用户名: 密码: 验证码:
TiO_2纳米管阵列薄膜的制备、表征及光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用阳极氧化法制备TiO_2纳米管阵列薄膜,首先,通过研究阳极氧化法制备TiO_2纳米管阵列薄膜的影响因素,优化出阳极氧化制备TiO_2纳米管阵列的工艺条件并提出TiO_2纳米管阵列的生长机制;其次,通过控制阳极氧化反应时间制备不同厚度的TiO_2纳米管阵列薄膜,并在FE-SEM、FE-TEM、XRD、XPS等分析基础上,进行了纳米管薄膜的光催化性能研究;接着,结合阳极氧化和不同温度热处理制备出纳米管底开口、管底闭口、管底闭口且管底覆盖着颗粒状的TiO_2致密层三种FS-TNT(Free-Standing TiO_2 nanotube)阵列薄膜,通过FS-SEM、FE-TEM和XRD分析,提出FS-TNT阵列薄膜的制备机理,并通过XPS的分析进行验证;最后,将制备的FS-TNT阵列薄膜与P25 paste薄膜组合制备出FS-P25复合薄膜,并以此复合薄膜为光阳极组装DSSCs进行电池性能的研究,同时也以此该复合薄膜为光催化剂进行光催化活性研究,对其光催化降解结果和反应动力学进行详细的讨论和分析。其具体内容如下:
     (1)TiO_2纳米管阵列薄膜制备的影响因素和生长机理
     本文对电解液组成、工作电压、阴极材料、反应时间等影响纳米管阵列薄膜的制备因素进行了较深入的分析和讨论,优化的阳极氧化制备TiO_2纳米管阵列薄膜的条件为:电解液组成为EG(为基准) + 0.5wt%NH4F+3.0vol%H2O,工作电压为60V,阳极和阴极间距为3cm,阴极材料为Pt电极,一次阳极氧化时间为0.5h。并就此提出了阳极氧化制备TiO_2纳米管阵列的生长机制。
     (2)TiO_2纳米管阵列薄膜的光催化性能研究
     首先,对阳极氧化制备TiO_2纳米管阵列的管口沉积物进行处理,结果证实经3.0wt%的H2O_2溶液浸渍2h的TiO_2纳米管管口沉积物等杂物几乎完全消失,且纳米管形貌保持良好;接着,研究热处理温度对TiO_2纳米管形貌和结构的影响,发现经高于550℃热处理的TiO_2纳米管,发生严重坍塌,其管状形貌完全丧失,且经XRD分析发现,450℃热处理的TiO_2纳米管的A晶型已经很丰富。最后,对阳极氧化时间为1~4h和不同温度热处理的TiO_2纳米管进行吸附和光催化活性实验,发现经热处理的纳米管对MB的吸附能力随热处理温度升高而逐渐减弱,光催化降解MB在450℃热处理后,MB的脱除率最高,随后对阳极氧化1h、2h、3h和4h时间并经450℃热处理后的纳米管的吸附和光催化降解Rh.B反应,发现随着氧化时间的延长,对Rh.B的吸附能力增强,氧化时间为2h时光催化脱除Rh.B的效率最高,其值为93.40%,对光催化降解反应动力学分析发现,反应在0~80min内基本符合一级反应动力学,当阳极氧化反应2h的TiO_2纳米管的动力学反应常数k=0.03267min-1,反应速率最快。
     (3)FS-TNT阵列薄膜的制备机理研究
     采用阳极氧化和热处理联合制备FS-TNT阵列薄膜,在FE-SEM、FE-TEM和XRD分析基础上,分为FS-TNT纳米管底开口、纳米管底闭口和纳米管底闭口且覆盖薄层的TiO_2致密层三种情况讨论FS-TNT阵列薄膜的制备机理,结合阳极氧化制备TiO_2纳米管的生长机理,提出FS-TNT阵列薄膜的制备机理,接着通过对FS-TNT阵列薄膜和下层带基地的TiO_2纳米管进行XPS分析,验证所提出的制备机理。
     (4)FS-P25复合薄膜基的DSSCs和光催化性能研究
     在制备FS-TNT阵列薄膜基础上,将FS-TNT阵列薄膜与P25paste薄膜结合制备FS-P25复合薄膜,并以此薄膜为光阳极组装DSSCs进行光电性能研究,发现FS2-P25复合薄膜基电池的光电转化效率最大,其最高值达7.62%,同时将此薄膜应用于光催化降解MB,发现FS2-P25复合薄膜降解MB的效率最高,对其动力学分析发现,反应符合一级动力学反应,且当光催化剂为FS2-P25时,反应的一级动力学常数k=0.01822min~(-1)为最大,反应速率最快。
In the work, TiO_2 nanotube array films were assembled by anodization. Firstly, the fabricating process conditions were optimized and the growth mechanism of TiO_2 nanotube arrays was presented based on effect factors of fabricating TiO_2 nanotube array by anodization. Secondly, different-thick TiO_2 nanotube array films were prepared with controlling the anodic oxidation time, the photocatalytic reaction were analyzed and discussed after the films were characterized via FE-SEM, FE-TEM, XRD and XPS. Thirdly, FS-TNT(free-standing TiO_2 nanotube) array films were prepared by combined three-step anodization and heat treatment, the