用户名: 密码: 验证码:
化学溶液沉积工艺制备无铅铁电K_(0.5)Na_(0.5)NbO_3 薄膜的结构和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅基铁电/压电材料因其具有优异的压电性能和组分可调节性的优点,长期以来一直占据着电子元器件的主要市场。然而它们的制备过程中需要使用大量的含铅氧化物作为原料,在生产、使用及废弃后处理过程中都会给人类和生态环境带来严重危害。近年来,世界各国都相继出台了各种法规法令,禁止有毒物质的使用,其中铅被列为限制使用的有害物质之一。因此,研制无铅化、环境协调性好的压电材料及其制品成为一项紧迫且具有重大现实意义的课题。在众多无铅压电体系中,铌酸钾钠K_(0.5)Na_(0.5)NbO_3 (KNN)因其高的居里温度、高的压电系数和电机耦合系数成为最有希望的候选材料之一。另外,随着微电子机械系统、集成传感器和换能器等的不断发展,压电薄膜的研究也引起了广泛关注。因此,本论文就化学溶液沉积(CSD)工艺制备的无铅铁电铌酸钾钠KNN薄膜的结构和性能进行研究。
     本文首先采用传统的CSD方法,即用未改性的先驱体溶液制备KNN薄膜,研究发现该工艺制备的KNN薄膜无法得到具有良好形状的电滞回线,介电性能也很差。然而将聚乙烯吡咯烷酮(PVP)引入KNN先驱体溶液后,采用CSD方法制备的KNN薄膜,当厚度为3.5μm时,得到了优良的电学性能,介电常数高达800-900,介电损耗为5-7 %,也得到了具有良好形状的电滞回线,剩余极化强度高达16.4μC/cm~2,用激光扫描振动仪得到的有效径向压电系数高达61 pm/V。
     通过研究厚度对KNN薄膜结构和性能的影响,发现在KNN薄膜中,1.3和2.5μm之间存在一个临界厚度值,当KNN薄膜的厚度低于该值时,介电、铁电和压电性能较差,当厚度高于该临界值,电学性能显著提高,而且在临界值之上,KNN薄膜的电学性能达到饱和。残余应力的分析中发现厚度较小的KNN薄膜,残余应力表现为张应力,而当厚度增大时则突变为压应力,并且压应力随着薄膜厚度的增大而逐渐减小。①
     由于PVP对优化KNN薄膜性能的重要作用,采用热重-差热(TGA-DSC)分析、热重-质谱(TG-MS)联用技术以及X-射线光电子能谱(XPS)分析,研究PVP对KNN的影响机理。实验得出适宜分子量(360,000)PVP的引入可以降低KNN的结晶温度,减少碱金属离子的缺失,从而促进KNN钙钛矿相的形成,电学性能的提高。大分子量(1,300,000)PVP的引入,因导致KNN薄膜多孔微观结构的形成而造成电学性能劣化,而小分子量(29,000和55,000)PVP的引入非但没有减少碱金属离子的缺失,提高KNN薄膜的电学性能,反而因其燃烧产生的大量热加速了碱金属离子的挥发,导致了二次相的出现。通过TGA-MS的分析结果得出了KNN体系中碱金属离子的大量挥发其实是发生在KNN钙钛矿相形成之前300-500℃的温度范围内,而且主要以碱金属离子的亚氧化物(KO和NaO)的形态挥发。除此之外,也发现PVP的引入有效抑制了碱金属离子在钙钛矿相形成后的挥发。在TGA-MS的分析中,也发现了对KNN体系来说,无论是否经过PVP改性,Na~+离子的缺失总是较K~+离子更严重,以致于二次相总是以钾的铌酸盐的形式出现。
     分子量为360,000的PVP的改性大大提高了KNN薄膜的电学性能,然而优良的电学性能只在厚度大于2μm的情况下观察到。为了使KNN薄膜在厚度较小的情况下也能得到良好的铁电性能,将金属离子Mn~(2+)和Co~(2+)分别引入了KNN体系中。实验发现,2 mol% Mn和2mol% Co掺杂的KNN薄膜,当厚度为1.3-1.6μm时得到了优良的电学性能,尤其是铁电性能。2 mol% Mn掺杂的KNN薄膜,介电常数为521,剩余极化强为7.2μC/cm~2;2mol% Co掺杂的KNN薄膜,介电常数为629,剩余极化强度为7.5μC/cm~2。掺杂后KNN薄膜电学性能的提高是因为Mn~(2+)和Co~(2+)离子的引入有利于KNN钙钛矿相的形成和漏电流密度的降低。XPS的分析证明了最初引入的Mn~(2+)和Co~(2+)离子在KNN薄膜结晶后被氧化为Mn~(3+)和Co~(3+)离子,并分别占据KNN薄膜钙钛矿结构中的A位和B位。
Lead-based ferroelectric/piezoelectric materials have been widely used in the practical application for many years because of their superior piezoelectric properties and ajustable composition. However,due to the toxicity of lead oxide that is largely used as the start chemical, the lead-based derivatives have harmful effects on human beings and the environment during their production, use and dispose. In addition, the lead and other hazardous substances are banned by many legislations recently. So it is significant to study the lead-free, environmentall friendly piezoelectric matrials. Among the lead-free materials, the potassium sodium niobate, K_(0.5)Na_(0.5)NbO_3 (KNN)is considered as one of the promising candidates due to its high Curie temperature, high piezoelectric and electro-mechanical coupling coefficients. With the development of micro-electro-mechanical systems, integrated sensors and transducers, the films have also attracted the interest of many researchers. Therefore, the dissertation focuses on the preparation of lead-free ferroelectric KNN films derived from the chemical solution depostion (CSD) method.
