用户名: 密码: 验证码:
低温绝热气瓶结构优化与进一步提高绝热性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温绝热气瓶作为一种储运低温液体的特种容器,目前开始被广泛应用于机械、化学工业和国民经济各领域,取代传统的高压气瓶用以提供工业气体。由于低温绝热气瓶可以带压储存和运输低温液体,因此与普通压力容器相比结构更为复杂。其绝热性能和安全性是低温绝热气瓶高效可靠使用的保证,研究绝热结构的传热机理、强度分析以及合理有效的优化方法具有重要的理论意义和实用价值,同时,建立合理的评估绝热性能的标准对于促进低温技术的发展和应用有重要的意义。
     因此,本文以传热学、数值分析和有限元等理论为指导,建立传热模型与热力耦合模型,采用ANSYS有限元分析软件进行分析,研究低温绝热气瓶绝热结构优化。同时,对日蒸发率的影响因素和修正关系式进行了探讨,主要进行以下几方面研究:
     (1)作为低温绝热气瓶内外容器之间的重要支撑结构,使得通过颈管进入低温绝热气瓶的热流占总热流的比例非常大,甚至达到一半以上。为此,采用实验和数值模拟相结合的方法,分别建立低温绝热气瓶颈部传热的稳态导热模型和共轭传热模型,与实验的结果进行比较,得到模型的误差最大分别为8.91%和5.66%,并且充装的低温液体越多,精度也越高,因此考虑实用性以及计算效率等多方面因素,稳态导热模型在相对误差的范围内对颈部传热的分析精度足够,并以此模型对两种高径比H/D分别为2.61和1.94的低温绝热气瓶颈部传热进行分析。
     (2)根据低温绝热气瓶的结构特性,建立了强度分析的热力耦合模型,对H/D分别为2.61和1.94的低温绝热气瓶在承受静态载荷及2g的冲击载荷工况下的热应力进行了分析,确定在颈管接管头与封头开孔连接边缘的环向面是应力水平最高的部位,也是整个气瓶的最薄弱部位,并采用等效线性化的处理方法对颈管开孔边缘最危险截面的不连续应力进行分类处理。
     (3)将上述建立的稳态导热模型和热力耦合模型两种模型到引入到颈管的优化分析中,分别对颈管结构的长度、直径和壁厚在不同无量纲参数(h/H、d/D、δn/δ)下对通过颈部的漏热量及最大热应力的影响进行了研究,对颈管结构从传热及强度两方面进行了优化,找出最优化的尺寸参数,并且探讨了颈管开孔结构补强的重要性,对低温绝热气瓶颈管的结构设计提供理论依据,并且有着重要的指导作用。
     (4)日蒸发率作为评价低温绝热容器绝热性能最重要的技术参数,能够非常直观的反映气瓶的绝热性能,一直受到非常多的关注,因此准确测量和计算低温容器的日蒸发率至关重要。本文以立式低温绝热气瓶为基础,采用数值模拟与实验验证的方法,对包括环境温度、环境压力和液位高度对日蒸发率的影响因素进行研究,并且分析研究更合理更准确的修正方法来对低温绝热气瓶的静态日蒸发率进行计算,为国家标准GB/T 18443《真空绝热深冷设备性能试验方法》的修订提供了数据支持。
     本文的研究方法和结论使低温绝热气瓶的设计更加合理化,为推广和发展低温绝热气瓶的应用提供了理论基础和工程应用价值。
As special cryogenic liquid storage and transportation container, the cryogenic insulated cylinders are widely used in many fields, especially in the machinery, chemical industry, and national economy areas to replace the high pressure gas cylinders for supplying industrial gasses. The structure is more complicated compared with ordinary pressure vessel because of the pressured storage and transportant. The thermal insulating properties and security is an assurance of efficiency and operational reliability.The study onheat transfer mechanism, stress analysis and reasonable effective optimization method for thermal insulating construction is of theoretical significance and practical,andestablishing rational evaluation standards of thermal insulating properties have important significance on promoting the development and application of cryogenics technology.
