用户名: 密码: 验证码:
高层混合结构层模型试验及动力弹塑性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了充分发挥钢和混凝土各自的优点,由钢框架–钢筋混凝土剪力墙(核心筒)或型钢混凝土框架–钢筋混凝土剪力墙(核心筒)组成的高层混合结构成为近年来在我国迅速发展的一种新型高层建筑结构体系。高层混合结构抗震性能的好坏无疑是该结构体系能否得到广泛推广的一个重要依据。通过结构设计将高层混合结构的地震反应完全限制在弹性阶段是极为不经济的,因此结构体系在地震作用下的反应分析,尤其是大震作用下,结构体系进入弹塑性阶段的反应分析成为近年来学者们研究的重点。本文利用低周反复加载试验对高层混合结构层模型的抗震性能进行研究,然后针对高层混合结构计算模型,在已有研究成果的基础上,对高层混合结构弹塑性地震反应分析做进一步的研究和改进,主要围绕构件非线性单元模型的建立和算法的选择进行讨论,并对部分结构形式的简化非线性分析方法进行适度的探讨,着重在以下几个方面:
     1.完成了6个不同类型的高层混合结构层模型结构低周反复加载试验研究,得到了各个试件的滞回曲线。从各个试件的滞回曲线中可以看出钢框架–混凝土剪力墙结构以及型钢混凝土框架–混凝土剪力墙结构的抗震性能要优于钢筋混凝土框架–混凝土剪力墙结构。通过改变剪力墙及框架柱的轴压比,得到了轴压比对结构体系抗震性能的影响,同时试验过程清楚地表明了外围框架结构在高层混合结构抗震体系中的作用。
     2.柔度法在处理梁、柱构件力–变形曲线下降段时会引发数值计算上的问题,无法得到正确的解答。本文透彻分析了导致问题发生的数学原因,提出了新的解决方法。新方法能够很好的处理力–变形曲线的下降段,弥补了已有解决方法存在的不足之处。
     3.用数学力学方法证明了传统的多垂直杆单元模型是一种建立在Timoshenko梁理论基础上的应用于剪力墙非线性分析的单元模型,系统分析了多垂直杆单元模型的力学性质,将其和连续弹性体的梁单元有机的联系在一起,改变了该单元模型自被提出以来力学性质认识不够透彻的现状。分析了单元模型中一个重要参数C值的含义,指出了调节C值的作用。然后在Euler-Bernoulli梁理论的基础上创建了一种新的多垂直杆单元模型,新模型比原有模型计算精度更高,计算速度也更快。比较了两种常见的剪力墙非线性单元模型,分层壳单元模型和多垂直杆单元模型,在理论基础上的异同,通过算例对比,指出了两种单元在不同条件下应用上的差别。
     4.根据框筒结构的受力特点,创建了一个框筒结构简化非线性分析单元模型,该模型建立在将框筒结构连续化处理的基础上,可以考虑结构中出现的剪力滞现象。简化模型能够节省大量的计算时间,可用于初步设计中,然后对这种简化处理手法向实腹筒体拓展进行了讨论。
     5.利用本文所提出的计算模型对文中高层混合结构层模型低周反复加载试验和一个15层钢框架–混凝土核心筒混合结构1/10缩尺模型的拟动力试验进行了数值模拟。模拟的结果表明,本文提出的高层混合结构非线性分析计算模型能够取得不错的精度,可以满足结构设计的需要,但仍存在一些问题有待今后的研究解决。
Tall building hybrid structures (TBHS), which are composed with steel frame and concrete core-tubes (shear-walls) or with composite steel frames and concrete core-tubes (shear-walls), become fast developing structure system of the tall buildings in China. They make full use of the respective advantage of the steel and concrete. The seismic response of the TBHS is an important criterion to decide whether such structure system should be widely popularized. To restrict the response of the structure in the elastic stage through structure design is not economic, so the seismic response of the TBHS is the hot spot for the scholars in recent years. The seismic performance of the storey model of the TBHS is researched through the low reversed cyclic loading test. Based on the existing research results, the study on the dynamic elasto-plastic analysis of the TBHS is improved and the nonlinear model of member, the algorithm of the member and structures and the simple analysis methods of some structures are discussed in this dissertation. The following aspects are mainly discussed:
     1. Six different types of the storey model of TBHS are researched through low reversed cyclic loading test and the hysteretic curves of each specimen are obtained. It can be concluded that the seismic performance of the steel frame-shear wall structure and steel composite frame-shear wall structure is better than that of the reinforcement concrete frame-shear wall structure from the curves. The influence of the axial compression ratio on the seismic performance of the structure systems is obtained by the value of ratio. The role of the outer frame in the TBHS to resis seismic action is showed throughout the test process.
