用户名: 密码: 验证码:
挠性航天器的刚柔耦合动力学建模与姿态控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以挠性多体航天器为研究对象,针对挠性航天器动力学特性复杂、系统不确定性突出、控制输入饱和、存在外部干扰以及高精度姿态控制要求等特点,采用理论分析与数值仿真相结合的方法,从刚柔耦合动力学建模与鲁棒姿态控制两个方面进行研究。主要工作如下:
     1.建立了挠性航天器的一次近似动力学模型,分析了零次近似模型和传统控制模型的适用范围
     首先,分析了空间梁的非线性变形场,采用JouTdain速度变分原理建立了柔性梁的有限元离散模型;然后,采用假设模态法和Lagrfdllge方法建立了带附加质量挠性航天器的一次近似动力学模型和一次近似控制模型;最后,从频率相对误差的角度分析了零次近似模型和传统控制模型的适用范围。
     2.建立了符号计算与数值积分一体化仿真平台,仿真验证了动力刚化现象
     该平台包括三大模块:符号计算模块、数值积分模块和数据分析模块。在该平台上,对刚柔耦合挠性航天器大范围姿态机动过程中产生的动力刚化现象进行了仿真验证。
     理论分析和仿真结果表明:动力刚化现象是非惯性系下的结构动力学问题,柔性体变形场中的二次耦合项是产生这种现象的根本原因;一次近似模型比零次近似模型具有更广泛的适用性;一次近似控制模型能正确反映挠性航天器的动力学特性,可用于控制器设计;柔性体变形场的不同描述会导致附加质量对模型频率产生不同影响。
     3.提出了模糊控制器的设计方法,设计了参数不确定挠性航天器的模糊区域控制器
     首先,基于模糊区域模型和最大交叠规则组的概念,采用分段LVapunov函数法提出了Ts模糊控制器的系统化设计方法;其次,针对前提变量采用标准模糊分划的不确定Ts模糊区域模型,提出了PDc模糊区域控制器的设计方法;最后,基于挠性航天器的姿态动力学方程建立了Ts模型,设计了模糊区域控制器。仿真结果表明,模糊区域控制器对模型参数不确定性具有很好的鲁棒性,能够使挠性航天器完成高精度姿态机动和振动抑制。
     4.提出了移动滑模控制器和自适应滑模控制器的设计方法,设计了控制受限挠性航天器的滑模控制器
     首先,研究了受限滑模控制系统的滑模域与吸引域,提出了二阶线性系统非线性切换面的设计方法;其次,将弹性模态引入挠性航天器的状态空间方程,提出了分步滑模控制器和移动滑模控制器的设计方法;最后,提出了带模糊边界层的自适应滑模控制器,并采用智能材料设计了应变速率反馈补偿器抑制弹性振动。"仿真结果表明,受限滑模控制器对系统不确定性和外部干扰具有很好的鲁棒性,能够实现航天器的高精度姿态控制和振动抑制。
     5.提出了挠性航天器惯量矩阵观测器和干扰观测器的设计方法,设计了基于观测器的挠性航天器姿态跟踪控制器
     首先,针对目标姿态角速度L。。有界,目标姿态角加速度L。。和L2有界的姿态跟踪控制问题,采用Barbalat引理设计了基于模态观测器的非线性反馈姿态跟踪控制器;其次,提出了挠性航天器惯量矩阵观测器和干扰观测器的设计方法;最后,综合考虑模态坐标不可测、惯量矩阵未知和存在外部干扰的情况,设计了基于观测器的挠性航天器姿态跟踪控制器,它只需要姿态角和姿态角速度的反馈信息。
     仿真结果表明,姿态跟踪控制器具有良好的鲁棒性,能够实现航天器的高精度姿态跟踪控制和振动抑制。综上所述,论文建立了挠性航天器的一次近似动力学模型;分析了刚柔耦合的机理和零次近似动力学模型的适用范围;针对参数不确定、存在外部干扰、模态坐标不可测和控制输入饱和等情况,设计了挠性航天器的Ts模糊区域控制器、受限滑模控制器和基于观测器的姿态跟踪控制器。得到的一些有意义的结论对挠性航天器姿态控制系统设计具有一定的参考价值。
Rigid-flexible coupling dynamics and robust control of flexible multi-body spacecraft are investigate in the paper, which involves the characteristics of complicated dynamic characters, system uncertainties, input nonlinearity, external disturbances and precision control requirements. The main contents and innovative work can be summarized as follows:
     (1) The first-order approximate dynamic model of a flexible spacecraft is developed, the applicability of its traditional models for simulation and control are analyzed.
     Firstly, the finite-element model of a flexible beam is developed by using Jourdain’s velocity variational principle, in which the second-order coupling term of axial deformation displacement caused by that of transverse is included. Secondly, the first-order approximate dynamic model and control model of a flexible spacecraft with attached mass are developed by using assumed mode method and Lagrange’s method. Finally, the applicability of zero-order approximate dynamic model and traditional control model are analyzed with respect to the relative error of the frequency.
     (2) Simulation platform of symbolic and numerical compute programs is established, dynamic stiffening is validated based on this platform.
     The platform consists of three modules: symbolic compute module, numerical integralization module and data analyze module. The dynamic stiffening of a flexible spacecraft undergoing large maneuvering is validated based on this platform. Numerical simulations and theoretical analysis show that, firstly, the second-order term of deformation field has a significant effect on the dynamic characteristics of the system and the dynamic stiffening is accounted for; secondly, the first-order approximate dynamic model is more adaptive than the zero-order approximate dynamic model; thirdly, the simplified first-order approximate dynamic model can be used for controller design; finally, the end mass has different effects on the model frequency according to different descriptions of deformation field.
     (3) Fuzzy region controller of a flexible spacecraft with parameter uncertainty is developed.