     Therefore,the heat transfer models and thermal-mechanical coupling model established in this thesis by guidance of heat transfer theory, numerical analysis and theory of finite element anylysis, and the finite element analysis software of ANSYS has been utilized to analyzethe constructionoptimization forthermal insulating constructionof cryogenic cylinder. Further exploration for influence factors and correction relation of daily evaporation rate is also made in this thesis. Several studies of this thesis are summarized as follows:
     (1) As an important support structure between inner and outer vesselin cryogenicinsulated cylinders,the heat flux from the outside environment through the neck tube into the cryogenic liquid occupies a great proportion of the total heat leak and can be more than half of the total heat loads. By using the mothed of experimental combined the simulation, the steady-state conduction model and conjuage heat transfer model have been established, andthe performance deviation compared with experiment results is within8.91% and 5.66% respectively. The more cryongenic liquid filled, thehigher the accuracy.So considering the effect of practicality and computational efficiency, the accuracy of steady-state conduction model is high enough for heat transfer through necks. The necks of cryogenic cylinder with height-to-diameter ratio of 2.61 and 1.94 have been analyzed basing on that model.
     (2) The thermal-mechanical coupling modelhas been establishedbasing on structural properties of cryogenic cylinder. The thermal stresses of cryogenic cylinder with height-to-diameter ratio of 2.61 and 1.94 under the static load and impact load have been analyzed respectively.The position with the highest stress level has been confirmed which is along theedge of opening on head, and the root of neck tube becomes the weakest link. The tress classification of discontinuity stress in most dangerous section has been also analyzed byusing the method of equivalent linearization.
     (3) The optimization analysisof neck tube is based on the above two models ofsteady-state conduction model and thermal-mechanical coupling model.The effect of dimensionless parameters with h/H,d/D andδn/δon heat flux through the necks and the max thermal stress have been researched, so the optimization analysis of neck is reviewed from two aspects of heat transfer and strength to find out the optimaldimension parameter. And the importance of opening reinforcement has been discussed.The study result has guiding significance for design and application of cryogenic cylinders.
     (4) As an important technology parameter to evaluate the thermal insulating properties of cryogenic cylinders, daily evaporation rate which is attracting more attention can intitively reflect the thermal insulating properties of cryogenic cylinders, so the accurate measurement and calculation of daily evaporation rate for cryogenic cylinders is very important. This thesis researches the influencing factores of daily evaporation rate which includes environmental temperature, environmental pressure and liquid height by using numerical simulation mothed and experimental.And the more accurate more reasonable correction methods are put forward to calculate daily evaporation rate which can provid the data support for revision of national standard GB 18443《Testing method of performance for vacuum insulation cryogenic equipment-Part 5: Static evaporation rate measurement》
     The research method and conclusion of this thesis makes design of cryogenic cylinders more rational, and provides theoretical basis and engineering value for design and application of cryogenic cylinders.
引文
[1]张宝凤编著.现代低温技术.上海:同济大学出版社,1989.
    [2] C.M. Madasamy, V. Kalyanaraman. Analysis of plated with rectangular cutouts and internal supports using spline finite strip method. Computers and Structure, 199452 (2):277-286.
    [3] AbrateSerge. Vibration of composite plate with internal supports. International Journal of Mechanical Sciences, 1994 36(11):1027-1043.
    [4]符锡理. 140m3液氢铁路槽车的绝热性能和环境因素对液氢蒸发损失的影响.低温工程, 19913(61):11-18.
    [5]魏蔚,汪荣顺.多种材料复合的阻燃型高真空多层绝热结构:中国, 200810040155.2. 2008-07-03.
    [6]张祉佑,石秉三主编.低温技术原理与装置(上).北京:机械工业出版社,1987.
    [7] D. Tantam. Application of cryogenic containers. Cryogenics,198121(12):691-695.
    [8]罗植廷.气体产品液化贮运的优越性与实现可能性的探讨.低温与特气, 1993(2):4-9.
    [9] http://www.taylor-wharton.com/. Onboard Fueling Systems, Tank specification,2004.
    [10] http://www.chart-ind.com/. Cryogenic Storage&Distribution. Transportable product, 2004.
    [11]陈善年,关密.低温绝热.化学工程, 1981(5):52-61.