     The KNN films prepared by a conventional CSD method can not show good electrical properties. However, polyvinylpyrrolidone (PVP)-modified method show greatly improved performances for the KNN films as the thickness is over 2μm. The dielectric constant can be up to 800-900 with a lower dielectric loss of 5-7 %,and the typically saturated ferroelectric hysteresis loops with the highest remnant polarization of 16.4μC/cm~2 can be easily obtained. In addition, the high piezoelectric coefficient of 61 pm/V is also obtained by laser scanning vibrometer.
     In the study of the effect of thicknesses on the structures and electrical properties of KNN films, it was found that there exists a critical thickness between 1.3 and 2.5μm. When the thickness of KNN films is lower than the critical thickness, their electrical properties are very poor. Once the thickness is higher than the critical thickness, the electric properties are significantly improved. In addition, the variation of electric properties of KNN films with 2 the thickness tends to be stable. The study on the residual stresses shows the tensile stresses exist in the KNN films with small thickness, and the compressive ones exist in those with larger thickness, which can be released with the thickness.
     Since introduction of PVP greatly improved the electrical properties of KNN films, the mechanism of PVP on KNN was studied with analyses of thermogravimetric analysis-differential scanning calorimetry (TGA-DSC), thermogravimetric analysis-mass spectrometry (TGA-MS) and x-ray photoelectron spectrocopy (XPS). It was found that the introduction of PVP with the appropriate molecular weight (360,000) can obviously decrease the crystallization temperature, reduce the losses of alkaline ions, hence promote the crystallization of KNN perovskite phase and improve the electrical properties. The introduction of PVP with a very large molecular weight of 1,300,000 results in porous morphologies of KNN films so that the electrical properties were degraded. The PVP with a small molecular weight can not reduce the volatility of alkaline ions but results in more loss of alkaline ions, and lead to the form of secondary phases. With the TGA-MS analyses, it was found that the alkaline ions for all KNN films were mainly volatilized at a lower temperature range of 300-500℃before crystallization and were lost mainly as the oxides of KO and NaO. In addition, it can be seen that the introduction of PVP effectively supressed the volatility of alkaline ions after the formation of KNN perovskite phase. It is found that loss of Na~+ ions is higher than that of K~+ ions, so the secondary phase always appeared as the potassium niobate.
     The improved electrical properties were obtained in the KNN films with thickness higher than 2μm with the introduction of PVP. To make the KNN films with small thickness also show well saturated and typical hysteresis loops, the Mn~(2+) and Co~(2+) dopants were introduced into the KNN precursor solutions. It was found that the KNN films with the thickness of 1.3-1.6μm show the improved electrical properties, especially the ferroelectric properties which the typically saturated hysteresis loops were obtained. The 2 mol% Mn-doped KNN film shows the high dielectric constant of 521 and the remnant polarization, Pr of up to 7.2μC/cm~2. While the 2 mol% Co doped one shows the higher dielectric constant of 629 and the maximum Pr of 7.5μC/cm~2. The introduction of Mn~(2+) and Co~(2+) ions can promote the formation of KNN perovskite phase and significantly decrease the leakage current density. The improved electrical properties can be obtained for the doped KNN films. The x-ray photoelectron spectrocopy analyses indicates that the initial Mn~(2+) and Co~(2+) ions were oxidized into Mn~(3+) and Co~(3+) ions. Mn~(3+) and Co~(3+) ions substitute the alkaline ions in A-site and Nb5+ ions in B-site of KNN perovskite structure, respectively.
引文
[1] Uchino K. Ferroelectric devices [M]. New York Marcel Dekker, c2000.
    [2] Waanders JW. Piezoelectric ceramics: properties and applications[M]: Philips Components, 1991.
    [3] Bernard J, William RC, Hans J. Piezoelectric ceramics Non-metallic solids[M]. New York: Academic Press, 1971.
    [4] Haertling GH. Ferroelectric ceramics: History and technology[C]. Cincinnati, Ohio: Amer Ceramic Soc, 1998: 797-818.
    [5] Yu Z, Ang C, Guo RY, et al. Piezoelectric and strain properties of Ba(Ti_(1-x)Zr_x)O_3 ceramics[J]. Journal of Applied Physics, 2002, 92 (3): 1489-1493.
    [6] Yoo J, Oh D, Jeong D, et al. Dielectric and piezoelectric characteristics of lead-free Bi_(0.5)(Na_(0.84)K_(0.16))_(0.5)TiO_3 ceramics substituted with Sr[J]. Materials Letters, 2004, 58 (29): 3831-3835.