preparation mechanism of FS-TNT arrays were deeply, detailedly discussed and then presented based on FE-SEM, XRD analysis and the growth mechanism of TiO_2 nanotube arrays, the following mechanism were further confirmed by XPS and EDX. Lastly, the composite films were prepared by assembling FS-TNT and P25 paste film, namely FS-P25, FS-P25 as anode were used to fabricate dye-sensitized solar cells and the cells showed the biggestη% with FS2-P25, and the photocatalytic performances of FS-P25 were evaluated via degrade MB, the photocatalytic kinetics corresponded to first-order kinetics model and the reaction rate is the maximum when FS2-P25 were used for the photocatalyst.
     (1) Effect factors and growth mechanism of TiO_2 nanotube arrays by anodization
     The effect factors of fabrication TiO_2 nanotube arrays, including electrolyte, work voltage, cathode material and reaction time, were specifically analysed and discussed, then the preparing conditions of TiO_2 nanotube arrays were further optimized, the electrolyte for EG (polyethylene glycol, reference) +0.5wt%NH4F+3.0vol%H2O, work voltage for 60V, the distance between anode and cathode for 3cm, cathode for Pt electrode, the first anodic time for 0.5h. Subsequently, the growth mechanism of TiO_2 nanotube array films were discussed and summarized.
     (2) The photocatalytic performance of TiO_2 nanotube arrays were researched
     The removing deposit of TiO_2 nanotube mouth by anodization confirmed that these deposits were almost complete obliteration after these nanotubes had been soaked into 3.0wt% H2O_2 solution for 2h, and the morphology structure of nanotubes kept well. The effect of heat treatment on the nanotube morphology structure showed the nanotube antase(A) crystalline of TiO_2 annealed at 450℃had reached to perfect. Followingly, TiO_2 nanotube arrays with 1~4h anodic time were used in resorption-desorption process and photocatalytic reaction, the results demonstrated that the nanotubes resorption ability for MB increased with heat temperature and the same-length nanotubes annealed at 450℃manifested the optimal performance, especially, the degradation efficiency of Rh.B was up to 93.40% with the nanotubes anodized for 2h, furthermore, the photocatalytic reaction during 0~80min corresponded to first-order kinetics model and the maximal reaction rate constant(k=0.03267min-1) was corresponding to the nanotubes with anodic time 2h.