    [12] P.Peterson,. The heat-tight vessel. (Univ of Lund, Sweden, 1951)
    [13] L.C. Matsch. Advances in multilayer insulations. Advances in Cryogenic Engineering, 1961(7):413-418.
    [14] R.H. Kropschot, et al. Multiple-layer insulation. Advances in Cryogenic Engineering, Plenum Press, New York, 1960(5):189-197.
    [15] M.P. Hnilicka. Engineering aspects of heat transfer in multilayer reflective insulation and performance ofNRC insulation. Advances in Cryogenic Engineering, Plenum Press, New York, 1960(5):199-208.
    [16] M.W. Liggett. Space-based LH2 propellant storage system: subscale ground testing results. Cryogenics, 1993 33(4):438-442.
    [17] J.R. Schuster, C.T. Huynh, G.E. Williams. Electric orbit transfer vehicle cryogenic propellant system. Cryogenics, 1993 33(4):423-428.
    [18] Che-Shing Kang. Multilayer insulation for spacecraft applications. COSPAR Colloquia Series,1999(10):175-179.
    [19] Peng Li,Huier Cheng. Thermal analysis and performance study for multilayer perforatedinsulation material used in space. Applied Thermal Engineering, 200626(16):2020-2026.
    [20] C.K. Krishnaprakas, K. Badari Narayana, Pradip Dutta. Heat transfer correlations for multilayer insulation systems. Cryogenics, 200040(7):431-435.
    [21] G.R Cunnington, C.L. Tien. A study of heat transfer processes in multilayer insulation. AIAAPaper No. 69-607,1970.
    [22] James E.Fesmire, Stanislaw D.Augustynowicz. Methods of testing thermal insulation and associated test apparatus. United States patent: US 6742926 B1, Jun.1, 2004.
    [23] James E.Fesmire, Stanislaw D.Augustynowicz. Multipurpose thermal insulation test apparatus. United States patent: US6487866 B1, Dec.3, 2002.
    [24] James E.Fesmire, Stanislaw D.Augustynowicz. Thermal insulation testing metho and apparatus. United States patent: US6824306 B1, Nov.30, 2004.
    [25]魏蔚,汪荣顺.高真空多层绝热被的性能及其量热器的试验研究.低温与超导, 2007(35):21-24.
    [26] W. Wei, X.D. Li, R.S. Wang, et al.. Effects of structure and shape on thermal performance of perforated multi-Layer insulation blankets. Applied Thermal Engineering, 2009 29(5-6):1254-1266.
    [27] R. K.MacGregor, J. T.Pogson, D. J.Russell. Numerical evaluation of multilayer insulation system performance.AIAA PaperNo. 70-84,1970.
    [28] Kamran Daryabeigi. Thermal analysis and design optimization of multilayer insulation for reentry aerodynamic heating. Journal of Spacecraft and Rockets, 2002 39(4):509-514.
    [29] H. Reiss. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks Part I: Stationary conditions. Cryogenics, 200444(4):259-271.
    [30] H. Reiss. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks Part II: Unsteady-state conditions (cool-down period). Cryogenics, 200646(12):864-872.
    [31] H. Reiss. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluidnetworks Part III: Unsteady-state conditions (evacuation period). Cryogenics, 200646(12):873-880.
    [32] F.E.Ruccia, R.B.Hinckley. The surface emittance of vacuum-metallized polyester film. Advances in Cryogenic Engineering, 1966(11):300-307.
    [33] S.B. Milman and M.G. Kaganer. Heat transfer by combined radiation and conduction in cryogenic vacuum-multilayer thermal insulation. Journal of Engineering Physics and Thermophysics, 1984 46(5):542-547.
    [34] S.L. Bapat, K.G. Narayankhedkar, T.P.Lukose. Experimental investigation of multilayer insulation. Cryogenics, 1990 30(8):711-719.
    [35] S.L. Bapat, K.G. Narayankhedkar, T.P. Lukose. Performance predictions of multilayer insulation. Cryogenics, 1990 30(8):700-710.
    [36] G.Chen, T.Sun, J.Zheng, et al. Performance of multilayer insulation with slotted shield. Cryogenics, ICEC Supplement, 1994(34):381-384.