    [7] Wolny WW. Application driven industrial development of piezoceramics[J]. Journal of the European Ceramic Society, 2005, 25 (12): 1971-1976.
    [8] Cross E. Materials science - Lead-free at last[J]. Nature, 2004, 432 (7013): 24-25.
    [9] Demartin Maeder M, Damjanovic D, Setter N. Lead free piezoelectric materials[J]. Journal of Electroceramics, 2004, 13 (1-3): 385-392.
    [10] Ringgaard E, Wurlitzer T. Lead-free piezoceramics based on alkali niobates[C]. Cherbourg, FRANCE: Elsevier Sci Ltd, 2004: 2701-2706.
    [11]肖定全万征.环境协调型压电铁电陶瓷[J].压电与声光, 1999, 21 (5): 363-366.
    [12] Subbarao EC. A family of ferroelectric bismuth compounds[J]. Journal of Physics and Chemistry of Solids, 1962, 23 (6): 665-676.
    [13] Xu YH, Chen HC, Cross LE. Single crystal growth and determination of physical properties of (K _(1-x)Na_x)_(0.4)(Sr_(1-y)Ba_y)_(0.8)Nb_2O_6[J]. Ferroelectrics|Ferroelectrics, 1984, 54 (1-4): 463-466.
    [14] Umakantham K, Narayana Murty S, Sambasiva Rao K, et al. Effect of Rare-Earth Ions on the Properties of Modified (SrBa)Nb_2O_6 Ceramics[J]. Journal of Materials Science Letters, 1987, 6 (5): 565-567.
    [15] Robin AI, Prasada Rao AV, Sambasiva Rao K, et al. Effect of rare earth substitution on the dielectric and piezoelectric properties of Ba_2AgNb_5O_(15)[J]. Ferroelectrics, 1994, 153 (1-4): 285-290.
    [16] Sambasiva Rao K, Satyanarayana C, Prasada Rao AV, et al. Piezoelectric and ferroelectric properties of rare-earth modified filled tungsten bronze barium silver niobate ceramics[J]. Ferroelectrics, 1994, 154 (1-4): 195-200.
    [17] Robin AI, Prasada Rao AV, Sambasiva Rao K, et al. Ferroelectric and Piezoelectric Studies of Lanthanum and Presodymium Modified Ba_2AgNb_5O_(15) Ceramics[J]. Journal of Materials Science Letters, 1994, 13 (19): 1381-1383.
    [18] Spinola DUP, Moreira EN, Bassora LA, et al. Pyroelectric and Piezoelectric Properties of SBN Ceramics[J]. Proceedings/IEEE Ultrasonics Symposium, 1996, 1: 523.
    [19] Kimura M, Minamikawa T, Ando A, et al. Temperature characteristics of (Ba_(1-x)Sr_x)(2)NaNb_5O_(15) ceramics[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1997, 36 (9B): 6051-6054.
    [20]钟维烈.铁电体物理学[M].北京:科学出版社, 1996.
    [21] Smolenskii GA, Isupov VA, Agranovskaya AI, et al. New Ferroelectrics of Complex Composition .4[J]. Soviet Physics-Solid State, 1961, 2 (11): 2651-2654.
    [22] Nagata H, Yoshida M, Makiuchi Y, et al. Large piezoelectric constant and high Curie temperature of lead-free piezoelectric ceramic ternary system based on bismuth sodium titanate-bismuth potassium titanate-barium titanate near the morphotropic phase boundary[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2003, 42 (12): 7401-7403.
    [23]陈祝.溶胶-凝胶改进工艺制备锆钛酸铅(PbZr_xTi_(1-x)O_3)铁电薄膜的结构与性能研究[D].成都:电子科技大学, 2005.
    [24] Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium sodium niobate[J]. Journal of the American Ceramic Society, 1959, 42 (9): 438-442.
    [25] Haertling GH. Properties of hot-pressed ferroelectric alkali niobate ceramics[J]. Journal of the American Ceramic Society, 1967, 50 (6): 329-330.
    [26] Jaeger RE, Egerton L. Hot Pressing of Potassium-Sodium Niobates[J]. Journal of the American Ceramic Society, 1962, 45 (5): 209-213.
    [27] Cross LE. Electric double hysteresis in (K_xNa_(1-x))NbO_3 single crystals[J]. Nature, 1958, 181 (4603): 178-179.
    [28] Kosec M, Kolar D. Activated sintering and electrical properties of NaKNbO_3[J]. Materials Research Bulletin, 1975, 10 (5): 335-339.
    [29] Birol H, Damjanovic D, Setter N. Preparation and characterization of (K_(0.5)Na_(0.5))NbO_3 ceramics[J]. Journal of the European Ceramic Society, 2006, 26 (6): 861-866.
    [30] Shirane G, Newnham R, Pepinsky R. Dielectric properties and phase transitions of NaNbO_3 and (Na,K)NbO_3[J]. Physical Review, 1954, 96 (3): 581-588.