     2. Numercical problems will appear when dealing with the declined segment of the force-deformation curve through the flexibility method, so the correct solution can not be obtained. The reason is analyzed and the solving method is put forward. Through the new method, the declined segment of the force-deformation curve is treated well comparing to the existing method and the defects of the existing methods are remedied.
     3. Through the mathematical and mechanical methods, it is proved that the multi-vertical-line-element model (MVLEM) is a nonlinear element model of the shear wall which is based on the Timoshenko beam theory. The mechanical properties of the MVLEM are analyzed systemically and the model is connected to the beam element of the continuum, so the fact that the properties of MVLEM can not be understood clearly from the model is put forward is changed. The meaning of C which is an important parameter of the MVLEM is analyzed. The effects of changing the value of C are pointed out. Then, based on the Euler-Bernoulli beam theory, an improved MVLEM is created. The solution is more accurate and the calculating speed is faster by adopting the new model. The differences between the two popular nonlinear models of the shear wall, MVLEM and multi-layer shell model are compared in theory and in practical applications through the examples.
     4. A simplified nonlinear element model of frame-tube structures is established. The model is based on the equivalent membranes analogy and the shear lag effect can be considered. Adopting the simplified model, the amount of calculation is greatly reduced and the model is suitable for quick evaluations of frame-tube structures in nonlinear analysis during the preliminary design stage. Then, the extension of such processing method to the tube structures is discussed.
     5. The dynamic elasto-plastic analysis are carried out on the low reversed cyclic loading test of the storey model of TBHS and a pseudo-dynamic experimental research of a 1/10 scale 15-storey steel-concrete hybrid structure. The results proved that the nonlinear element models of the TBHS adopted in this dissertation are validated and the demands of the structure design can be satisfied by using those models, but there are still some problems to be solved in the future.
引文
[1]胡聿贤.地震工程学.第二版.北京:地震出版社, 2006, 1―7
    [2]刘大海,杨翠如,钟锡根.高层建筑抗震设计.第一版.北京:中国建筑工业出版社, 1993, 1―10
    [3]中华人民共和国国家标准.建筑抗震设计规范(GB50011―2001).北京:中国建筑工业出版社, 2001, 1―5
    [4]沈聚敏,周锡元,高小旺等.抗震工程学.第一版.北京:中国建筑工业出版社, 2000, 1―10
    [5]清华大学土木结构组,西南交通大学土木结构组,北京交通大学土木结构组.汶川地震建筑震害分析.建筑结构学报, 2008, 29(4): 1―9
    [6] Housner G W. Calculating the response of an oscillator to arbitrary ground motion. Bulletin of .the Seismological Society of America, 1941, 31(2): 143―149
    [7] Clough R W. The finite element in plane stress analysis. In: Proceedings 2nd ASCE Conference on Electronic Computation. Pittsburgh, Pa.: ASCE, 1960
    [8] Newmark N M. Effects of earthquake on dam and embankment. Geotechnique, 1965, 15(2): 139―160
    [9] Wilson E L, Farhomand I, Bathe K J. Nonlinear dynamic analysis of complex structure. Earthquake Engineering and Structural Dynamics, 1973, 1(3): 241―252
    [10] Veletsos A S, Newmark N M, Cheloapati C V. Deformation spectra for elastic and elastoplastic systems subjected to ground shock and earthquake motions. In: Proceedings 3rd World Conference on Earthquake Engineering. New Zealand: International Association of Earthquake Engineering, 1965, 663―682