    [37] Q. S.Shu. Systematic study to reduce the effects of cracks in multilayer insulation, Part 1: Theoretical Model. Cryogenics, 198727(5):249-256.
    [38] Q. S.Shu, R. W.Fast, H. L.Hart. Systematic study to reduce the effects of cracks in multilayer insulation, Part 2: Experimental Results. Cryogenics, 198727(6):298-311.
    [39] A. P. M.Glassford. Outgassing behavior of multilayer insulation materials.Journal of Spacecraft and Rockets, 19707(12):1464-1468.
    [40] A.P.M. Glassford, C.K.Liu. Outgassing rate of multilayer insulation materials at ambient temperature. Journal of Vacuum Science and Technology, 198017(3):696-704.
    [41] P.J. Sun, J.Y. Wu, P. Zhang, et al. Experimental study of the influences of degraded vacuum on multilayerinsulation blankets. Cryogneics, 200949(12):719-726.
    [42] G.F. Xie, X.D. Li, R.S. Wang.Study on the heat transfer of high-vacuum-multilayer-insulation tank after sudden, catastrophic loss of insulating vacuum. Cryogenics,201050(10):682-687.
    [43] V.F. Getmanets, R.S. Mikhal'chenko, P.N. Yurchenko.One-dimensional model of heat transfer in cryogenic vacuumshield thermal insulation with radiant heat sources. Journal of Engineering Physics and Thermophysics, 1982(1):78-85.
    [44] Chen Guo-baug. Experimental investigation of the insulation structure for cryogenic vessels with full active shields. Preprint ICEC-9, Kyoto, Japan, May, 1982.
    [45] O. M. Popov, S. B. Milman, M. G. Velikanova, et al. Multishield insulation systems of Dewar flasks in the 4.2-293 K range. Chemical and Petroleum Engineering, 1995 31(1):126-131.
    [46] P. Lynam, A.M. Mustafa, W. Proctor, et al. Reduction of the heat flux into liquid helium in wide necked metal dewars. Cryogenics, 1969 9(4):242-247.
    [47] R.F. Berg and G.G. Ihas. Cryostat design for efficient use of liquid helium. Physica B+C, 1981 107(1-3):595-596.
    [48] B. I. Verkin et al., Low-Temperature Technology [in Russian]. Kiev,1977:3-21.
    [49] G.G. Zhun, V.I. Shalaev and V.O.Dzhanalishvili. Kholodil naya Tekh. Tekhnol., 1985 (41): 45-51.
    [50] G.G. Zhun, V.F.Getmanets, R.S. Mikhal, et al.. Efficiency of“shieldless”method of employing the cold of vapors in cryogenic vessels with a wide neck. Journal of Engineering Physics and Thermophysics. 1988 54(4):414-419.
    [51] R.S. Mikhal chenko, V.F. Getmanets, G.G. Zhun, et al. Selection and realization of methods of reducing heat flow into cryogenic vessels with liquid nitrogen. Journal of Engineering Physics, 1989(57):807-811.
    [52]唐启雪.大口径试验杜瓦瓶漏热分析与防护.低温与超导, 1984(3):20-25.
    [53]李建民.大口径低温医用容器.低温与超导, 1982(3):7-8.
    [54]徐烈,鲁雪生.大口径低温容器颈部传热的研究.低温工程,1983(1):14-18.
    [55] M.G. Kaganer and R.S. Semenova.Investigation of heat transport through the throat of liquid oxygen containers. Inzhenerno-Fizicheskii Zhurnal, 1964 7(8):97-102.
    [56] G.R.D. Hogg. A Note on the conduction of heat down the necks of metal vacuum vessels containing liquid oxygen. Transactions of the Faraday Society, 1924(20):327-336.
    [57] E.A.Griffiths. The production of liquid oxygen for use on air. Transactions of the Faraday Society, 1921(18):224-239.
    [58] WexlerAaron. Evaporation rate of liquid helium. I. Journal of Applied Physics, 1951 22(12):1463-1470.
    [59] F.F Mende, V.M. Gorbunov, N.N. Bondarenko, et al. Broad-neck liquid helium cryostat with a long lifetime. Cryogenics, 1989 29(10): 998-1001.
