppression of nitrate reductase and nitrite reductase in transgenic tobacco plants. Plant Physiol,1996,112:1447-1456
    155.Pena L, Martin-Trillo M, Juarez J, Pina J A, Navarro L, Martinez-Zapater J M. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nature Biotech,2001,19:263-267
    156.Perera M R and Jones M G. K. Expression of the peroxidase gene promoter (Schpx6b) from Stylosanthes humilis in transgenic plants during insect attack, Entomol Exp Appl, 2004,111:165-171
    157.Perez-Hernandez J B, Swennen R and Sagi L. Number and accuracy of T-DNA insertions in transgenic banana (Musa spp.) plants characterized by an improved anchored PCR technique. Transgenic Res,2006,15:139-150
    158.Petri C and Burgos L. Transformation of fruit trees:Useful breeding tool or continued future prospect? Transgenic Res,2005,14:15-26
    159.Pillai M M,Venkataraman G M, Kosak S, Torok-Storb B. Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR:segregating multipleintegrant founder lines and determining zygosity. Transgenic Res,2008, 17(4):749-754
    160.Pillitteri L J, Lovatt C J and Walling L L. Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck'Washington'. J Am Soc Hortic Sci,2004,129:846-856
    161.Parcy F, Nilsson O, Busch M A, Lee I, Weigel D. A genetic framework for floral patterning. Nature,1998,395:561-566
    162.Raggi C C, Bagnoni M L, Tonini G P, Maggi M. Vona G, Pinzani P, Mazzocco K, De Bernardi B, Pazzagli M, Orlando C. Real-time quantitative PCR for the measurement of MYCN amplification in human neuroblastoma with the TaqMan detection system. Clin Chem,1999,45:1918-1924
    163.Rakosy-Tican E, Aurori C M, Dijkstra C, Thieme R, Aurori A, Davey M R. The usefulness of the gfp reporter gene for monitoring Agrobacterium-mediated transformation of potato dihaploid and tetraploid genotypes. Plant Cell Rep,2007, 26(5):661-671
    164.Ratcliffe O J, Amaya 1, Vincent C A, Rothstein S, Carpenter R, Coen E S, Bradley D J. A common mechanism controls the life cycle and architecture of plants. Development,1998,125:1609-1615
    165.Ratcliffe O J, Brasley D J, Coen E S. Separation of shoot and floral identity in Arabidopsis. Development,1999,126:1109-1120
    166.Reddy M S S, Dinkins R D, Collins G B. Gene silencing in transgenic soybean plants transformed via particle bombardment. Plant Cell Rep,2003,21:676-683
    167.Robinson J K, Mueller R, Filippone L. New molecular beacon technology. Am Lab, 2000,32:30-34
    168.Rottmann W H, Meilan R, Sheppard L A, Brunner A M, Sakinner J S, Ma C, Cheng S, Jouanin L, Pilate G, Strauss S H. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J,2000,22 (3):235-245
    169.Sansebastiano G P D, Renna L, Gigante M, De Caroli M, Piro G and Dalessandro G. Green fluorescent protein reveals variability in vacuoles of three plant species. Biologia Plantarum,2007,51(1):49-55
    170. Schubert D, Lechtenberg B, Forsbach A, Gils M, Bahadur S, and Schmidt R. Silencing in Arabidopsis T-DNA transformants:the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell,2004,16: 2561-2572
    171.Scorza R, Callahan A, Levy L, Damsteegt V, Webb Kand and Ravelonandro M. Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res,2001,10: 201-209
    172.Shiokawa T, Yamada S, Futamura N, Osanai K, Murasugi D, Shinohara K, Kawai S, Morohoshi N, Katayama Y and Kajita S. Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Physiol,2008,28:21-28
    173.Sijen T, Vijn I, Rebocho A, van Blokland R, Roelofs D, Mol J N M, Kooter J M. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr Biol,2001,11:436-440
    174. Simpson G G, Dean C. Arabidopsis, the Rosetta stone of flowering time? Science 2002,296:285-289
    175.Singh S and Rajam M V. Citrus biotechnology:Achievements, limitations and future directions. Physiol Mol Biol Plants,2009,15(1):3-22
    176.Skarn M, Eike M C, Meza T J, Mercy I S, Jakobsen K S, Aalen R B. An inverted repeat transgene with a structure that cannot generate double-stranded RNA, suffers silencing independent of DNA methylation. Transgenic Res,2006,15:489-500
    177. Song P, Cai C Q, Skokut M, Kosegi B D, Petolino J F. Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS-derived transgenic maize. Plant Cell Rep,2002,20:948-954
    178.Sonoda S, Nishiguchi M. Graft transmission of posttranscriptional gene silencing: target specificity for RNA degradation is transmissible between silenced and non-silenced plants, but not between silenced plants. Plant J,2000,21(1):1-8
    179. Southern E (2006) Southern blotting. Nat Protoc 1:518-525
    180.Sreekantan L and Thomas M R. VvFT and VvMADS8, the grapevine homologues of the floral integrators FT and SOCl, have unique expression patterns in grapevine and hasten flowering in Arabidopsis. Functional Plant Biology,2006,33:1129-1139
    181.Srivastava V, Ariza-Nieto M and Wilson A J. Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J,2004,2: 169-179
    182.Stam M, Mol J N M, Kooter J M. The silence of genes in transgenic plants. Ann Bot, 1997,79:3-12
    183.Stewart C N Jr. The utility of green fluorescent protein in transgenic plants. Plant Cell Rep,2001,20:376-382.