    [11] Mahin S A, Berto V V. An evaluation of inelastic design spectra. Journal of Structural Engineering, ASCE, 1981, 107(9): 974―988
    [12] Newmark N M, Hall W J. Earthquake spectra and design, engineering monographs on earthquake criteria, structures design and strong motion records, vol 3. Oakland, CA: EERI, 1982, 8―18
    [13] Eurocude8: Design provisions for resistance of structures. European Prestandard ENV, 1998, 2―16
    [14] ICBO. Uniform building code 1994. American, International Conference of Building Officials, California, 1994, 1―10
    [15] Brownjohn J W. Observation on nonlinear dynamic characteristics of suspensionbridges. Earthquake Engineering and Structural Dynamics, 1994, 23(12): 1351―1367
    [16] Naggar E I, Novak A. Nonlinear analysis for dynamic lateral pile response. Soil Dynamics and Earthquake Engineering, 1995, 15(4): 233―244
    [17] Wilson E L.结构静力与动力分析.北京金土木软件技术有限公司,中国建筑标准设计研究院.第四版.北京:中国建筑工业出版社, 2006, 181―192
    [18] Freeman S A, Nicoletti J P, Tyrell J V. Evaluations of existing buildings for seismic risk– A case study of Puget Sound Naval Shipyard, Bremerton, Washington. In: Proceedings of 1st U.S. National Conference on Earthquake Engineering. Berkeley, California: EERI, 1975, 113―22
    [19] Saiidi M, Sozen M A. Simple nonlinear seismic analysis of R/C structure. Journal of Structural Division, ASCE, 1981, 107(5): 927―951
    [20] Fajfar P, Fischinger M. N2– A method for nonlinear seismic analysis of regular structures. In: Proceedings of 9th World Conference on Earthquake Engineering. Tokyo-Kyoto, Japan: International Association of Earthquake Engineering, 1988, 111―116
    [21] Mochle J P. Displacement based design of RC structures subjected to earthquake. Earthquake Spectra, 1992, 8(3): 403―428
    [22] Miranda E. Evaluation of site dependent inelastic seismic design spectra. Journal of Structural Division, ASCE 1993, 119(5): 1319―1338
    [23] Bracci J M, Kunnath S K, Reinborn A M. Seismic performance and retrofit evaluation for reinforced concrete structures. Journal of Structural Engineering, ASCE, 1997, 123(1): 3―10
    [24] Chopra A K, Goel R K. Capacity-Demand-Diagram methods for estimating seismic deformation of inelastic structures: SDF systems. Report No. Peer-1999/02, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 1999, 1―6
    [25] Chopra A K, Goel R K. A modal pushover analysis procedure to estimate seismic demands for buildings: theory and preliminary Evaluation. Report No. Peer-2001/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2001, 15―20
    [26] Applied Technology Council. Seismic evaluation and retrofit of concrete buildings. Report ATC-40. 1996, 130―195
    [27] American society of civil engineers. Prestandard and commentary for theseismic rehabilitation of buildings, FEMA 356. Washington D C: Federal Emergency Management Agency, 2000, 44―48
    [28] Applied Technology Council. FEMA 440 improvement of nonlinear static seismic analysis procedures. Washington D C: Federal Emergency Management Agency, 2005, 1―3
    [29]舒兴平,沈蒲生.空间钢框架结构的非线性全过程分析.工程力学, 1997, 14(3): 36―45
    [30]焦双健,冯启民,付长文.钢筋混凝土框架结构地震破坏的计算机模拟方法.地震工程与工程振动, 2002, 22(2): 54―59
    [31]江建,邹银生,荀勇.钢筋混凝土框架―剪力墙结构非线性抗震分析的一种力学模型.计算力学学报, 1998, 15(3): 281―287
    [32]薛伟辰,周氐,吕志涛.混凝土杆系结构滞回全过程分析.工程力学, 1996, 13(3): 8―16
    [33]汪梦甫,沈蒲生.钢筋混凝土框剪结构非线性地震反应分析.工程力学, 1999, 16(4): 136―144