     Firstly, systematic design method of TS fuzzy controller is provided by using piecewise Lyapunov functions based on fuzzy region model and maximal overlapped-rules group. Secondly, a sufficient condition of quadratic stability of uncertain TS fuzzy region model is presented by using linear matrix inequality method and Schur complement theory, where the premise variables of the fuzzy model adopt standard fuzzy partition. Finally, dynamic equations of a flexible spacecraft are described as uncertain TS fuzzy model, where fuzzy region controller is obtained. Numerical simulation results show that, the fuzzy region controller can make the spacecraft accomplish the maneuvering with high precision and vibration suppression in spite of parameter uncertainty.
     (4) Sliding mode controller of a flexible spacecraft with bounded input is developed
     Firstly, the sliding mode domain and reaching domain of sliding mode control system with input nonlinearity are investigated, and the design of nonlinear switching surfaces is presented. Secondly, the step-by-step sliding mode controller and moving-surface sliding mode controller are provided with mode coordinates being taken accounted into the state space equations. Finally, adaptive sliding mode controller with fuzzy boundary layer is provided, strain rate feedback controller is designed to actively suppress the vibration of flexible appendages. Simulation results show that, the controllers are robust to parameters uncertainties and external disturbances which can make the spacecraft accomplish the maneuvering with high precision and stabilization.
     (5) Attitude tracking controller of flexible spacecraft is developed based on estimators
     Firstly, a nonlinear feedback tracking controller is designed by using Barbalat lemma and Lyapunov function, where the tracked attitude velocity is bounded and its derivation not only is bounded but also has limited energy. Secondly, both of inertia-estimator and disturbance-estimator are constructed. Finally, a nonlinear feedback controller based on estimators is developed, which only requires the feedback of the attitude angle and angular velocity of the flexible spacecraft. Simulation results show that, the nonlinear feedback tracking controller is effective.
     In the paper, the first-order approximate dynamic model of a flexible spacecraft is developed, and the applicability of traditional models is analyzed. Then, TS fuzzy region controller, sliding mode controller and attitude tracking controller are provided for the attitude control of a flexible spacecraft, where mode coordinates are immeasurable, the inertia matrix is unknown, external disturbances exits and the control inputs are bounded. These conclusions can provide reference for modeling and attitude control of flexible spacecraft in the future.
引文
[1]马兴瑞,苟兴宇,李铁寿等.航天器动力学发展概况[J]_宇航学报,2000,21(3):1-5.
    [2]曲广吉.航天器动力学工程[M].北京:中国科学技术出版社,2000.
    [3]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,1997:1-14.
    [4] Sanyal A,Fosbury A,Chaturvedi N,et a1.Inertia—Free Spacecraft Attitude Tracking with Disturbance Rejection and Almost Global Stabilization[J]Journal ofGuidance,Control,and Dynamics,2009,32(4):1 167—1 178.
    [5] Gennaro S D.Attitude Tracking for Flexible Spacecraft from Quatemion Measurements[C].Proceedings ofthe IEEE Conference on Decision and Contr01.Las Vegas,NV,United States,2002:4090—4091.
    [6] Fletcher H.J,Rongved L.Dynamics Analysis of a Two—Body Gravitationally Oriented Satellite[J]J.Bell System Tech.,1963,42(5):2239—2266.
    [7]Hooker W W,Margulies G.The Dynamical Attitude Equation for all N—Body Satellite[J]Journal ofthe Astronautical Sciences,1965,12(4):123—128.
    [8]Hooker W W.A Set of Dynamical Attitude Equation for an Arbitrary N—Body Satellite Having Rotational Degree of Freedom[J]AlAA Journal,1970,(8):1205—1207.
    [9] Roberson R E,Wittenburg J.A Dynamical Formalism for an Arbitrary Number of Interconnected Rigid Bodies,with Reference To the Problem of Satellite Attitude Control[C].Proceedings of the International Federation of Automatic Control Butterworth,London,1966:45:2—46.
    [10]Wittenburg J.Dynamics of Systems of Rigid Bodies[M].Stuttgart:Teubner,1977.
    [11]Winfry R C.Dynamics Analysis of Elastic Link Mehchanisms by Reduction of Coordinates[J]ASME Journal ofEngineering for Industry,1972,94:577—582.
    [12]Erdman A G,Sandor G N,Oakerg R G.A General Method for Kineto—Elastodynamic Analysis and Sythesis of Mechanisms[J]ASME Journal of Engineering for Industry,1972,94(4):1 193—1205.
    [13]Nurre G S.Dynamics and Control of Large Space Structures[J]Journal of Guidance,Control,and Dynamics,1984,7(5):5 14—526.
    [14]缪炳祺,曲广吉,程道生.柔性航天器的动力学建模问题[J J_中国空间科学技术,1999,(5):35—40.
    [15]曲广吉.航天器动力学技术的发展和挑战[J J_环境与强度,2003,30《4):1-6.
    [16]Yigit A,Scott R A,Ulsoy A G.Flexural Motion of a Radially Rotating Beam Attached to a Rigid Body[J J_Journal of Sound and Vibration,1988,121(2):20l一2l0.
    [17]Giovagnoni M.Near Decoupled Models for a Slewing Beam Undergoing Large Rotations[J]Journal ofSound andVibration.1993.164(3):485—501.
    [18]Meirovitch L,Nelson H D.High—Spin Motion of a Satellite Containing Elastic Parts[J]Journal of Spacecraft and Rockets,1966,3(1 1):1597—1602.
    [19]Linkins P W,Wirsching P H.Use of Synthetic Modes in Hybrid Coordinate Dynamic Analysis[J]AIAA Journal,1968,6(10):1867—1872.
    [20]Hughes P C.Recent Advances in the Attitude Dynamics of Spacecraft[J] Canadian Aeronautics and Space Journal,1973,19(4):165—171.[2 1]Meirovitch L,Quinn R D.Equations of Motion for Maneuvering Flexible Spacecraft[J]Journal of Guidance,Control,and Dynamics,1987,10(5):453.
    [22]Meirovitch L.H’ybrid State Equations of Motion for Flexible Bodies in Terms of Quasi—Coordinates[J]Journal ofGuidance,Control,and Dynamics,1991,14(5):1008—1012.
    [23]Meirovitch L.State Equaions for Maneuvering and Control of Flexible Bodies Using Quasimomenta[J]Journal of Guidance,Control,and Dynamics,1993,16r5、:882.