    184. Stewart C N Jr. Monitoring the presence and expression of transgenes in living plants. TRENDS in Plant Sci,2005,10(8):390-396
    185.Sunilkumar G and Rathore K S. Transgenic cotton:factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breeding,2001,8: 37-52
    186.Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore K S. Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol,2002,50:463-474
    187.Svensson A S, Johnsson F I, Moller I M, Rasmusson A G. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves. FEBS Lett,2002,517: 79-82
    188.Tan B, Li D L, Xu S X, Fan G E, Fan J, Guo W W. Highly efficient transf ormation of GFP and KNU genes into precocious trifoliate orange (Poncirus trifoliata [L.] Raf), a potential model genotype for functional genomics studies in Citrus. Tree Genet Genomes,2009,5:529-537
    189.Tan FC and Swain S M. Functional characterization of APS, SOC1 and WUS homologues from citrus (Citrus sinensis). Physiol Plantarum,2007,131:481-495
    190.Tan FC and Swain S M. Genetics of flower initiation and development in annual and perennial plants. Physiol Plant,2006,128:8-17
    191.Tang W, Newton R J, Weidner D A. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot,2007,58: 545-554
    192.Terry C F, Harris N. Event-specific detection of Roundup Ready Soya using two different real time PCR detection chemistries. Eur Food Res Technol,2001,213: 425-431
    193.Tournier B, Tabler M and Kalantidis K. Phloem flow strongly influences the systemic spread of silencing in GFP Nicotiana benthamiana plants. Plant J,2006,47:383-394
    194.Tuschl T, Borkhardt A. Small interfering RNAs:a revolutionary tool for the analysis of gene function and gone therapy. Mol Interv,2002,3:158-167
    195.Twyman R M, Stoger E, Schillberg S, Christou P and Fischer R. Molecular farming in plants:host systems and expression technology. Trends Biotechnol,2003,21: 570-578
    196.Vaucheret H and Fagard M. Transcriptional gene silencing in plants:targets, inducers and regulators. Trends Genet,2001,17:29-35
    197.Vaucheret H, Beclin C and Fagard M. Post-transcriptional gene silencing in plants. J Cell Sci,2001,114:3083-3091
    198.Voinnet O, Vain P, Angell S, Baulcombe D C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoter less DNA. Cell,1998,95:177-187
    199.Weigel D, Alvarez J, Smyth D R. Yanofsky M F, Meyerowitz E M. LEAFY controls floral meristem identity in Arabidopsis. Cell,1992,69:843-859
    200.Weller S A, Elphinstone J G, Smith N C, Boonham N, Stead D E. Detection of Ralstonia solanacearum strains with a quantitative, multiplex, real-time, fluorogenic PCR (TaqMan) assay. Appl Environ Microbiol,2000,66:2853-2858
    201.Wilkie J D, Sedgley M, Olesen T. Regulation of floral initiation in horticultural trees. J Exp Bot,2008,59(12):3215-3228
    202.William D A, Su Y, Smith M R, Lu, M, Baldwin D A, Wagner D. Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci, USA,2004,101: 1775-1780
    203.Yang G J, Lee Y H, Jiang Y M, Kumpatla S P, Hall T C. Organization, not duplication, triggers silencing in a complex transgene locus in rice. Plant Mol Biology,2005,58:351-366
    204.Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D. Estimating the copy number of transgenes in transformed rice by realtime quantitative PCR. Plant Cell Rep,2005,23:759-763
    205.Yoshimoto N, Takahashi H, Smith F W, Yamaya T and Saito K. Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J,2002,29:465-473
    206.Zhang J, Cai L, Cheng J, Mao H, Fan X, Meng Z H, Chan K M, Zhang H J, Qi J F, Ji L H and Hong Y. Transgene integration and organization in Cotton (Gossypium hirsutum L.) genome. Transgenic Res,2007,17(2):293-306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700