    [34] Allman D J. A compatible triangular element including vertex rotations for plane elasticity analysis. Computers & Structures, 1984, 19(1): 1―8
    [35]袁明武,孙树立,蔡定正.一种新的墙单元.计算结构力学及其应用, 1992, 13(1): 17―24
    [36]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用.第一版.上海:同济大学出版社, 1997, 1―6
    [37]吴晓涵,吕西林.反复荷载下混凝土剪力墙非线性有限元分析.同济大学学报, 1996, 24(2): 117―123
    [38] Filippou F C. A simple model fur reinforcing bar anchorages under cyclic excitations. Journal of Structural Engineering, ASCE, 1986, 112(7): 1639―1659
    [39] Girard C, Bastien J. Finite-element bond-slip model for concrete columns under cyclic loads. Journal of Structural Engineering, ASCE, 2002, 128(12): 1502―1510
    [40] Sezen H, Setzler E J. Reinforcement slip in reinforced concrete columns. ACI Structural Journal, 2008, 105(3): 280―289
    [41] Clough R W, Benuska K L, Wilson E L. Inelastic earthquake response of tall buildings. In: Proceedings of 3rd World Conference on Earthquake Engineering. New Zealand: International Association of Earthquake Engineering, 1965, 68―89
    [42] Clough R, Johnston S. Effect of stiffness degradation on earthquake ductility requirements. Transactions of Japan Earthquake Engineering Symposium, Tokyo, 1966, 195―198
    [43] Clough R, Benuska L. Nonlinear earthquake behavior of tall buildings. Journal of Mechanical Engineering, ASCE, 1967, 93(3): 129―146
    [44] Takizawa H, Aoyama H. Biaxial effects in modeling earthquake response of RC structures. Earthquake Engineering and Structural Dynamics, 1976, 4(6): 523―552
    [45] Giberson M F. Two nonlinear beams with definitions of ductility. Journal of the Structural Division, ASCE, 1969, 95(2): 137―157
    [46] Otani S. Inelastic analysis of R/C frame structures. Journal of the Structural Division, ASCE, 1974, 100(7): 1433―1449
    [47]刘永华,张耀春.半刚性钢框架实用非线性分析.工程力学, 2007, 24(12): 6―13
    [48] D’Ambrisi A, Filippou F C. Modeling of cyclic shear behavior in RC members. Journal of Structural Engineering, ASCE, 1999, 125(10): 1143―1150
    [49] Filippou F C, D’Ambrisi A, Issa A. Effects of reinforcement slip on hysteretic behavior of reinforced concrete frame members. ACI Structural Journal, 1999, 96(3): 327―336
    [50]丁洁明,沈祖炎.空间钢框架结构的弹塑性稳定.建筑结构学报, 1993, 14(6): 42―51
    [51]张文元,张耀春.高层钢结构双重非线性分析的塑性铰法.哈尔滨建筑大学学报, 2000, 33(6): 1―7
    [52] Soleimani D, Popov E P, Bertero V V. Hysteretic behavior of reinforced concrete beam―column subassemblages. ACI Structural Journal,1979,76(11): 1179―1195
    [53] Roufaiel M S L. Meyer C. Analytical modeling of hysteretic behavior of R/C frames. Journal of Structural Engineering, ASCE, 1987, 113(3): 429―444
    [54] Mork K J. Response analysis of reinforced concrete structures seismic excitation. Earthquake Engineering and Structural Dynamics, 1994, 23(1): 33―48
    [55]汪梦甫.高层建筑结构非线性地震反应分析.见:中国力学学会第二届青年学术讨论会论文集.安徽合肥:中国力学学会, 1990, 11
    [56]王建平.钢筋混凝土框架―剪力墙结构在强震作用下的非线性分析与控制:[湖南大学博士学位论文].湖南长沙:湖南大学, 1994, 25―46
    [57] Takayanagi T, Schnobrich W. Non–linear analysis of coupled wall systems. Earthquake Engineering and Structural Dynamics, 1979, 7(1): 1―22
    [58] Neuenhofer A, Filippou F C. Evaluation of nonlinear frame finite-element models. Journal of Structural Engineering, ASCE, 1997, 123(7): 958―966
    [59] Izzuddin B A, Karayannis C G, Elnashai,A S. Advanced nonlinear formulation for reinforced concrete beam–columns. Journal of Structural Engineering, ASCE, 1994, 120(10): 2913―2934