    [24]Kane T R,Levinson D A.Formulation of Equations of Motion for Complex Spacecraft[J]1980,3(2):99.
    [25]Ho J Y L.Direct Path Method for Flexible Mutibody Spacecraft Dynamics[J] Journal of Spacecraft and Rockets,1977,14(2):102—110.
    [26]Boland P,Samin J C,Willems P Y.Stability Analysis of Interconnected Deformable Bodies in a Topological Tree[J]AIAA Journal,1974,12(8):1025—1030.
    [27]Hughes P C.Dynamics of a Chain of Flexible Bodies[J]Journal of the Astronautical Sciences,1979,27(4):359—380.
    [28]Huston R L,Passerello C E.Multibody Structural Dynamics Including Translation Between the Bodies[J]Computers and Strucmres,1980,12(5):7 13—720.
    [29] Shabana A A.Flexible Multibody Dynamics:Review of Past and Recent Developments[J]Multibody System Dynamics,1997,1:189—222.
    [30]Kim S S,Haug E J.Recursive Formulation for Flexible Multibody Dynamics,Part I:Open—loop systems[J]Computer Methods in Applied Mechanics and Engineering,1988,7 1(3):293—3 14.[3 1]Kim S S,Haug E J.Recursive Formulation for Flexible Multibody Dynamics,part II.Closed Loop Systems[J]Computer Methods in Applied Mechanics and Engineering,1989,74(3):25 1-269.
    [32]Dong S,Allen K,Bauer P,et a1.Self-Assembling Wireless AutonomouslyTeconfigurable Module Design Concept[J]Acta Astronautica,2008,62(2—3):246—256.
    [33]Suleman A,Modi V J,Venkayya V B.Study of the Space St~ion’Freedom’Tesponse to the Disturbance Environment[C].Advances in the Astronautical Sciences,San Diego,CA,USA.1993:2127—2130.
    [34]Nurre G S,Ryan R S,Scofield H N,et a1.Dynamics and Control of Large Space Structures[J]Journal ofGuidance,Control,and Dynamics,1984,7:514—526.
    [35]Likins P W.Spacecraft Attitude Dynamics and Control—a Personal Perspective Oil Early Developments[J]Journal of Guidance,Control,and Dynamics,1986,9:129—134.
    [36]Bainum P M,A Review of Modeling Techniques for the Open and Closed loop Dynamics of Large Space Structures:Dynamics and Control[M],Springer—Verlag.1998:165—177.
    [37]Rao V S.Modeling,Control,and Design of Flexible Structures:A Survey[J] Applied Mechanics Reviews,1990,43(5):99—117.
    [38]黄文虎,邰成勋等著.多体系统动力学[M].北京:科学出版社,1996.
    [39]洪嘉振,潘振宽.柔性多体航天器动力学[J J_宇航学报,1992,4:59—67.
    [40]洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展[J]_动力学与控制学报,2004,2(2):1-6.
    [41]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [42]缪炳祺,曲广吉,夏遽勤.柔性航天器的模态综合一混合坐标动力学建模[J J_浙江工业大学学报,2002,30(2):139—152.
    [43]和兴锁,邓峰岩,张烈霞等.大型空间刚柔耦合组合体的动力学建模[J_机械科学与技术,2004,23(5):543—607.
    [44]蒋建平,李东旭.带太阳帆板航天器刚柔耦合动力学研究[J J_宇航学报,2006.27(31:418-422.
    [45]蒋丽忠,洪嘉振.带柔性部件卫星耦合动力学建模理论及仿真[J J_宇航学报,2000,21(3):39—44.
    [46]刘莹莹,周军.挠性多体航天器姿态动力学建模与分忻[J_飞行力学,2005,23(3):60—63.
    [47]缪炳祺,曲广吉,夏遽勤等.柔性航天器动力学建模的伪坐标形式Lagrange方程l Jl_中国空间科学技术,2003,2:1-5.
    [48]杨辉.刚一柔耦合动力学系统的建模理论与实验研究[D J.上海:上海交通大学,2002:29—51.
    [49]曲广吉,程道生.复合柔性结构航天器动力学建模研究[J J_中国工程科学,1999,1(2):52—56.
    [50]Kane T R,Ryan R R,Banerjee A K.Dynamics ofa Cantilever Beam Attached to a Moving Base[J]Journal of Guidance,Control,and Dynamics,1987,10(2):139—150.
    [51]Modi V J.Attitude Dynamics of Satellites with Flexible Appendages—A Brief Review[J]Journal ofSpacecraft andRockets,1974,11(11):743—751.
    [52]Mayo J,Dominguez J,Shabana A A.Geometrically Nonlinear Formulation of Beams in Flexible Multibody Dynamics[J]Journal of Vibration and Acoustics,1995,1 17:501—509.
    [53]Wallrapp O.Standardization of Flexible Body Modeling in Multibody System Codes,Part I:Definition of Standard Input Data[J]Mechanics of Structures and Mechanics,1994,22(3):283—304.
    [54]Wallrapp O,Schwertassek R.Representation of Geometric Stiffening in Multibody System Simulation[J]International Journal for Numerical Methods in Engineering,1991,32:1833—1850.
    [55]Zhang D J,Huston R L.On Dynamic Stiffening of Flexible Bodies Having High Angular Velocity[J J_Mechanics of Structures and Machines,1996,24《3):3 13—329.
    [56]陈荣娟.建立大柔性多体结构航天器的动力学模型与面向控制的仿真平台[D].长沙:国防科技大学,2002.
    [57]祝小谦.计算机符号推演模型分解方法研究与应用[J J_系统仿真学报,2004,16(8):1805—1807.
    [58]Levinson D A,Kane T R.Simulation ofLarge Motions ofNonuniform Beams in Orbit[C].Advances in the Astronautical Sciences,North Lake Tahoe,NV,USA.1982:301-305.
    [59]覃正.柔性多体系统动力学研究及存在的问题[J]_力学进展,1994,25《2):248—256.