    [60] Y.Kuraoka, K.Saito, T.Nogi and Misawa. Heat analysis and reduction of evaporation rate of liquid helium dewar. Cryogenics, 1979 19(4):182-186.
    [61] S.P.Gorbachev. Heat transfer in the neck of a vessel used for storing cryogenicliquids. Journal of Engineering Physics and Thermophysics, 1968 15(1):40-45.
    [62] D. Boukeffa, M. Boumaza, M.X. Francois, et al. Experimental and numerical analysis of heat losses in a liquid nitrogen cryostat. Applied Thermal Engineering, 2001 21(9):967-975.
    [63] O.Khemis, M.Boumaza, M.Ait Ali, et al. Experimental analysis of heat transfers in a cryogenic tank without lateral insulation. Applied Thermal Engineering, 2003 23(16):2107-2117.
    [64] J. Blachut, L.S.Ramachandra. Shakedown and plastic loads for internally pressurised vessel end closures. Int Conf Carrying Capacity Steel Shell Struct, Brno, Czech Republic 1997:130-136.
    [65] J.Blachut, L.S.Ramachandra, P.A.Krishnan. Plastic and shakedown loads for internally pressurised domes made from strain hardening material. Ninth Conf Pressure Vessel Technol, Sydney, 2000:57-66.
    [66] K. MagnuckI, W.Szyc.Stability of ellipsoidal heads of cylindrical pressure vessels. International Journal of Applied Mechanics and Engineering, 2000 5(2):389-404.
    [67] J.Blachut, G.D.Galletly. Externally pressurized hemispherical fibrereinforced plastic shells. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1992206(3):179-191.
    [68] J.Blachut, G.D.Galletly. Influence of local imperfections on the collapse strength of domed end closures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1993207(3):197-207.
    [69] J.Blachut, O.R.Jaiswal. On the choice of initial geometric imperfections in externally pressurized shells. Journal of Pressure Vessel Technology, 1999121(1):71-86.
    [70] C.T.F.Ross. Vibration and elastic instability of thin-walled domes under uniform external pressure. Thin-Walled Structure, 199626(3):159-177.
    [71] J.Blachut. Search for optimal torispherical end closures under buckling constraints. International Journal of Mechanical Sciences, 198831(8):623-633.
    [72] A.I.Lur'e. Statics of Thin-Walled Elastic Shells[In Russian.]. Chapter 4, Art.9. Moscow:State Publishing House of Technical and Theoretical Literature. 1947.
    [73] A.I.Lur'e. Concentration of stresses in the vicinity of an aperture in the surface of a circular cylinder. Prik.Mat.i Mekh. 1946(10):397-496.
    [74] A.C.Eringen, A.K.Naghdi,and C.C.Thiel. State of stress in a circular cylindricalshell with a circular hole. General Technology Corporation TechnicalReport No. 3-6, 1964.
    [75] P.Van Dyke. Stresses about a circular hole in a cylindrical shell. AIAA Journal, 1965(3): 1733-1742.
    [76] J. G.Lekkerkerker. The determination of elastic stresses near cylinderto cylinder. Nuclear Engineering and Design, 197220(1):57-84.
    [77] C.R.Steele,M.L.Steele. Stress analysis of nozzles in cylindrical vessels with external load. ASME Journal of Pressure Vessel Technology, 1983105(3):191-200.
    [78] C.R.Steele, M.L.Steele, Khathlan. An efficient computational approach a large opening in a cylindrical vessel. Tansaction of the ASME, Journal of Pressure vessel Technology, 1986108(4):436-442.
    [79] J.L.Mershon. A comparison of FAST2 results with test data and finite element results. PVRC Report. 1989(to appear).
    [80] K.Mokhtarian and J.S.Endicott. Stresses in intersecting cylinders subjected to pressure. WRC Bulletin No.368, 1991.
    [81] R. Natarajan, G. E. O. Widera, P. Afshari. A finite element model to analyze cylinder-cyclinder intersections. Journal of Pressure Vessel Technology,1987109(4):411-420.