     (3) The preparing mechanism of FS-TNT array films
     FS-TNT array films were prepared via adopting three-step anodization and heat treatment. FS-TNT array films with nanotube bottom open, nanotube bottom close, nanotube bottom close with thin TiO_2 compact layers were detected via FE-SEM and the preparation mechanisms were discussed and presented based on FE-SEM, FE-TEM, XRD ananlysis and the growth mechanism of TiO_2 nanotube arrays. Then XPS analysis checked the preparation mechanism of FS-TNT array films.
     (4) The photocatalysis and DSSCs based on FS-P25
     FS-P25 composite films were assembled based on FS-TNT array films and P25 paste films and then used as photoanode to fabricate DSSCs, and the cells performance showed that DSSCs with FS2-P25 exhibited the biggestη%. Meanwhile, FS-P25 were used to degrade MB and the degradation efficiency were 78.46% corresponding to the biggest first kinetic constant k=0.01822min-1.
引文
[1]陈春英等.二氧化钛纳米材料生物效应与安全应用.北京:科学出版社; 2010.
    [2]杨华明.无机功能材料.北京:化学工业出版社; 2007.
    [3] Umebayashi T, Yamaki T, Yamamoto S, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies[J]. Journal of Applied Physics, 2003, 93(9):5156-5160.
    [4]刘春艳.纳米光催化及光催化环境净化材料.北京:化学工业出版社,2008.
    [5]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社; 2005.
    [6] O'Regan B C, Gratzel. M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J]. Nature, 1991, 353(24):737-740.
    [7] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of The American Chemical Society, 1993, 115(14):6382-6390.
    [8] Fujishima A, Honda K. Eletrochemical Photolysis of water at a semiconductor electrode[J]. Natue, 1972, 23:37-38.
    [9] Katoh R, Furube A, Yoshihara T, et al. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO_2, TiO_2, ZnO, Nb2O5, SnO_2, In2O3) films[J]. Journal of Physical Chemistry B, 2004, 108(15):4818-4822.
    [10] Hotchandani S, Bedja I, Fessenden R W, et al. Electrochromic and Photoelectrochromic Behavior of Thin WO3 Films Prepared from Quantum Size Colloidal Particles[J]. Langmuir, 1994, 10(1):17-22.
    [11] Lenzmann F, Krueger J, Burnside S, et al. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO_2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: Indication for electron injection from higher excited dye states[J]. Journal of Physical Chemistry B, 2001, 105(27):6347-6352.
    [12] Mane R S, Pathan H M, Lokhande C D, et al. An effective use of nanocrystalline CdO thin films in dye-sensitized solar cells[J]. Solar Energy, 2006, 80(2):185-190.
    [13] Qin P, Linder M, Brinck T, et al. High Incident Photon-to-Current Conversion Efficiency of p-Type Dye-Sensitized Solar Cells Based on NiO and Organic Chromophores[J]. Advanced Materials, 2009, 21(29):2993-2996.
    [14] Xia J B, Yang H, Li F Y, et al. Synthesis and properties of nanoparticke Al2O3 modified by organic ligand[J]. Chemical Journal of Chinese Universities-Chinese, 2004, 25(10):1796-1798.
    [15] Zhao W, Chen C C, Li X Z, et al. Photodegradation of sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: Influence of platinum as a functional co-catalyst[J]. Journal of Physical Chemistry B, 2002, 106(19):5022-5028.
    [16] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528):269-271.
    [17] Zhang L F, Kanki T, Sano N, et al. Development of TiO_2 photocatalyst reaction for water purification[J]. Separation and Purification Technology, 2003, 31(1):105-110.
    [18]张金龙,陈锋,何斌.光催化.上海:华东理工大学出版社,2004.
    [19]陈晓慧,柳丽芬,杨凤林等. CdS/TiO_2光催化氧化还原反应脱除水体中无机氮[J].感光科学与光化学2007, 25(2):89-101.
    [20] Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces[J]. Nature, 1997, 388(6641):431-432
    [21] Thompson T L, Yates J T, Jr. Surface science studies of the photoactivation of TiO_2-new photochemical processes[J]. Chemical Reviews, 2006, 106(10):4428-4453.