    [60] Karayannis C G, Izzuddin B A, Elnashai A S. Application of adaptive analysis to reinforced concrete frames. Journal of Structural Engineering, ASCE, 1994, 120(10): 2935―2957
    [61] Mahasuverachai M. Inelastic analysis of piping and tubular structures. EERC Report 82–27, Earthquake Engineering Research Center, University of California, Berkeley, 1982, 1―18
    [62] Zeris C A, Mahin S A. Analysis of reinforced concrete beam-columns under uniaxial excitation. Journal of Structural Engineering, ASCE, 1988, 114(4): 804―820
    [63] Zeris C A, Mahin S A. Behavior of reinforced concrete structures subjected to biaxial excitation. Journal of Structural Engineering, ASCE, 1991, 117(9): 2657―2673
    [64] Taucer F F, Spacone E, Filippou F C. A fiber beam-column element for seismic response analysis of reinforced concrete structures. EERC Report 91/17, Earthquake Engineering Research Center,University of California, Berkeley, CA, 1991, 23―44
    [65] Spacone E, Ciampi V, Filippou F C. Mixed formulation of nonlinear beam finite element. Computer and Structure, 1996, 58(1): 71―83
    [66] Spacone E, Filippou F C, Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames: part I. formulation. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 711―725
    [67] Spacone E, Filippou F C, Taucer F F. Fiber beam-column model for non-linear analysis of R/C frames: part II. Applications. Earthquake Engineering and Structural Dynamics, 1996, 25(7): 727―742
    [68]王长新.高层钢筋混凝土剪力墙动力非线性分析: [湖南大学硕士学位论文],湖南长沙:湖南大学, 1994, 1―15
    [69]李国强,周向明,丁翔.钢筋混凝土剪力墙非线性动力分析模型.世界地震工程, 2000, 16(2): 13―18
    [70]蒋欢军,吕西林.用一种墙体单元模型分析剪力墙结构.地震工程与工程振动, 1998, 18(3): 40―48
    [71] Fajfar P, Fisehlnger M. Mathematical modeling of reinforced concrete structural walls for nonlinear seismic analysis. Structural Dynamic, 1990: 471―478
    [72]卓幸福,蔡益燕.用墙板单元分析框架剪力墙结构.建筑结构学报, 1992, 13(3): 38―46
    [73] Hiraishi H,Kawashima T. Deformation behavior of shear walls after flexural yielding. Proceedings of 9th World Conference on Earthquake Engineering, Vol 8. Tokyo-Kyoto, Japan: International Association of Earthquake Engineering, 1988, 653―658
    [74] Kabeyasawa T, Shioara H, Otani S. U. S. Japan cooperative research on R/C full-scale building test-part 5: discussion on dynamic response system. In: Proceedings of 8th World Conference on Earthquake Engineering, Vol. 6. San Francisco, CA: International Association of Earthquake Engineering, 1984, 627―634
    [75] Vecchio F J, Collins M P. The modified compressive field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 1986, 83(2), 210―231
    [76] Hsu T C. Softening truss model theory for shear and torsion. ACI Structural Journal, 1988, 85(6), 624―635
    [77] Collins M P. Towards a rational theory for RC members in shear. Journal of Structural Division, ASCE, 1978, 104(2), 649―666
    [78] Vulcano A, Bertero V V, Colotti V. Analytical modeling of R/C structural walls. Proceedings of 9th World Conference on Earthquake Engineering, Vol. 6. Tokyo-Kyoto, Japan: International Association of Earthquake Engineering, 1988, 41―46
    [79]门俊,陆新征,宋二祥等.分层壳模型在剪力墙结构计算中的应用.防护工程, 2006, 28(3): 9―13
    [80]林旭川,陆新征,缪志伟等.基于分层壳单元的RC核心筒结构有限元分析和工程应用.土木工程学报, 2009, 43(3): 51―56
    [81] Takeda T, Sozen M A, Nielsen N N. Reinforced concrete response to simulated earthquakes. Journal of the Structural Division, ASCE, 1970, 96(12): 2557―2573
    [82] Roufaiel M S L, Meyer C. Analytical modeling of hysteretic behavior of R/C frames. Journal of Structural Engineering, ASCE, 1987, 113(3): 429―444