    [82] P.Asfhan, G.E.O.Widera, et al.. Analysis of shell intersections. Proceedings7th Int. Conf. of Pres. Ves. Dusseldurf, Germany, 1992.
    [83] Mershon et al.. Local stresses in cylindrical shells due to external loadings on nozzle-sulement to WRC bulletin No.107. WRC Bulletin No.297, 1984.
    [84]邓勇.圆柱壳大开孔接管的应力分析.博士学位论文.北京:清华大学力学系. 1991.
    [85]薛明德.国外关于圆柱壳开孔接管问题的研究概况.压力容器. 1991 8(2):9-15.
    [86] M.D.Xue, Y.Deng and K.C.Hwang. Some results on analytical solution of cylindrical shells with large opening. Journal of Pressure Vessel Technology, 1991113(2):297-307.
    [87] Y.Deng, K.C.Hwang,M.D.Xue. The stress analysis of cylindrical shells with rigid inclusions having a large ratio of radii. SMIRT11 TransactionsF, F05/2, (Tokyo) 1991,85-90.
    [88] M.D.Xue, C. Wei, K.C.Hwang.Stresses at the intersection of two cylindrical shells. Nuclear Engineering and Design, 1995 154(3):231-238.
    [89] M.D.Xue, K.C.Hwang,L.D. Wei, et a1.. A reinforcement design method based on analysis of largeopenings in cylindrical pressure vessels. Journal of PressureVessel Technology, 1996 118(4):502-506.
    [90] M.D.Xue, H.H. Wang, K.C.Hwang. Stress analysis of cylindrical shells with nozzles due to external run pipe moments. The Journal of Strain Analysis for Engineering Design.200035(3): 159-170.
    [91] M.D.Xue,D.F. Li, K.C.Hwang. Analytical solution of two intersecting cylindricalshells subjected to transverse moment on nozzle.International Joural of Solids and Srutures, 200441(24-25):6949-6942.
    [92] M.D.Xue,D.F. Li, K.C. Hwang.Theoretical stress analysis of intersecting cylindrical shells subjected to external loads transmitted through branch pipes.International Journal of Solids and Structures,200542(11-12):3299-3319.
    [93] M.D.Xue,Q.H. Du,K.C.Hwang,et al..An analytical method for cylindrical shells with nozzles due to internal pressure and external loads-Part I:Theoretical Foundation. Journal of Pressure Vessel Technology,2010132(3):1-8.
    [94]中华人民共和国行业标准(JB4732-95).钢制压力容器-分析设计标准.附录J:圆柱壳开孔接管的应力分析.中华人民共和国机械工业部,化工部,劳动部,中国石化总公司.北京:全国压力容器标准化技术委员会, 1995-03-0718.
    [95] G.D.Galletly. Analysis of discontinuity stresses adjacent to a central circular opening in a hemispherical shell. David Taylor Model Basin Report No.870, NS731038, 1954.
    [96] G.D.Galletly. Bending of 2:1 and 3:1 open crown ellipsoidal shells. Welding Research Council Bulletin, 1959, No 59.
    [97] G.D.Galletly. Influence coefficients and pressure vessel analysis. ASME Journal of Engineering for Industry, 1960(82):259-269.
    [98] Y.J.Chao and M.A.Sutton. Radial flexibility factors of nozzles in pressure vessel heads.Journal of Strain Analysis for Engineering Design, 1985 20(2):87-92.
    [99] Y.J.Chao and M.A.Sutton. Stress analysis of ellipsoidal shells with radial nozzle. International Journal of Pressure Vessels and Piping, 1985 21(1):189-108.
    [100] Y.J.Chao and M.A.Sutton. Stress concentration factors for nozzles in ellipsoidal pressure vessel heads due tothrust loads. International Journal of Pressure Vessels and Piping, 1985 19(1):69-81.
    [101] Y.J.Chao, B.C.Wu, M.A.Sutton. Radial flexibility of welded-pad reinforced nozzles in ellipsoidal pressurevessel heads. International Journal of Pressure Vessels and Piping, 1986 24(2):189-207.
    [102] N.G.Mashel. Strength analysis of ellipsoidal transitions in vessels and apparatus under internal pressure. Chemical and Petroleum Machine building, 1977(6):3-5.