    [31] Reisman A, Banks E. Reactions of the group Vb Pentoxides VIII thermal, density and x-ray studies of the systems KNbO_3-NaNbO_3 and KTaO_3-KNbO_3[J]. Journal of the American Chemical Society, 1958, 80 (8): 1877-1882.
    [32] Nakashima Y, Sakamoto W, Maiwa H, et al. Lead-free piezoelectric (K,Na)NbO_3 thin films derived from metal alkoxide precursors[J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2007, 46 (12-16): L311-L313.
    [33] Matsubara M, Yamaguchi T, Kikuta K, et al. Sinterability and piezoelectric properties of (K,Na)NbO_3 ceramics with novel sintering aid[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43 (10): 7159-7163.
    [34] Jiao GC, Fan HQ, Liu LJ, et al. Structure and piezoelectric properties of Cu-doped potassium sodium tantalate niobate ceramics[J]. Materials Letters, 2007, 61 (19-20): 4185-4187.
    [35] Li E, Kakemoto H, Wada S, et al. Enhancement of Q(m), by co-doping of Li and Cu to potassium sodium niobate lead-free ceramics[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2008, 55 (5): 980-987.
    [36] Wang XB, Song C, Li DM, et al. The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film[J]. Applied Surface Science, 2006, 253 (3): 1639-1643.
    [37] Muralt P. PZT thin films for microsensors and actuators: Where do we stand?[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2000, 47 (4): 903-915.
    [38] Water W, Yan YS. Characteristics of strontium-doped ZnO films on love wave filter applications[J]. Thin Solid Films, 2007, 515 (17): 6992-6996.
    [39] Wu X, Vanderbilt D, Hamann DR. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory[J]. Physical Review B, 2005, 72 (3): 035105.
    [40] Kanbara H, Kobayashi H, Nakamura K. Analysis of piezoelectric thin film resonators with acoustic quarter-wave multilayers[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2000, 39 (5B): 3049-3053.
    [41] Dubois MA, Muralt P. Properties of aluminum nitride thin films for piezoelectric transducers andmicrowave filter applications[J]. Applied Physics Letters, 1999, 74 (20): 3032-3034.
    [42] Guy IL, Muensit S, Goldys EM. Extensional piezoelectric coefficients of gallium nitride and aluminum nitride[J]. Applied Physics Letters, 1999, 75 (26): 4133-4135.
    [43] Bu G, Ciplys D, Shur M, et al. Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride[J]. Applied Physics Letters, 2004, 84 (23): 4611-4613.
    [44] Mareschal O, Loiseau S, Fougerat A, et al. Piezoelectric aluminum nitride resonator for oscillator[C]. Besancon, France: IEEE, 2009: 894-897.
    [45] Guo YP, Suzuki K, Nishizawa K, et al. Dielectric and piezoelectric properties of highly (100)-oriented BaTiO_3 thin film grown on a Pt/TiO_x/SiO_2/Si substrate using LaNiO_3 as a buffer layer[J]. Journal of Crystal Growth, 2005, 284 (1-2): 190-196.
    [46] Tanaka K, Suzuki K, Nishizawa K, et al. Microstructure control and dielectric/piezoelectric properties of alkoxy-derived Ba(Ti,Zr)O_3 thin films[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2005, 44 (9B): 6885-6890.
    [47] Jin DZ, Chen XM. BaTiO_3 ceramics toughened by dispersed coarse particles[J]. Ceramics International, 2003, 29 (4): 371-375.
    [48] Kholkin AL, Brooks KG, Setter N. Electromechanical properties of SrBi_2Ta_2O_9 thin films[J]. Applied Physics Letters, 1997, 71 (14): 2044-2046.
    [49] Takeda H, Fujioka C, Aoyagi R, et al. Enhanced piezoelectric properties of off-stoichiometric strontium bismuth tantalate Sr_(0.8)Bi_(2.2)Ta_2O_9 ceramics[J]. Applied Physics a-Materials Science & Processing, 2005, 81 (1): 131-135.
    [50] Cho JA, Park SE, Song TK, et al. Dielectric and piezoelectric properties of nonstoichiometric SrBi_2Ta_2O_9 and SrBi_2Nb_2O_9 ceramics[J]. Journal of Electroceramics, 2004, 13 (1-3): 515-518.
    [51] Maiwa H, Iizawa N, Togawa D, et al. Electromechanical properties of Nd-doped Bi_4Ti_3O_(12) films: A candidate for lead-free thin-film piezoelectrics[J]. Applied Physics Letters, 2003, 82 (11): 1760-1762.
    [52] Megriche A, Lebrun L, Troccaz M. Materials of Bi_4Ti_3O_(12) type for high temperature acoustic piezo-sensors[J]. Sensors and Actuators a-Physical, 1999, 78 (2-3): 88-91.
    [53] Nagata H, Matsuzawa S, Hiruma Y, et al. Piezoelectric properties of Nd and V co-substituted Bi_4Ti_3O_(12) ceramics for resonator applications[C]. Vancouver, CANADA: IEEE, 2006: 355-358.