    [83] Park Y J, Ang A H S. Mechanistic seismic damage model for reinforced concrete. Journal of the Structural Division, ASCE, 1985, 111(4): 722―739
    [84] Park Y J, Ang A H S. Seismic damage analysis of reinforced concrete buildings. Journal of the Structural Division, ASCE, 1985, 111(4): 740―757
    [85]潘世劼,许哲明.框架结构的非线性地震反应分析.同济大学学报, 1980, 8(2): 43―63
    [86] Powell G H, Chen P F. 3D beam-column element with generalized plastic hinges. Journal of Engineering Mechanics, ASCE, 1986, 112(7): 627―641
    [87] Sfakianakis M, Fardis M N. Bounding surface model for cyclic biaxial bending of RC sections. Journal of Engineering Mechanics, ASCE, 1991, 117(12): 2748―2769
    [88] El-Tawil S, Deierlein G G. Stress-resultant plasticity for frame structures. Journal of Engineering Mechanics, ASCE, 1998, 124(12): 1360―1370
    [89] Pecknold D A W. Inelastic structural response to 2D ground motion. Journal of Engineering Mechanics, ASCE, 1974, 100(5): 949―963
    [90] Aktan A E, Pecknold D A W. Response of a reinforced concrete section to two dimensional curvature histories. ACI Journal Proceedings, 1974, 71(5): 246―250
    [91]杜宏彪,沈聚敏.在任意加载路径下双轴弯曲钢筋混凝土柱的非线性分析.地震工程与工程振动, 1990, 10(3): 41―55
    [92]杜宏彪,成国强.三维钢筋混凝土框架结构非弹性动力分析.工程力学, 1999, 16(3): 135―139
    [93]陈惠发,萨里普.弹性与塑性力学.余天庆.第一版.北京:中国建筑工业出版社, 2004, 188―190
    [94] Lai S S, Will G T, Otani S. Model for inelastic biaxial bending of concrete members. Journal of Structural Engineering, ASCE, 1984, 110(11): 2563―2584
    [95] Saiidi M, Ghusn G, Jiang Y. Five-spring element for biaxially bent R/C column. Journal of Structural Engineering, ASCE, 1989, 115(2): 398―416
    [96] Jiang Y, Saiidi M. Four-spring element for cyclic response of R/C columns. Journal of Structural Engineering, 1990, 116(4): 1018―1029
    [97] Li K N, Otani S. Multi-spring model for 3-dimensional analysis of RC members [J]. Structural Engineering and Mechanics, 1993, 1(1): 17―30
    [98]李国强,张洁.上海地区高层建筑采用钢结构与混凝土结构的综合经济比较分析,建筑结构学报, 2000, 21(2): 75―79
    [99]李国强,姜丽人,张晓光.高层建筑钢–混凝土混合结构简化分析模型.建筑结构, 1999, 29(6): 12―13
    [100]中华人民共和国国家标准.高层建筑混凝土结构技术规程(JGJ 3―2002).北京:中国建筑工业出版社, 2002, 41
    [101]龚胡广.基于性能的抗震设计方法及其在高层混合结构抗震评估中的应用: [湖南大学博士学位论文],湖南长沙:湖南大学, 2006, 9
    [102]赵西安.高层建筑组合结构分层模型弹塑性动力分析.建筑结构学报, 1989, 10(5): 12―18
    [103]龚炳年.钢–混凝土混合结构试验模型分析,第十二届全国高层建筑结构学术交流会论文集,南京,1992
    [104]龚炳年,郝锐坤,赵宁.钢–混凝土混合结构模型试验研究.建筑科学,1994(1): 10―14
    [105]龚炳年,郝锐坤,赵宁.钢–混凝土混合结构模型动力特性的试验研究.建筑结构学报, 1995, 16(3):37-43
    [106]李国强,周向明,丁翔.高层建筑钢–混凝土混合结构模型模拟地震振动台试验研究.建筑结构学报, 2001, 22(2): 2―7
    [107]李检保,吕西林,卢文胜.北京LG大厦单塔结构整体模型模拟地震振动台试验研究.建筑结构学报, 2006, 27(2): 10―14, 39
    [108]龚治国,吕西林,卢文胜.混合结构体系高层建筑模拟地震振动台试验研究.地震工程与工程振动, 2004, 24(4): 99―105
    [109]徐培福,薛彦涛,肖从真等.高层型钢混凝土框筒混合结构抗震性能试验研究.建筑结构, 2005, 35(5): 3―8
    [110]徐培福,薛彦涛,肖从真.带转换层钢筋混凝土框架–核心筒结构模型模拟静力试验队抗震设计的启示.土木工程学报, 2005, 38(9): 1―8
    [111]陆铁坚,秦素娟,罗应松等.高层钢–混凝土混合结构拟动力试验研究.建筑结构学报, 2006, 30(3): 27―35
    [112]储德文,梁博,王明贵.钢框架–混凝土筒体混合结构抗震性能振动台试验研究.建筑结构, 2005, 35(8): 69―72
    [113]程绍革.钢–混凝土筒混合结构弹塑性反应分析及探讨.建筑结构, 1998, 28(6): 33―35
    [114]周向明,李国强,丁翔.高层钢–混凝土混合结构弹塑性地震反应简化分析模型.建筑结构, 2002, 32(5): 26―30
    [115]李国强,丁翔,郑敬友等.高层建筑钢–混凝土混合结构分区藕合分析模型及开裂层位移参数分析.建筑结构, 2002, 32(2): 21―25
    [116]刘坚,黄襄云,李开禧.基于超级单元的钢–混凝土混合结构动力特性及地震反应研究.地震工程与工程振动, 2003, 23(1): 54―58
    [117]沈蒲生.高层混合结构设计与施工.北京:机械工业出版社, 2008, 27―30
    [118]阎兴华,马洪旭,张彬.钢–混凝土混合结构住宅体系综述.北京建筑工程学院学报, 2005, 21(2): 24―28
    [119]徐培福.复杂高层建筑结构.北京:中国建筑工业出版社, 2005