    [103] S.J.Brown. A finite plate method to solve cylinder to cylinder structure subject to internal pressure. Journal of Pressure Vessel Technology, 1977 99(3):404-413.
    [104] S.J.Brown. On the mechanical and thermal transient analysis of cylinder-to-cylinder vessels by a finite plate method. International Journal of Pressure Vessels and Piping, 19797(1):31-64.
    [105] C.P.Johnson. The analysis of thin shells by a finite element procedure, Report No. 67-22, Department of Civil Engineering, University of California, Berkeley, September 1967.
    [106] C.P.Johnson, P.C.Smith. A computer program for the analysis of thin shells. Report No.69-5, Department of Civil Engineering, University of California, Berkeley, August 1967.
    [107] O.Greste. Finite element analysis of tubular K joints. Report No.UCSESM 70-11, University of California, Berkeley, June 1970.
    [108] O.Greste. A computer program for the analysis of tubular K joints. Report No. 69-I9, Department of Civil Engineering, University of California, Berkeley, November 1969.
    [109] V.N.Skopinskyand N.A.Berkov. Stress analysis of ellipsoidal shell with nozzle under internal pressure loading. Journal of Pressure Vessel Technology, 1994116(4):431-436.
    [110] V.N.Skopinsky. Theoretical analysis of composite shell intersections. Journal of Strain Analysis, 199934(2):107-116.
    [111] V.N.Skopinsky.Stresses in ellipsoidal pressure vessel heads with noncentral nozzle. Nuclear Engineering and Design, 2000198(3):317-323.
    [112] V.N.Skopinsky. and A.B.Smetankin. Parametric study of pressure vessel head with offset nozzle. International Journal of Pressure Vessels and Piping, 200380(5):334-343.
    [113] V.N.Skopinskyand A.B.Smetankin.Modeling and stress analysis of nozzle connections in ellipsoidal heads of pressure vessels under external loading. International Journal of Applined Mechanics and Engineering, 200611(4):965-976.
    [114] J.L.Ha, B.C.Sun,B.Koplik. Local stress factors of pipe-nozzle under internal pressure. Nuclear Engineering and Design, 1995157(1-2):81-91.
    [115] J.Lin, B.C.Sun, B.Koplik. Local stress factors of pipe-nozzle due to radial load,circumferential and longitudinal moments. In: PVP-Vol. 265, Design Analysis, Robust Methods, and Stress Classification, ASME 1993:307-318.
    [116] G.Lu, B.C.Sun, B.Koplik. Local stress factors of pipe-nozzle when nozzle thickness is proportionally thinner. In: PVP-Vol. 282, Pressure Vessels, Pumps, Valves, Pipe Supports and Components, ASME 1994:115-123.
    [117] J.W.Bryson, W.G.Johnson,B.R.Bass. Stresses in reinforced nozzle-cylinder attachments under internal pressure loading analyzed by the finite element method-A parameter study. OakRidge National Laboratory Report No.ORNL/NVREG-4.1977.
    [118] J.W.Bryson, W.G.Johnson, B.R.Bass. Stresses in reinforced nozzle-cylinder attachments under external moment loadings analyzed by the finite-element method: A parameter Study. OakRidge National Laboratory Report No.ORNL/NUREG-52.1979.
    [119] Akhtar S. Khan, Jian-Cun Chen, Chiuder Hsiao and Glynn Woods. A comparative study of the stress field around a reinforced and an unreinforced normal intersection of two cylindrical shells. International Journal of Pressure Vessels and Piping, 1984 15(2):79-92.
    [120] M.G.Kinkwood, G.D.T Carmichael, D.G.Moffat. Finite element stress analysis of an equal diameter branch pipe intersection subjected to out-of-plane and twisting moments. The Journal of Strain Analysis for Engineering Design, 1986 21(1): 9-16.
    [121] J.Lock, G.D.T.Carmichael, D.G. Moffat. Finite element stress analysis on an equal diameter branch pipe intersection subjected to internal pressure and in-plane moment loadings. Pipework design and operation, 1985 (IMechE, London):59-70.