    [54] Gautschi G. Piezoelectric sensorics: Force, strain, pressure, acceleration and acoustic emission sensors, materials and amplifiers [M]. Berlin: Springer, 2002.
    [55] Hsu YC, Le NB. Coupling coefficient determination based on simulation and experiment for ST-Cut quartz saw delay-line response[J]. Microsystem Technologies-Micro- and Nanosystems-Information Storage and Processing Systems, 2008, 14 (4-5): 615-622.
    [56] Ryu J, Choi JJ, Hahn BD, et al. Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K_(0.5)Na_(0.5))NbO_3 thick films by aerosol deposition[J]. Applied Physics Letters, 2007, 90 (15): 152901-152903.
    [57] Schmidt H, Rinn G, Nass R, et al. Film preparation by inorganic-organic sol-gel synthesis[J]. Better Ceramics Through Chemistry III Symposium|Better Ceramics Through Chemistry III Symposium, 1988: 743-754|.
    [58] Xu F, Trolier-McKinstry S, Ren W, et al. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films[J]. Journal of Applied Physics, 2001, 89 (2): 13.
    [59] Maki K, Soyama N, Nagamine K, et al. Low-temperature sintering of ferroelectric Pb(Zr,Ti)O_3 thick films derived from stable sol-gel solutions[J]. Integrated Ferroelectrics, 2001, 41 (1-4): 167-174.
    [60] Lee YK, Kim CJ, Lee JK, et al. Preparation of CSD-PZT thick films with different methods[J]. Integrated Ferroelectrics, 2001, 41 (1-4): 175-183.
    [61] Tu YL, Milne SJ. Processing and characterization of Pb(Zr,Ti)O_3 films, up to 10μm thick, produced from a diol sol-gel route[J]. Journal of Materials Research, 1996, 11 (10): 2556-2564.
    [62] Sriprang N, Kaewchinda D, Kennedy JD, et al. Processing and sol chemistry of a triol-based sol-gel route for preparing lead zirconate titanate thin films[J]. Journal of the American Ceramic Society, 2000, 83 (8): 1914-1920.
    [63] Newnham RE, Skinner DP, Cross LE. Connectivity and piezoelectric-pyroelectric composites[J]. Materials Research Bulletin, 1978, 13 (5): 525-536.
    [64] Barrow DA, Petroff TE, Tandon RP, et al. Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process[J]. Journal of Applied Physics, 1997, 81 (2): 876-881.
    [65] Lin P, Ren W, Wu XQ, et al. Thickness effects on structures and electrical properties of lead zirconate titanate thick films[J]. Ceramics International, 2008, 34 (4): 991-995.
    [66] Lin P, Ren W, Wu XQ, et al. Effect of poly(vinyl acetate) on structures and properties of PbZr_(0.52)Ti_(0.48)O_3 thick films[J]. Journal of Applied Physics, 2007, 102 (8): 084109
    [67] Takenaka S, Kozuka H. Sol-gel preparation of single-layer, 0.75μm thick lead zirconate titanate films from lead nitrate-titanium and zirconium alkoxide solutions containing polyvinylpyrroli -done[J]. Applied Physics Letters, 2001, 79 (21): 3485-3487.
    [68] Kozuka H, Takenaka S. Single-step deposition of gel-derived lead zirconate titanate films: Critical thickness and gel film to ceramic film conversion[J]. Journal of the American Ceramic Society, 2002, 85 (11): 2696-2702.
    [69] Park G-T, Choi J-J, Park C-S, et al. Piezoelectric and ferroelectric properties of 1-μm-thick lead zirconate titanate film fabricated by a double-spin-coating process[J]. Applied Physics Letters, 2004, 85 (12): 2322-2324.
    [70] Kozuka H, Kajimura M, Hirano T, et al. Crack-free, thick ceramic coating films via non-repetitive dip-coating using polyvinylpyrrolidone as stress-relaxing agent[J]. Journal of Sol-Gel Science and Technology, 2000, 19 (1-3): 205-209.
    [71] Kozuka H, Kajimura M. Single-step dip coating of crack-free BaTiO_3 films > 1μm thick: Effect of poly(vinylpyrrolidone) on critical thickness[J]. Journal of the American Ceramic Society, 2000, 83 (5): 1056-1062.
    [72] Kozuka H, Higuchi A. Single-layer submicron-thick BaTiO_3 coatings from poly(vinylpyrrolidone) -containing sols: Gel-to-ceramic film conversion, densification, and dielectric properties[J]. Journal of Materials Research, 2001, 16 (11): 3116-3123.
    [73] Kozuka H, Takenaka S, Tokita H, et al. PVP-assisted sol-gel deposition of single layer ferroelectric thin films over submicron or micron in thickness[J]. Journal of the European Ceramic Society, 2004, 24 (6): 1585-1588.
    [74] Wang ZY, Liu JS, Ren TL, et al. Fabrication of organic PVP doping-based Ba_(0.5)Sr_(0.5)TiO_3 thick films on silicon substrates for MEMS applications[J]. Sensors and Actuators a-Physical, 2005, 117 (2): 293-300.