    [120]沈蒲生.高层建筑结构疑难释义.第1版.北京:中国建筑工业出版社, 2003, 242―244
    [121]中华人民共和国国家标准.混凝土结构设计规范(GB50010―2002).北京:中国建筑工业出版社, 2001, 99―111
    [122]中华人民共和国国家标准.建筑抗震试验方法规程(JGJ 101–96).北京:中国建筑工业出版社, 1997, 13―14
    [123] Paulay T, Priestley M J N. Seismic design of reinforced concrete and masonry buildings. New York: Wiley, 1992, 141―142
    [124]王勖成,邵敏.有限单元法基本原理和数值方法.第二版.北京:清华大学出版社, 1997, 280―281
    [125]《现代应用数学手册》编委会.现代应用数学手册(计算与数值分析卷).第一版.北京:清华大学出版社, 2005, 195―198
    [126] El-Tawil S, Deierlein G G. Nonlinear analysis of mixed steel-concrete frames. I: element formulation [J]. Journal of Structural Engineering, ASCE, 2001, 127(6): 647―655
    [127] Kaba S, Mahin, S A. Refined Modeling of Reinforced Concrete Columns for Seismic Analysis. EERC Report 84–03, Earthquake Engineering Research Center, University of California, Berkeley, 1984, 15―32
    [128] Powell G H. Perform 3d handbook: components and elements. University of California, Berkeley, 2006, 40―51
    [129] Nigam N C. Yielding in frame structures under dynamic loads. Journal of Engineering Mechanics, ASCE, 1971, 96(5): 687―709
    [130] Orbison J, McGuire W, Abel J. Yield surface applications in nonlinear steel frame analysis. Computer Methods in Applied Mechanics and Engineering. 1982 33(1): 557―573
    [131] Hilmy S I, Abel J F. A strain-hardening concentrated plasticity model for nonlinear dynamic analysis of steel buildings. In: International Conference on Numerical Methods in Engineering: Theory and Applications Vol. 1. SwanseaWales: Rotterdam, 1985, 305―314
    [132] Chen P F S, Powell G H. Generalized Plastic Hinge Concepts for 3D Beam-Column Elements. EERC Report 82-20, Earthquake Engineering Research Center, University of California, Berkeley, 1982, 1―10
    [133] Hajjar J F, Gourley B C, Olson M C. A cyclic nonlinear model for concrete-filled tubes. I: formulation. Journal of Structural Engineering, ASCE, 1997, 123(6): 736―744
    [134] El-Tawil S, Deierlein G G. Nonlinear analysis of mixed steel-concrete frames. II: implementation and verification [J]. Journal of Structural Engineering, ASCE, 2001, 127(6): 656―665
    [135] Dafalias Y F, Popov E P. A model for nonlinearly hardening materials for complex loading. Acta Mechanics, 1975, 21(3): 173―192
    [136] Dafalias Y F, Popov E P. Plastic internal variables formalism of cyclic plasticity. Journal of Applied Mechanics, 1976 (43): 645―651
    [137] Mroz Z. On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids, 1967, 15(3): 163―175
    [138] Coleman J, Spacone E. Localization issues in force-based frame elements. Journal of Structural Engineering, ASCE, 2001, 127(11): 1257―1265
    [139] Kent D C, Park R. Flexural members with confined concrete. Journal of Structural Division, ASCE, 1971, 97(7): 1964―1990
    [140] Jansen D C, Shah S P. Effect of length on compressive strain-softening of concrete. Journal of Engineering Mechanics, ASCE, 1997, 123(1): 25―35
    [141] Scott M H, Fenves G L. Plastic hinge integration methods for force-based beam-column elements. Journal of Structural Engineering, ASCE, 2006, 132(2): 244―252
    [142] Tanaka H, Park R. Effect of lateral confining reinforcement on the ductile behavior of reinforced concrete column. Canterbury, U.K.: Department of Civil Engineering, University of Canterbury, 1990, 17―35
    [143] Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, ASCE, 1988, 114(8): 1804―1826