    [60]陈立群,刘延柱.控制一类磁性刚体航天器的混沌姿态运动[J J_力学季刊,2001,22(3):295—299.
    [61]Modi V J,Ng A C,Karray F.Slewing Dynamics and Control of the Space Staion—Based Mobile Servicing System[J]Acta Astronautica,1995,35(2—3):1 19—125.
    [62]Tafazoli S,Khorasani K.Nonlinear Control and Stability Analysis of Spacecraft Attitude Recovery[J]IEEE Transactions on Aerospace and Electronic Systems,2006,42(3):825—844.
    [63]邱志成,谢存禧,吴宏鑫.压电挠性板的H。鲁棒控制[J J_系统仿真学报,2004,16(8):1816—1817.
    [64] Brent A,Robert H.A High Performance Robust Attitude Controller for FlexibleSpacecraft[J]AlAA一94—3560一CP.
    [65]Charng S W,Bor S C.Unified Design for H2,H。and Mixed Control of Spacecraft[J]Journal of Guidance,Control,and Dynamics,2000,22(6):1302—1310.
    [66]胡庆雷,刘亚秋,马广富.挠性航天器姿态机动的变结构主动振动抑制[J J_控制理论与应用,2007,24(3):329—336.
    [67]王炳全,崔祜涛.轻型高精度卫星的变结构姿态控制器[J_航空学报,2000,21(5):417—420.
    [68]管萍,刘小河,刘向杰.挠性卫星的变结构姿态控制[J J_控制理论与应用,2007,24(3):480—484.
    [69]唐超颖,沈春林,李丽荣.航天器姿态滑模变结构控制系统的设计[J J_南京航空航天大学学报,2003,35(4):361-365.
    [70]周连文,周军,李卫华.基于遗传算法的挠性航天器大角度机动的变结构控制[J J_上海航天,2005,《1):15—18.
    [71]王晓磊,吴宏鑫.挠性航天器非线滑动模态控制和实验研究[J J_宇航学报,2001,22(6):50—56.
    [72]Hu e L.Sliding Mode Maneuvering Control and Active Vibration Damping of Three—Axis Stabilized Flexible Spacecraft with Actuator Dynamics[J]Nonlinear Dynamics,2008,52(3):227—248.
    [73]Nalin A,Chamrvedi D S,Bernstein F,et a1.Globally Convergent Adaptive Tracking of Angular Velocity and Ineartia Identification for a 3-DOF Rigid Body[J J_IEEE Transactions on Control Systems Technology,2006,14《5):841—852.
    [74]王景,刘良栋.小卫星的自适应姿态控制[J J_中国空间科学技术,2002,22《1):17—23.
    [75]张洪华,张国峰.带有挠性附件卫星的自适应内模控制[J_中国空间科学技术,2002,22(1):4-9.
    [76]孙多青,吴宏鑫.多变量线性时变系统的特征模型及自适应模糊控制方法[J J_宇航学报,2005,26(6):677—68 1.
    [77]Dong C Y,wu J,Chen Y,et a1.Fuzzy Attitude Control for Flexible Satellites Using Subsection Lyapunov Method[J]Journal of System Simulation,2007,19r10、:2197—2199.
    [78]王立新著,王迎军译.模糊系统与模糊控制教程[M].清华大学出版社,2003.
    [79]Hwang C L.A Novel Takagi—Sugeno—Based Robust Adaptive Fuzzy Sliding—mode Controller[J]IEEE Transactions on Fuzzy Systems,2004,12(5):676—687
    [80]Takagi T,Sugeno M.Fuzzy Identification of Systems and its Applications to Modeling and Control[J]IEEE Transactions on Fuzzy Systems,Man and Cybernetics 1985,15(1):1 16—132.
    [81]Taniguchi T,Tanaka K,YamaNj K,et a1.Fuzzy Descriptor Systems:Stability Analysis and Design via LMIs[C].Proceedings ofAmerican Control Conference,San Diego.1999:1827—1831.
    [82]孙维,王伟.基于T—s模型的非线性系统多模型直接自适应控制[J J_控制与决策,2003,18(2):176—179.
    [83]Kiriakidis K.Fuzzy Model—Based Control of Complex Plants[J] IEEE Transactions on Fuzzy Systems,1998,6(4):517—529.
    [84]Gol6a N,Gol6a A,Benmahammed K.Fuzzy Model Reference Adaptive Control[J]IEEE Transactions on Fuzzy Systems,2002,10(4):436—444.
    [85]Gurkan E P,Banks S,Erkmen I.Stable Controller Design for the T—S Fuzzy Model of a Flexible—Joint Robot Arm based on Lie Algebra[C].Proceedings of the 42nd IEEE Conference on Decision and Contr01.Hawaii.2003:4717—4722.
    [86]Castillo T B,Meda—Campafia J A.The Fuzzy Discrete—Time Robust Regulation Problem:An LMI Approach[J]IEEE Transactions on Fuzzy Systems,2004,12r3、:360—367.
    [87]Taniguchi T,Tanaka K,Ohtake H,et a1.Model Construction,Rule Reduction,and Robust Compensation for Generalized Form of Takagi—Sugeno Fuzzy Systems[J]IEEE Transactions on Fuzzy Systems,2001,9(4):525—538.
    [88]Zhang Y X,Zhang S Y.Fuzzy Indirect Adaptive Sliding Mode Tracking Control for a Class of Nonlinear Interconnected Systems[J]Acta Automatica Sinica,2003,29(5):658—665.
    [89]Zeng K,Zhang N,Xu W.A Comparative Study on Sufficient Conditions for Takagi—Sugeno Fuzzy Systems as Universial Approximators[J] IEEE Transactions on Fuzzy Systems,2000,8(6):773—780.
    [90]Tanaka K,Sugeno M.Stability Analysis and Design of Fuzzy Control Systems[J] Fuzzy Sets and Systems.1992.45:135—156.
    [91]Wang H O,Tanaka K,Griffin M F.An Approach to Fuzzy Control ofNonlinear Systems:Stability and Design Issues[J]IEEE Transactions on Fuzzy Systems,1996,4(1):14—23.