    [75] Hong XK, Hu GJ, Chen J, et al. Structural and electric properties of sol-gel-derived Ba_(0.9)Sr_(0.1)TiO_3 multilayers[J]. Journal of the American Ceramic Society, 2007, 90 (4): 1280-1282.
    [76] Du ZH, Ma J, Zhang TS. Densification of the PLZT films derived from polymer-modified solution by tailoring annealing conditions[J]. Journal of the American Ceramic Society, 2007, 90 (3): 815-820.
    [77] Abadei S, Gevorgian S, Cho CR, et al. DC field dependent properties of Na_(0.5)K_(0.5)NbO_3/SiO_2/Si structures at millimeter-wave frequencies[J]. Applied Physics Letters, 2001, 78 (13): 1900-1902.
    [78] Khartsev SI, Grishin MA, Grishin AM. Characterization of heteroepitaxial Na_(0.5)K_(0.5)NbO_3/La _(0.5)Sr_(0.5)CoO_3 electro-optical cell[J]. Applied Physics Letters, 2005, 86 (6): 062901-062903.
    [79] Saito T, Wada T, Adachi H, et al. Pulsed laser deposition of high-quality (K,Na)NbO_3 thin films onSrTiO_3 substrate using high-density ceramic targets[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2004, 43 (9B): 6627-6631.
    [80] Cho CR, Grishin A. Background oxygen effects on pulsed laser deposited Na_(0.5)K_(0.5)NbO_3 films: From superparaelectric state to ferroelectricity[J]. Journal of Applied Physics, 2000, 87 (9): 4439-4448.
    [81] Cho CR. c-axis oriented (Na,K)NbO_3 thin films on Si substrates using metalorganic chemical vapor deposition[J]. Materials Letters, 2002, 57 (4): 781-786.
    [82] Blomqvist M, Koh J-H, Khartsev S, et al. High-performance epitaxial Na_(0.5)K_(0.5)NbO_3 thin films by magnetron sputtering[J]. Applied Physics Letters, 2002, 81 (2): 337-339.
    [83] Wang X, Helmersson U, Olafsson S, et al. Growth and field dependent dielectric properties of epitaxial Na_(0.5)K_(0.5)NbO_3 thin films[J]. Applied Physics Letters, 1998, 73 (7): 927-929.
    [84] Kugler VM, S?derlind F, Music D, et al. Microstructure/dielectric property relationship of low temperature synthesised (Na,K)NbO_x thin films[J]. Journal of Crystal Growth, 2004, 262 (1-4): 322-326.
    [85] Nakashima Y, Sakamoto W, Shimura T, et al. Chemical processing and characterization of ferroelectric (K,Na)NbO_3 thin films[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46 (10B): 6971-6975.
    [86] Tanaka K, Kakimoto K, Ohsato H, et al. Effects of Pt bottom electrode layers and thermal process on crystallinity of alkoxy-derived (Na,K)NbO_3 thin films[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46 (3A): 1094-1099.
    [87] Amini MM, Sacks MD. Synthesis of potassium niobate from metal alkoxides[J]. Journal of the American Ceramic Society, 1991, 74 (1): 53-59.
    [88] Yao K, Tay FEH. Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2003, 50 (2): 113-116.
    [89] Hjort K, Soderkvist J, Schweitz JA. Gallium-arsenide as a mechanical material[J]. Journal of Micromechanics and Microengineering, 1994, 4 (1): 1-13.
    [90] S?derlind F, K?ll PO, Helmersson U. Sol-gel synthesis and characterization of Na_(0.5)K_(0.5)NbO_3 thin films[J]. Journal of Crystal Growth, 2005, 281 (2-4): 468-474.
    [91] Bomlai P, Wichianrat P, Muensit S, et al. Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na_(0.5)K_(0.5)NbO_3 powders[J]. Journal of the American Ceramic Society, 2007, 90 (5): 1650-1655.
    [92] Cho CR, Grishin A. Self-assembling ferroelectric Na_(0.5)K_(0.5)NbO_3 thin films by pulsed-laser deposition[J]. Applied Physics Letters, 1999, 75 (2): 268-270.
    [93] Romanov MV, Korsakov IE, Kaul AR, et al. MOCVD of KNbO_3 ferroelectric films and their characterization[J]. Chemical Vapor Deposition, 2004, 10 (6): 318-324.
    [94] Chen XM, Lu YT, Jin DZ, et al. Dielectric and ferroelectric properties of (_(1-x))(Na_(0.5)K_(0.5))NbO_(3-x)BaTiO_3 ceramics[J]. Materials Research Bulletin, 2005, 40 (10): 1847-1855.
    [95]邵建达,邵范范.薄膜应力研究[J].激光与光电子学进展, 2005, 42 (1): 22-27.
    [96] Liu CQ, Li WL, Fei WD, et al. Influence of phase transition induced by residual stress on ferroelectric properties of highly (100)-oriented Pb(Zr_(0.52)Ti0.48)O_3 thin films[J]. Journal of Alloys and Compounds, 493 (1-2): 499-501.