    [22] Zubkov T, Stahl D, Thompson T L, et al. Ultraviolet light-induced hydrophilicity effect on TiO_2(110)(1x1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets[J]. Journal of Physical Chemistry B, 2005, 109(32):15454-15462.
    [23] Aparicio M, Klein L C. Sol-gel synthesis and characterization of SiO_2-P2O5-ZrO_2[J]. Journal of Sol-Gel Science and Technology, 2003, 28(2):199-204.
    [24] Xia X H, Liang Y, Wang Z, et al. Synthesis and photocatalytic properties of TiO_2 nanostructures[J]. Materials Research Bulletin, 2008, 43(8-9):2187-2195.
    [25] Michailowski A, AlMawlawi D, Cheng G S, et al. Highly regular anatase nanotubule arrays fabricated in porous anodic templates[J]. Chemical Physics Letters, 2001, 349(1-2):1-5.
    [26]李纲,刘中清,张昭等.水热法制备TiO_2纳米管阵列[J].催化学报, 2009, 30(2):37-42.
    [27] Jung J H, Kobayashi H, van Bommel K J C, et al. Creation of novel helical ribbon and double-layered nanotube TiO_2 structures using an organogel template[J]. Chemistry of Materials, 2002, 14(4):1445-1447.
    [28] Zwilling V, Aucouturier M, Darque-Ceretti E. Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach[J]. Electrochimica Acta, 1999, 45(6):921-929.
    [29] Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12):3331-3334.
    [30] Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO_2 nanotube arrays: Fabrication, material properties, and solar energy applications[J]. Solar Energy Materials and Solar Cells, 2006, 90(14):2011-2075.
    [31] Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO_2 nanotube arrays to 134 mu m in length[J]. Journal of Physical Chemistry B, 2006, 110(33):16179-16184.
    [32] Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO_2 nanotube arrays up to 220 mu m in length: use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology, 2007, 18(6):11.
    [33] Paulose M, Prakasam H E, Varghese O K, et al. TiO_2 nanotube arrays of 1000 mu m length by anodization of titanium foil: Phenol red diffusion[J]. Journal of Physical Chemistry C, 2007, 111:14992-14997.
    [34]高建华,钱伟君,吴伟等.染料敏化太阳能电池TiO_2薄膜的制备方法[J].理化检验(物理分册), 2008, 44(08):431-437.
    [35] Roy P, Kim D, Paramasivam I, et al. Improved efficiency of TiO_2 nanotubes in dye sensitized solar cells by decoration with TiO_2 nanoparticles[J]. Electrochemistry Communications, 2009, 11(5):1001-1004.
    [36] Charoensirithavorn P, Ogomi Y, Sagawa T, et al. Improvement of Dye-Sensitized Solar Cell Through TiCl4-Treated TiO_2 Nanotube Arrays[J]. Journal of the Electrochemical Society, 2010, 157(3):B354-B356.
    [37]张东社,刘尧,王维波等.纳晶多孔TiO_2薄膜电极的化学处理[J].科学通报, 2000, 45(9):929-932.
    [38]李文欣,胡林华,戴松元.染料敏化太阳电池研究进[J].中国材料进展, 2009, 28(7-8):20-26.
    [39] Wang Z S, Li F Y, Huang C H. Photocurrent enhancement of hemicyanine dyes containing RSO3- group through treating TiO_2 films with hydrochloric acid[J]. Journal of Physical Chemistry B, 2001, 105(38):9210-9217.
    [40] Balraju P, Kumar M, Roy M S, et al. Dye sensitized solar cells (DSSCs) based on modified iron phthalocyanine nanostructured TiO_2 electrode and PEDOT:PSS counter electrode[J]. Synthetic Metals, 2009, 159(13):1325-1331.
    [41] Hao S C, Wu J H, Fan L Q, et al. The influence of acid treatment of TiO_2 porous film electrode on photoelectric performance of dye-sensitized solar cell[J]. Solar Energy, 2004, 76(6):745-750.