    [92]Tanaka K,Kosaki T,Wang H O.Backing Control Problem of a Mobile Robot with Multiple Trailers:Fuzzy Modeling and LMI—Based Design[J]IEEE Transactions on Systems.Man&Cybernetics Part C:Applications and Reviews.1998.28(31:329—337.
    [93]Lee K R,Kim J H,Jeung E T,et a1.Output Feedback Robust H—Control of Uncertain Fuzzy Dynamic Systems with Time—Varying Delay[J] IEEETransactions on Fuzzy Systems,2000,8∞):657—664.
    [94]纪志成,周英焕,沈艳霞.基于分段模糊Lyapunov函数的模糊系统稳定性分忻和保性能设计l Jl_自动化学报,2008,34(6):721-728.
    [95] Kiriakidis K.Robust Stabilization of the Takagi—Sugeno Fuzzy Model via Bilinear Matrix Inequalities[J]IEEE Transactions on Fuzzy Systems,2001,9(2):269—277.
    [96]修智宏,任光,张运杰.输入采用标准模糊分划的模糊控制系统设计[J_控制理论与应用,2004,21(6):1015-1019.
    [97]Tanaka K,Yoshida H,Ohtake H,et a1.A Sum of Squares Approach to Stability Analysis ofPolynomial Fuzzy Systems[C].Proceedings ofthe American Control Conference,New York,NY,United States.2007:407 1-4076.
    [98]Tanaka K,Ohtake H,Wang H O.A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems[J]IEEE Transactions on Fuzzy Systems,2003,11(4):582—589.
    [99]Zhang X,I_u G,Zheng Y.Stabilization of Networked Stochastic Time—Delay Fuzzy Systems with Data Dropout[J]IEEE Transactions on Fuzzy Systems.2008,16(3):798—807.
    [100]Wang Y,Sun Z e,Sun F C.Stability Anal3,sis and Control of Discrete—Time Fuzzy Systems:A Fuzzy Lyapunov Function Approach[C].Institute of Electrical and Electronics Engineers Inc,New York,United States.2004:1855—1860.
    [101]Hsu L,Oliveira D M C,Geromel J C.A New Absolute Stability Test for Systems with State—Dependent Perturbations[J]International Journal of Robust and Nonlinear Control,2002,12(14):1209—1226.
    [102]Johansson M,Rantzer A,Arzen K E.Piecewise Quadratic Stability of Fuzzy Systems[J]IEEE Transactions on Fuzzy Systems,1999,7(6):7 13—722.
    [103]Xiu Z H,Ren G.Stability Analysis and Systematic Design of Takagi—Sugeno Fuzzy Control Systems[J]Fuzzy Sets and Systems,2005,151(1):119—138.
    [104]Sun C C,wu s M,Chung H Y,et a1.Design ofTakagi—Sugeno Fuzzy Region Controller Based on Rule Reduction,Robust Control,and Witching Concept[J] Journal ofDynamic Systems,Measurement and Control,2007,129(2):163—170.
    [105]修智宏,任光.T—s模糊控制系统的稳定性分忻及系统化设计[J J_自动化学报,2004.30(5、:731—741.
    [106]Wang Y H,wu Q X,Jiang C S,et a1.Reentry Attitude Tracking Control Based on Fuzzy Feedrbrward for Reusable Launch Vehicle[J]International Journal of Control,Automation and Systems,2009,7(4):503—5 11.
    [107]Park Y,Tahk M J,Bang H.Design and Analysis of Optimal Controller for Fuzzy Systems with Input Constraint[J]IEEE Transactions on Fuzzy Systems,2004,12(6):766—779.
    [108]Park Y,Bang H,Tahk M J.Nonlinear Optimal Control of Fuzzy Systems[C].Institute of Electrical and Electronics Engineers Inc.Istanbul,Turkey.2003:234—239.
    [109]Park Y,Tahk M J,Park J.Optimal Stabilization of Takagi—Sugeno Fuzzy Systems with Application of Spacecraft Control[J]Journal of Guidance,Control,and Dynamics,2001,24(4):767—777.
    [110]Araujo E,Freitas U S,Macau E E N,et a1.Particle Swarm Optimization《PSO) Fuzzy Systems and Narmax Approaches Trade--Off Applied to Thermal--Vacuum Chamber Identification[C].Vancouver,BC,Canada.American Society of Mechanical Engineers.2006:445—455.
    [111]Liang Y W,Xu S D,Ting L W.T—S Model—Based SMC Reliable Design for a Class of Nonlinear Control Systems[J]IEEE Transactions on Industrial Electronics,2009,56(9):3286—3295.
    [112]Diong B M.Sliding—Mode Control Design for a Class of Systems with Non—Matching Nonlinearities and Disturbances[J]International Journal of Systems Science,2004,35(8):445—455.
    [113]Hall C E,Shtessel Y B.Sliding Mode Disturbance Observer—Based Control for a Reusable Launch Vehicle[J]Journal of Guidance,Control,and Dynamics,2006,29f61:1315-1328.
    [114]Bokovic J D,Li S M,Mehra R K.Robust Adaptive Variable Structure Control of Spacecraft under Control Input Saturation[J]Journal of Guidance,Control,and Dynamics,2001,24(1):14—22.
    [115]Xu Y.Sliding Mode Control and Optimization for Six DOF Satellite Form~ion Flying Considering Saturation[J]Journal of the Astronautical Sciences,2005,53r4、:433—443.
    [116]Guan P,Liu X J,Liu J Z.Adaptive Fuzzy Sliding Mode Control for Flexible Satellite[J]Engineering Applications of Artificial Intelligence,2005,18(4):451—459.
    [117]Huang X Y,Wang e,Dong C Y.Adaptive Second-Order Sliding Mode Attitude Control of Flexible Spacecraft[C].Proceedings of SPIE—The International SocietyforOpticalEngineering,Beijing,China.2008:1185—1196.
    [118]Massey T,Shtessel Y.Continuous Traditional and High—Order Sliding Modes for Satellite Form~ion Control[J]Journal of Guidance,Control,and Dynamics,2005,28(4):826—83 1.