    [97] Brooks KG, Reaney IM, Klissurska R, et al. Orientation of rapid thermally annealed lead-zirconate-titanate thin-films on (111) Pt substrates[J]. Journal of Materials Research, 1994, 9 (10): 2540-2553.
    [98] Trofimov VI, Trofimov IV, Kim J-I. The effect of finite film thickness on the crystallization kinetics of amorphous film and microstructure of crystallized film[J]. Thin Solid Films, 2006, 495 (1-2):398-403.
    [99] Du ZH, Ma J, Zhang TS. Densification of the PLZT Films derived from polymer-modified solution by tailoring annealing conditions[J]. Journal of the American Ceramic Society, 2007, 90 (3): 815–820.
    [100] Tanaka K, Kakimoto K, Ohsato H. Fabrication of highly oriented lead-free (Na, K)NbO_3 thin films at low temperature by sol-gel process[J]. Journal of Crystal Growth, 2006, 294 (2): 209-213.
    [101] Yu SH, Yao K, Shannigrahi S, et al. Effects of poly(ethylene glycol) additive molecular weight on the microstructure and properties of sol-gel-derived lead zirconate titanate thin films[J]. Journal of Materials Research, 2003, 18 (3): 737-741.
    [102] Yao K, Yu SH, Tay FEH. Preparation of perovskite Pb(Zn_(1/3)Nb_(2/3))O_3-based thin films from polymer-modified solution precursors[J]. Applied Physics Letters, 2006, 88 (5): 2904-2906.
    [103] Tashiro S, Nagamatsu H, Nagata K. Sinterability and piezoelectric properties of KNbO_3 ceramics after substituting Pb and Na for K[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41 (11B): 7113-7118.
    [104] Narendar Y, Messing GL. Kinetic analysis of combustion synthesis of lead magnesium niobate from metal carboxylate gels[J]. Journal of the American Ceramic Society, 1997, 80 (4): 915-924.
    [105] Yu SH, Yao K, Tay FEH. Structure and properties of (1-x)PZN-xPT thin films with perovskite phase promoted by polyethylene glycol[J]. Chemistry of Materials, 2006, 18 (22): 5343-5350.
    [106] Lai FP, Li JF. Sol-gel processing of lead-free (Na,K)NbO_3 ferroelectric films[J]. Journal of Sol-Gel Science and Technology, 2007, 42 (3): 287-292.
    [107] Tanaka K, Hayashi H, Kakimoto KI, et al. Effect of (Na,K)-Excess precursor solutions on alkoxy-derived (Na,K)NbO_3 powders and thin films[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46 (10B): 6964-6970.
    [108] Lee YH, Cho JH, Kim BI, et al. Piezoelectric properties and densification based on control of volatile mass of potassium and sodium in (K_(0.5)Na_(0.5))NbO_3 ceramics[J]. Japanese Journal of Applied Physics, 2008, 47 (6): 4620-4622.
    [109] Kaufherr N, Eichorst DJ, Payne DA. X-ray photoelectron spectroscopy studies of alkoxide-derived lithium niobate[J]. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1996, 14 (2): 299-305.
    [110] Atuchin VV, Kalabin IE, Kesler VG, et al. Nb 3d and O 1s core levels and chemical bonding in niobates[J]. Journal of Electron Spectroscopy and Related Phenomena, 2005, 142 (2): 129-134.
    [111] Barr TL. Recent advances in x-ray photoelectron spectroscopy studies of oxides[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1991, 9 (3): 1793-1805.
    [112] Du ZH, Zhang TS, Ma J. Effect of polyvinylpyrrolidone on the formation of perovskite phase and rosette-like structure in sol-gel-derived PLZT films[J]. Journal of Materials Research, 2007, 22 (8): 2195-2203.
    [113] Zhang LL, Tsaur J, Maeda R. Residual stress study of SiO_2/Pt/Pb(Zr,Ti)O_3/Pt multilayer structure for micro electro mechanical system applications[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2003, 42 (3): 1386-1390.
    [114] Zhang TY, Chen LQ, Fu R. Measurements of residual stresses in thin films deposited on silicon wafers by indentation fracture[J]. Acta Materialia, 1999, 47 (14): 3869-3878.
    [115] Zheng XJ, Zhou YC, Li JY. Nano-indentation fracture test of Pb(Zr_(0.52)Ti_(0.48))O_3 ferroelectric thin films[J]. Acta Materialia, 2003, 51 (14): 3985-3997.
    [116] Oliver WC, Pharr GM. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7 (6): 1564-1583.
    [117] Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the (K,Na)NbO_3-LiTaO_3solid solution system[J]. Ferroelectrics, 2006, 338: 1433-1448.
    [118] Zhou YC, Yang ZY, Zheng XJ. Residual stress in PZT thin films prepared by pulsed laser deposition[J]. Surface & Coatings Technology, 2003, 162 (2-3): 202-211.
    [119] Ravez J, Simon A. Relaxor ferroelectricity in ceramics with composition Ba_(1-x)K_x(Ti_(1-x)Nb_x)O_3[J]. Materials Letters, 1998, 36 (1-4): 81-84.