    [144]吕西林,卢文生.纤维墙元模型在剪力墙结构非线性分析中的应用.力学季刊, 2005, 26(1): 72―80
    [145]孙景江,江近仁.高层建筑抗震墙非线性分析的扩展铁木辛哥分层梁单元.地震工程与工程振动,2001,21(2): 78―83
    [146]汪梦甫,周锡元.钢筋混凝土剪力墙多垂直杆单元模型的改进及其应用.建筑结构学报, 2002, 23(1): 38―42, 57
    [147]陈伯望,王海波,沈蒲生.剪力墙多垂直杆单元模型的改进和应用.工程力学, 2005, 22(3): 183―189
    [148]江近仁,孙景江,丁世文,陈惠民.轴向循环荷载下钢筋混凝土柱的试验研究.世界地震工程, 1998, 14(4): 12―16, 29
    [149]沈蒲生,王海波.剪力墙结构非线性地震反应分析.土木工程学报,2003,36(5): 11―16
    [150]张令心,杨桦,江近仁.剪力墙的剪切滞变模型.世界地震工程, 1999, 15(2): 9―16
    [151] Zienkiewicz O C, Taylor R L.有限元方法(第1卷:基本原理).曾攀等译.第5版.北京:清华大学出版社, 2008, 30―31
    [152] Saatcioglu M., Takayanagi T., Derecho A.T., Dynamic Response of Reinforced Concrete Wall Systems. In: Proceedings of 7th World Conference on Earthquake Engineering, Vol. 5. Istanbul, Turkey: International Association of Earthquake Engineering, 1980, 49―56
    [153]张令心,孙景江,江近仁.钢筋混凝土剪力墙结构基于自平衡力的非线性地震反应分析.地震工程与工程振动, 2001, 21(4): 29―34
    [154]陈云涛,吕西林.剪力墙结构非线性分析中多垂直杆单元模型的分析与改进.结构工程师, 2001, (4): 19―24
    [155]江见鲸,陆新征,叶列平.混凝土结构有限元分析.第1版.北京:清华大学出版社, 2005, 253―259
    [156] Colotti V. Shear behavior of RC structural walls. Journal of Structural Engineering, 1993, 119(3): 728―746
    [157] Hiraishi H. Evaluation of shear and flexural deformations of flexural type shear walls. Bulletin of the New Zealand National Society for Earthquake Engineering, 1984, 17(2): 135―144
    [158]李宏男,李兵.钢筋混凝土剪力墙抗震恢复力模型及试验研究.建筑结构学报, 2004, 25(5): 35―42
    [159]韩小雷,陈学伟,吴培烽等. OpenSEES的剪力墙宏观单元的研究.世界地震工程, 2008, 24(4): 76―81
    [160]中国建筑科学研究院CAD工程部.高层结构空间有限元分析的新模型–SATWE.土木工程学报, 1996, 29(3): 49―56
    [161] Sheikh S A, Uzumeri S M. Strength and ductility of tied concrete columns.Journal of Structural Division, ASCE, 1980, 106(5): 1079―1102
    [162] Elwi A A, Murray D W. A 3D hypoelastic concrete constitutive relationship. Journal of Engineering Mechanics Division, ASCE, 1979, 105(4): 623―641
    [163] Khan F R, Amin N R. Analysis and design of frame tube structures for tall concrete buildings. Structure. Engineering, 1973, 51(3): 85―92
    [164]王海波,陈伯望,沈蒲生.框筒结构考虑负剪力滞效应的简化分析.计算力学学报, 2006, 23(6): 706―710
    [165] Coull A, Bose B. Simplified Analysis of frame-tube structures. Journal of Structure Division, ASCE, 1975, 110 (11): 2223―2240
    [166] Ha K H, Fazio P, Moselhi O. Orthotropic membrane for tall building analysis. Journal of Structure Division, ASCE, 1978, 104(9): 1495―1505
    [167] Kwan A K H. Simple method for approximate analysis of framed tube structures. Journal of Structural Engineering, 1994, 120(4): 1221―1239
    [168] Luo Q Z, Li Q S, TANG J. Shear lag in box girder bridges. Journal of Bridge Engineering, ASCE, 2002, 7(5): 308―313
    [169]罗旗帜.薄壁箱形梁剪力滞计算的梁段有限元法.湖南大学学报(自然科学版), 1991, 18(2): 33―39
    [170] Kwan A K H. Shear lag in shear/core walls. Journal of Structural Engineering, 1996, 122(9): 1097―1104
    [171]李俊兰,吕西林.钢筋混凝土简体的非线性有限元分析模型.地震工程与工程振动, 2003, 23(5): 109―116
    [172]林旭川,陆新征,缪志伟等.基于分层壳单元的RC核心筒结构有限元分析和工程应用.土木工程学报, 2009, 42(3): 51―56
    [173]张铜生,包裕昆,包世华.我国高层建筑设计计算的回顾及存在的问题.力学进展, 1996, 26(2): 214―229
    [174] Chopra A K.结构动力学理论及其在地震工程中的应用.谢礼立,吕大刚等译.第2版.北京.高等教育出版社, 2005, 453―455
    [175]黄宗明.结构地震反应时程分析中的阻尼研究: [重庆大学博士学位论文].重庆:重庆大学, 1995, 50―80
    [176] Newmark N M, Hall W J. Seismic Design Criteria for Nuclear Reactor Facilities. In: Proceedings of Fourth World Conference on Earthquake Engineering, Vol. 2. Santiago de Chile: 1969, 37―50
    [177]陆铁坚.高层建筑筒体结构理论分析及拟动力试验研究: [中南大学博士学位论文].湖南长沙:中南大学, 2008, 80―124

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700