    [119]Crassidis J L,Vadali S R,Markley F L.Optimal Variable—Structure Control Tracking of Spacecraft Maneuvers[J]Journal of Guidance,Control,and Dynamics,2000,23(3):564—566.
    [120]Sinha A,Miller D W.Optimal Sliding—Mode Control of a Flexible Spacecraftunder Stochastic Disturbances[J]Journal of Guidance,Control,and Dynamics,1995.18(3、:486—492.
    [121]Zhang M G,Geng Y H,Jia L H.Early Warning Satellite Sliding Mode Control Based on RBF Neural Networks Adaptive Learning[J]Journal of Jilin University(Engineering and Technology Edition),2007,37(4):959—964.
    [122]靳永强,刘向东,侯朝桢.航天器大角度姿态机动的自适应滑模控制[J_北京理工大学学报,2007,27(5):422—426.
    [123]周连文,周军.挠性航天器大角度机动的变结构控制[J J_航天控制,2003,21r3、:48—52.
    [124]胡庆雷,马广富.基于变结构/输入成形的航天器振动抑制方法[J J_哈尔滨工业大学学报,2006,38(10):1769—1777.
    [125]Lam e M,Drake D T,Ridgely D B.Input Saturation Treatments:A Performance Comparison of Direct Adaptive Control and D Control Methodologies[C].IEEE Aerospace Conference Proceedings,Big Sky,MT,United states.2007:310—318.
    [126]Lam e M,Barkana I.Direct Adaptive Control Treatment to Flight Control Input Saturation[C].San Francisco,CA,United states.2005:3374—3393.
    [127]Tandale M D,Valasek J.Solutions for Handling Control Magnitude Bounds in Adaptive Dynamic Inversion Controlled Satellites[J] Journal of the Astronautical Sciences,2007,55(2):171—194.
    [128]Singla P,Subbarao K.Stable Adaptive Reference Trajectory Modification for Saturated Control Applications[C].Proceedings of the American Control Conference,Seattle,WA,United states.2008:3470—3475.
    [129]Bacconi F,Mosca E,Casavola A.Formation Flying Control of a Pair of Nano—Satellites Based on Switching Predictive Control[C].Proceedings of the IEEE Conference on Decision and Control,Maui,HI,United states.2003:3603—3608.
    [130]Bacconi F,Mosca E,Casavola A.Hybrid Constrained Formation Flying Control of Micro—Satellites[J]IET Control Theory and Applications,2007,1(2):5 13—521.
    [131]刘春梅,沈毅.一类挠性卫星的受限变结构控制[J J_空间科学学报,2000,20 r1、:81-88.
    [132]胡庆雷,马广富,姜野.控制受限的挠性航天器姿态机动自适应变结构输出反馈控制『Jl宇航学报,2007,28(4):875—879.
    [133]胡庆雷,马广富,姜野.控制受限航天器时变滑模姿态控制[J J_哈尔滨工业大学学报,2008,40(9):1358—1362.
    [134]Hu e L.Variable Structure Maneuvering Control with Time—Varying Sliding Surface and Active Vibration Damping of Flexible SpacecraR with InputSaturation[J]Acta Astronautica,2009,64(1 1):1085—1 108.
    [135]李勇,吴宏鑫.一类挠性航天器的变结构控制[J J_宇航学报,1998,19《1):13—20.
    [136]李勇,吴宏鑫.一类挠性航天器大角度快速机动的模型跟踪控制[J J_自动化学报,1998,24(1):1 19—123.
    [137]Servidia P A,Sanchez Pena R S.Practical Stabilization in Attitude Thruster Control[J]IEEE Transactions on Aerospace and Electronic Systems,2005,41f2、:584—598.
    [138]高为炳.变结构控制理论基础[M].北京:中国科学技术出版社,1990.
    [139]Zhou K,Doyle J C.Robust and Optimal Control[M].American:Prentice Hall,1995.
    [140]马晓敏,刘延柱.飞轮控制航天器的自适应姿态跟踪[J]_力学季刊,2003,24f2、:151—156.
    [141]刘鲁华,汤国建,余梦伦.采用终端滑模控制实现交会对接逼近段姿态跟踪l Jl_国防科技大学学报,2008,30(2):16—21.
    [142]刘军,韩潮.使用变速控制力矩陀螺的航天器鲁棒自适应姿态跟踪控制[J J_航空学报,2008,29(1):159—164.
    [143]陈刚.航天器相对大角度姿态跟踪非线性控制器设计[J J_宇航学报,2009,32f2、:556—559.
    [144]王芳,战毅,张红华.有扰情况下航天器全局稳定姿态跟踪控制[J J_宇航学报,2007,28(2):470—474.
    [145]Dong C,Xu L,Chen Y,et a1.Networked Flexible SpacecraR Attitude Maneuver Based on Adaptive Fuzzy Sliding Mode Control[J]Acta Astronautica,2009,65r1 1-12、:1561—1570.
    [146]靳永强,刘向东,侯朝桢.含有参数不确定性的挠性航天器姿态跟踪滑模控制l Jl_控制理论与应用,2009,26(3):299—304.『147]王玉惠,吴庆宪,姜长生等.基于模糊前馈的空天飞行器再入姿态的模糊鲁棒跟踪控制『Jl宇航学报,2008,29(1):150—155.
    [148]宗红,张洪华,徐福祥.挠性卫星自适应姿态跟踪控制[J J_中国空间科学技术,2007,(6):25—30.
    [149]Erdong J,Zhaowei S.Robust Attitude Tracking Control of Flexible SpacecraR for Achieving Globally Asymptotic Stability[J J_International Journal of Robust andNonlinearControl,2009,19(11):1201-1223.
    [150]袁长清,李俊峰,王天舒等.基于逆系统方法的航天器姿态跟踪最优鲁棒控制l Jl_工程力学,2008,25(2):214—218.
    [151]Hu e,Cao J,Zhang Y.Robust Backstepping Sliding Mode Attitude Trackingand Vibration Damping of Flexible Spacecraft with Actuator Dynamics[J] Journal ofAerospace Engineering,2009,22(2):139—152.