    [120] Bergman L, Nemanich RJ. Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin-films[J]. Journal of Applied Physics, 1995, 78 (11): 6709-6719.
    [121] Yao K, Yu SH, Tay FEH. Residual stress analysis in ferroelectric Pb(Zr_(0.52)Ti_(0.48))O_3 thin films fabricated by a sol-gel process[J]. Applied Physics Letters, 2003, 82 (25): 4540-4542.
    [122] Kizaki Y, Noguchi Y, Miyayama M. Defect control for low leakage current in K_(_(0.5))Na_(_(0.5))NbO_3 single crystals[J]. Applied Physics Letters, 2006, 89 (14).
    [123] Abazari M, Akdogan EK, Safari A. Effect of manganese doping on remnant polarization and leakage current in (K_(0.44),Na_(0.52),Li_(0.04))(Nb_(0.84),Ta_(0.10),Sb_(0.06))O_3 epitaxial thin films on SrTiO_3[J]. Applied Physics Letters, 2008: 212903-212901-212903.
    [124] Raymond MV, Smyth DM. Defects and charge transport in perovskite ferroelectrics[J]. Journal of Physics and Chemistry of Solids, 1996, 57 (10): 1507-1511.
    [125] Takahashi M, Noguchi Y, Miyayama M. Electrical conduction mechanism in Bi4Ti3O12 single crystal[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41 (11B): 7053-7056.
    [126] Noguchi Y, Matsumoto T, Miyayama M. Impact of defect control on the polarization properties in Bi4Ti3O12 ferroelectric single crystals[J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2005, 44 (16-19): L570-L572.
    [127] Hofman W, Hoffmann S, Waser R. Dopant influence on dielectric losses, leakage behaviour, and resistance degradation of SrTiO_3 thin films[J]. Thin Solid Films, 1997, 305 (1-2): 66-73.
    [128] Yuan Z, Lin Y, Weaver J, et al. Large dielectric tunability and microwave properties of Mn-doped (Ba,Sr)TiO_3 thin films[J]. Applied Physics Letters, 2005, 87 (15): 3.
    [129] Kim RY, Kim HS, Lim MH, et al. Dielectric properties of Mn-doped BST thin films for microwave application[J]. Integrated Ferroelectrics, 2004, 66: 195-204.
    [130] Liang YC, Chu JP. Growth-temperature-dependent electrical properties of Mn doping Ba_(0.5)Sr_(0.5)TiO_3 thin films on La0.72Ca0.28MnO_3 electrodes[J]. Japanese Journal of Applied Physics, 2008, 47 (1): 257-261.
    [131] Abazari M, Akdogan EK, Safaria A. Effect of manganese doping on remnant polarization and leakage current in (K0.44,Na_(0.52),Li0.04)(Nb0.84,Ta0.10,Sb0.06)O_3 epitaxial thin films on SrTiO_3[J]. Applied Physics Letters, 2008, 92 (21):2903-2905.
    [132] Jie WJ, Zhu J, Qin WF, et al. Enhanced dielectric characteristics of preferential (111)-oriented BZT thin films by manganese doping[J]. Journal of Physics D-Applied Physics, 2007, 40 (9): 2854-2857.
    [133] Hao X, Zhai J, Zhou J, et al. Enhanced dielectric properties of lead barium zirconate thin films by manganese doping[J]. Applied Surface Science, 2010, 256 (16): 4902-4905.
    [134] Wagner CD, Riggs WM, Davis LE et al. Handbook of X-ray photoelectron spectroscopy [M]. Eden Prairie: Physical Electronics Inc., 1979.
    [135] Wang LW, Zhang F.J., Zheng X, et al. Influence of the cobalt concentration on optical and magnetic properties of zinc oxide[J]. Chinese Science Bulletin, 2010, 55 (10): 897-901.
    [136] Song C, Wang CZ, Yang YC, et al. Room temperature ferromagnetism and ferroelectricity in cobalt-doped LiNbO_3 film[J]. Applied Physics Letters, 2008, 92 (26): 2901-2903.
    [137] Yang J Meng XJ, Shen MR, et al. Effect of Mn doping on dielectric and ferroelectric properties of (Pb,Sr)TiO_3 films on (111) Pt/Ti/SiO_2/Si substrates[J]. Journal of Applied Physics, 2009, 106: 094108.
    [138] Griggioa F, and Trolier-McKinstry S. Grain size dependence of properties in lead nickel niobate-lead zirconate titanate films[J]. Journal of Applied Physics, 2010, 107 (024105): 1-7.
    [139] Bassiri Gharb N, and Trolier-McKinstry S. Dielectric nonlinearity of Pb(Yb_(1/2)Nb_(1/2))O_2-PbTiO_3 thin films with (100) and (111) crystallographic orientation[J]. Journal of Applied Physics, 2005, 97 (064106): 1-7.
    [140] Garcia JE, Pérez R, Albareda A, et al. Non-linear dielectric and piezoelectric responce in un-doped and Nb~(5+) or Fe~(3+) doped PZT ceramic system[J]. Journal of the European Ceramic Society, 2007, 27: 4029-4032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700