    [122] D.G.Moffat. and M.G.Kirkwood. Flexibility factors for fabricated equal diameter branch pipe intersections. Inst Mech Engrs C5/85 1985:49-58.
    [123] D.G.Moffat, J.A.M.Mwenifumbo, S.H.Xu, et al.. Effective stress factors for piping branch junctions due to internal pressure and external moment loads. IMechE, Journal of Strain Analysis for Engineering Design, 1991 26(2):85-101.
    [124] D.K.Williams. Development of stress intensity factors for fabricated tee branch connections. ASME Pressure Vessel Piping, 1995(301):55-66.
    [125] Amran Ayob, Sress analysis of torispherical shell with radial nozzle. Journal-The Institution of Engineeris, Malaysia, 2006 67(3):59-64.
    [126] D.G.Moffat, J.Mistry. and S.E.Moore. Effective stress factor correlation equations for piping branch junctions under internal pressure loading. ASME Journal Pressure Vessel Technol, 1999121(2):122-126.
    [127] J.P.Finlay, G.Rothwell, R.Englis, et al.. Effective stress factors for reinforcedbutt-welded branch outlets subjected to internal pressure or external moment loads. International Journal of Pressure Vessels and Piping, 2003 5(80):311-331.
    [128] Amran Bin Ayob. The effect of D/T on the load interaction behavior of a plain pipe. ASME Journal of Pressure Vessel Technology, 2004 126(4):518-523.
    [129]张如一,陆耀桢.实验应力分析.北京:机械工业出版社,1981年.
    [130]符锡理.低温容器蒸发率的测定和评定.低温与特气, 1988(3):54-58.
    [131]徐烈.低温容器标准蒸发率的校正曲线.低温工程, 1991(1):30-41.
    [132] Y.S.Cha, R.C.Niemann and J.R. Hull, Thermodynamic analysis of helium boil-off experiments with pressure variations. Cryogenics, 1993 33(7) 675-679.
    [133] P. Hanzelka and V. Musilovh. Influence of changes in atmospheric pressure on evaporation rates of low-loss helium cryostats. Cryogenics, 1995 35(3):215-218.
    [134] Pavel Hanzelka, Jaroslav. Horky. Problems of measurement of the helium boil off rate of tomographic magnets. Cryogenics, 1999 39(7):647-649.
    [135] M.G. Kaganer. Heat and mass transfer in low-temperature thermal insulation constructions [in Russian],énergiya, Moscow 1979.
    [136]陈大中.实验误差估计与数据处理.上海:上海交通大学出版社,1991.
    [137] Model 2700 Multimeter/Switch System User's Manual.U.S.A Keithley Instruments,Inc,2002.
    [138] V.J.Johnson. Properties of materials at low temperature (phase 1). Pergamon Press, 1961.
    [139]王心明.工程压力容器设计与计算国防工业出版社,1986.
    [140]陈偕中.化工容器设计.上海:上海科学技术出版社,1987.
    [141]周正雄.高真空多层绝热中接触导热数值计算和试验研究.上海交通大学,硕士学位论文, 2007.
    [142] R.J. Corruccini. Gaseous heat conduction at low pressures and temperatures. Vacuum, 1959(7-8):19-29.
    [143] S. Jacob, S. Kasthurirengan, R. Karunanithi. Investigations into the thermal performance of multilayer insulation(300-77K), part2:Thermal analysis. Cryogenics, 1992, 32(12):1147-1153.
    [144] G.R. Cunnington, C.W. Keller, G.A. Bell. Thermal performance of multilayer insulations. Lewis Research Center Cleveland, Ohio April 1971, NASA-CR 72605.
    [145] A. Matsuda and H. Yoshiligo. Simple structure insulating material properties for multilayer insulation. Cryogenics, 1980 (20):135-138.
    [146] H. Chau and H.C. Moy. Thermal characteristics of multilayer insulation. Heat Transfer and Spacecraft Thermal Control, Progress in Astronaytics and Aeronaytics, 1971(24):449-479.
    [147]杨耀华.镀铝薄膜辐射率的测试.低温工程, 1992(2):37-41.
    [148]陈国邦,张鹏.低温绝热与传热技术.北京:科学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700