    [152]李争学,王本利,马兴瑞.带挠性附件航天器的鲁棒姿态跟踪控制[J J_宇航学报,2009,30(3):974—981.
    [153]Gennaro S D.Output Attitude Tracking for Flexible Spacecraft[J]Automatica,2002,38:1719—1726.
    [154]Gennaro S D.Passive Attitude Control of Flexible Spacecraft from Quaternion Measurements[J]Journal of Optimization Theory and Applications,2003,1 16r11:41—60.
    [155]Gennaro S D.Tracking Control using Attitude Messurements for Flexible Spacecraft in Presence of Disturbances[C].43rd IEEE Conference on Decision and Control,Atlantis,Paradise Island,Bahamas.2004:2123—2128.
    [156]Gennaro S D,Yan X G,Hu e L,et a1.Discussion on:”Adaptive Variable Strucmre Maneuvering Control and Vibration Reduction of Three—Axis Stabilized Flexible Spacecraft”[J J_European Journal of Control,2006,12《6):669—672.
    [157]Gennaro S D.Output Stabilization of Flexible Spacecraft with Active Vibration Suppression[J]IEEE Transactions on Aerospace and Electronic Systems,2003,39f31:747—759.
    [158]Gennaro S D.Attitude Tracking for Flexible Spacecraft from Quaternion Measurements[C].Proceedings of the IEEE Conference on Decision and Control,.Las Vegas,United States.2002:4090—4091.
    [159]Izzo D,Pettazzi L.Command Shaping for a Flexible Satellite Platform Controlled by Advanced Fly—Wheels Systems[J]Acta Astronautica,2007,60r10—1 1、:820—827.
    [160]Shahravi M,Kabganian M,Alasty A.Adaptive Robust Attitude Control of a Flexible Spacecraft[J]International Journal of Robust and Nonlinear Control,2006,16(6):287—302.
    [161]Qiu z c,wu H x,Zhang D.Experimental Researches on Sliding Mode Active Vibration Control of Flexible Piezoelectric Cantilever Plate Integrated Gyroscope[J]Thin—Walled Structures,2009,47(8—9):836—846.
    [162]Hu e L.A Composite Control Scheme for Attitude Maneuvering and Elastic Mode Stabilization of Flexible Spacecraft with Measurable Output Feedback[J] Aerospace Science and Technology,2009,13(2—3):81—91.
    [163]Romano M,Agrawal B N,Bernelli—Zazzera F.Experiments on Command Shaping Control of a Manipulator with Flexible Links[J]Journal of Guidance,Control,and Dynamics,2002,25(2):232—239.
    [164]Hu e L.Input Shaping and Variable Structure Control for SimultaneousPrecision Positioning and Vibration Reduction of Flexible Spacecraft wlth Saturation Compensation[J]Journal of Sound and Vibration,2008,318(1—2):18—35.
    [165]朱良宽,马广富,胡庆雷.挠性航天器鲁棒后步滑模姿态跟踪及主动振动控制[J J_控制与决策,2008,23《5):530—540.
    [166]Baz A,Hong J T.Adaptive Control of Flexible Structures using Modal Positive Position Feedback[J]International Journal of Adaptive Control and Signal Processing,1997,11(3):231-253.
    [167]Smith O J M.Feedback Control Systems[M].New York:McGraw—Hill Book Company,Inc,1958:33 1-345.
    [168]Singer N C,Seering W P.Preshaping Command Inputs to Reduce System Vibration[J] Journal of Dynamic Systems,Measurement and Control,Transactions ASME,1990:76—82.
    [169]Singhose W,Derezinski S,Singer N.Extra—Insensitive Input Shapers for Controlling Flexible Spacecraft[J]Journal of Guidance,Control,and Dynamics,1996.2:385—391.
    [170]Singhose W E,Seering W P,Singer N C.Shaping Inputs to Reduce Vibration:A Vector Diagram Approach[C].Cincinnati,OH,USA.1990:922—927.
    [171]Singhose W,Pao L.A Comparision of Input Shaping and Time—Optimal Flexible—Body Control[J]Control Engineering Practice,1997,4:459—467.
    [172]原劲鸭,杨旭,杨涤.输入成型在卫星喷气姿态机动控制中的应用[J J_东南大学学报:自然科学版,2005,35:137—141.
    [173]刘锦阳.刚一柔耦合动力学系统的建模理论研究[D].上海:上海交通大学,2000.
    [174]Taniguchi T,Tanaka K,Ohtake H,et a1.Model Construction,Rule Reduction,and Robust Compensation for Generalized form of Takagi—Sugeno Fuzzy Systems[J]IEEE Transactions on Fuzzy Systems,2001,9(4):525—538.
    [175]王岩,张庆灵.基于区间方法的模糊系统稳定性分忻与设计[J J_系统工程与电子技术,2001,25(4):462—465.
    [176]吴方向,史忠科.T—s型模糊系统的稳定性分忻及其应用[J J_控制与决策,1999,14(1):65—68.
    [177]Tanaka K,Ikeda T,Wang H O.Fuzzy Regulators and Fuzzy Observers:Relaxed Stability Conditions and LMI—Based Designs[J]IEEE Transactions on Fuzzy Systems,1998,6(2):250—265.
    [178]Branicky M S.Multiple Lyapunov Functions and Other Anal5,sis Tools for Switched and Hybrid Systems[J]IEEE Transactions on Automatic Control,1998,43(4):475—482.
    [179]Luo Y B,Cao Y Y,Sun Y X.Robust Stability of Uncertain Takagi—Sugeno Fuzzy Systems with Time—varying Input—delay[J]Automatica.2008.1:87—92.
    [180]Wang Z,Ho D W C,Liu X.A Note on the Robust Stability of Uncertain Stochastic Fuzzy Systems with Time—Delays[J]IEEE Transactions on Systems,Man,and Cybemetics Part A:Systems and Humans,2004,34(4):570—576.
    [181]Takagi T,Sugeno M.Stability Analysis and Design of Fuzzy Control System[J] Fuzzy Sets and Systems,1992,45(2):135—156.
    [182]Khalil H K.Nonlinear Systems[M].Beijing:Publishing House of Electronics Industry,2005.
    [183]Utkin V I.Variable Strucmre Systems with Sliding Modes[J]IEEE Transactions on Automatic Control,1977,AC一22(2):212—222.
    [184]E1一Ghezawi O M E,Zinober A S I,Billings S A.Analysis and Design of Variable Strucmre System using a Geometric Approach[J]International Journal ofControl,1983,38(3):657—671.
    [185]Doffing C M,Zinober a S I.Robust Hperplane Design in Multivariable Variable Strucmre Control Systems[J]International Journal of Control,1988,48(5):2043—2054.
    [186]袁军.挠性结构一种频域形式的滑动模态控制器设计[J J_控制工程(北京),2002,(6):8—13.
    [187]Lorenzo S,Shaker M,Ruiz J M,et a1.Integral—Sliding Mode as a New Method to Control the Industrial Drives[C].Pittsburgh,PA,USA.1988:1058—1062.
    [188]Erbamr K,Kaynak O.Use of Adaptive Fuzzy Systems in Parameter Tuning of Sliding—Mode Controllers[J]IEEE/ASME Transactions on Mechatronics,200 1,6r4、:474—482.
    [189]Okabayashi R,Furuta K.Design of Sliding Mode Control Systems with Constrained Inputs[C].Proceedings of the 35th Conference on Decision and Control,Kobe,Japan.1996:3492—3497.
    [190]Song G,Gu H.Active Vibration Suppression of a Smart Flexible Beam using a Sliding Mode Based Controller[J]Journal ofVibration and Control,2007,13(8):1095—1 107.
    [191]Gu H,Song G.Active Vibration Suppression of a Flexible Beam with Piezoceramic Patches using Robust Model Reference Control[J]Smart Materials and Structures,2007,16(4):1453—1459.
    [192]Hu Y R,Ng A.Active Robust Vibration Control of Flexible Structures[J] Journal of Sound and Vibration,2005,288(1—2):43—56.
    [193]Song G,Kotejoshyer B.Vibration Reduction of Flexible Strucmre during Slew Operation[J]International Journal of Acoustics and Vibrations,2002,7(2):105—109
    [194]朱良宽,马广富,胡庆雷.挠性航天器鲁棒反步自适应姿态机动及主动振动抑制l Jl_振动与冲击,2009,28(2):132—136.
    [195]Fei J,Fang Y.Active Feedback Vibration Suppression of a Flexible Steel Cantilever Beam Using Smart Materials[C].Proceedings of the First International Conference on Innovative Computing,Information and Control 2006:286—292.
    [196]Sun X S,Geng Y H,Yang X,et a1.Variable Structure Attitude Control of a Large Flexible Satellite Platform[J]Journal of Harbin Institute of Technology,2005.37(3、:371—374.
    [197]Fuh C C.Variable—Thickness Boundary Layers for Sliding Mode Control[J] Journal ofMarine Science and Technology,2008,16(4):286—292.
    [198]Hung J Y,Gao W B,Hung J C.Variable Structure Control:A Survey[J]IEEE Transactions on Industrial Electronics,1993,40(1):2-22.
    [199]Shtessel Y B,Shkolnikov I A.Aeronautical and Space Vehicle Control in Dynamic Sliding Manifolds[J]International Journal of Control,2003,76(9—10):1000—1017.
    [200]Lo S C,Chen Y P.Smooth Sliding—Mode Control for Spacecraft Attitude Tracking Maneuvers[J]Journal of Guidance,Control,and Dynamics,1995,18r6、:1345—1349.
    [201]Dong C Y,Hua Y,Chen Y,et a1.Cascade—Saturation Fuzzy Variable Structure Control for Spacecraft Large Angle Attitude Maneuvers[J] Journal of Astronautics,2006,27(5):974—978.
    [202]Lu J T,Ma G F,Li C J.Fuzzy Sliding Mode Controller Design for Satellite Attitude Tracking[J]Journal of Jilin University(Engineering and Technology Edition),2007,37(4):955—958.
    [203]Liu X J,Guan P,Liu J Z.Fuzzy Sliding Mode Attitude Control of Satellite[C].Proceedings of the 44th IEEE Conference on Decision and Control,and the European Control Conference,Seville,Spain.2005:1970—1975.
    [204]Chen Y,Dong C,Wang e,et a1.Adaptive Fuzzy Sliding Mode Attitude Control for Large Angle Slew Maneuvering of Flexible Satellite[J]Journal of Beijing University ofAeronautics and Astronautics,2007,33(7):761—764.
    [205]于双和,傅佩琛,强文义.模糊变结构控制及设计方法[J J_哈尔滨工程大学学报,2001,32(2):217—220.
    [206]Chiou J C,Hwang M C,wu s D,et a1.Robust Attitude Control of Spacecraft using Sliding Mode Control and Productive Networks[J]International Journal of Systems Science,1997,28(5):435—446.
    [207]Kim J,Kim J,Crassidis J L.Disturbance Accommodating Sliding Mode Controller for Spacecraft Attitude Maneuvers[C].Advances in the AstronauticalSciences,1998:141—153.
    [208]Li Z B,Wang Z L,Li J F.A Hybrid Con~ol S~eme of Adaptive and Variable Strucmre for Flexible Spacecraft[J]Aerospace Science and Technology,2004,8(5):423—430.
    [209]Slotine J J E,n W.Applied Nonlinear Con~ol[M].China Machine Press,2004.
    [210]Lee H,Kim E,Kang H J,et a1.A New Sliding—Mode Control with Fuzzy Boundary Bayer[J]Fuzzy Sets and Systems,2001,120:135—143.
    [211]闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分忻中的应用[J_山东大学学报(工学版),2007,30(1):5 1—55.
    [212]金朝永.一类含参数的分块对称矩阵的正定性及应用_J J_高效应用数学学报A辑,2001,16(1):107—113.
    [213]熊洪允,曾绍标,毛云英.应用数学基础[M].天津:天津大学出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700