    [42] Murayama M, Mori T. Evaluation of treatment effects for high-performance dye-sensitized solar cells using equivalent circuit analysis[J]. Thin Solid Films, 2006, 509(1-2):123-126.
    [43] Sharma S, Varghese O K, Mor G K, et al. Ethanol vapor processing of titania nanotube array films: enhanced crystallization and photoelectrochemical performance[J]. Journal of Materials Chemistry, 2009, 19(23):3895-3898.
    [44] Park K H, Jin E M, Gu H B, et al. Effects of HNO3 treatment of TiO_2 nanoparticles on the photovoltaic properties of dye-sensitized solar cells[J]. Materials Letters, 2009, 63(26):2208-2211.
    [45] Yu T.可见光响应TiO_2制备、表征及性能分析: [博士学位论文]天津大学; 2010.
    [46] Yu T, Tan X, Zhao L, et al. Characterization, activity and kinetics of a visible light driven photocatalyst: Cerium and nitrogen co-doped TiO_2 nanoparticles[J]. Chemical Engineering Journal, 2010, 157(1):86-92.
    [47]黄娟茹,李明伟,崔忠. TiO_2光催化剂掺杂改性的研究进展[J].工业催化, 2007, 15(1):1-7.
    [48]李明伟,崔忠,黄娟茹,等.低温制备二氧化钛光催化剂薄膜的研究进展[J].现代化工, 2007, 27(3):26-31.
    [49] Kim C, Kim K S, Kim H Y, et al. Modification of a TiO_2 photoanode by using Cr-doped TiO_2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell[J]. Journal of Materials Chemistry, 2008, 18(47):5809-5814.
    [50] Alarcon H, Hedlund M, Johansson E M J, et al. Modification of nanostructured TiO_2 electrodes by electrochemical Al3+ insertion: Effects on dye-sensitized solar cell performance[J]. Journal of Physical Chemistry C, 2007, 111(35):13267-13274.
    [51]李树全,林建明,吴季怀,等. Ho3 +上转换发光在染料敏化太阳能电池中的应用[J].功能材料, 2009, 40(1):82-85.
    [52]杨术明,李福友,黄春辉.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质[J].《中国科学》(B辑), 2003, 33(1):59-65.
    [53] Reyes-Gil K R, Reyes-Garcia E A, Raftery D. Photoelectrochemical analysis of anion-doped TiO_2 colloidal and powder thin-film electrodes[J]. Journal of the Electrochemical Society, 2006, 153(7):A1296-A1301.
    [54] Ma T L, Akiyama M, Abe E, et al. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode[J]. Nano Letters, 2005, 5(12):2543-2547.
    [55] Kang S H, Kim J Y, Kim Y K, et al. Effects of the incorporation of carbon powder into nanostructured TiO_2 film for dye-sensitized solar cell[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2007, 186(2-3):234-241.
    [56] Kang S H, Kim J Y, Sung Y E. Role of surface state on the electron flow in modified TiO_2 film incorporating carbon powder for a dye-sensitized solar cell[J]. Electrochimica Acta, 2007, 52(16):5242-5250.
    [57] Tian H J, Hu L H, Zhang C N, et al. Retarded Charge Recombination in Dye-Sensitized Nitrogen-Doped TiO_2 Solar Cells[J]. Journal of Physical Chemistry C, 2010, 114(3):1627-1632.
    [58] Sykora M, Petruska M A, Alstrum-Acevedo J, et al. Photoinduced charge transfer between CdSe nanocrystal quantum dots and Ru-polypyridine complexes[J]. Journal of The American Chemical Society, 2006, 128:9984-9985.
    [59] Lee Y L, Lo Y S. Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe[J]. Advanced Functional Materials, 2009, 19(4):604-609.
    [60] Lee H, Leventis H C, Moon S J, et al. PbS and US Quantum Dot-Sensitized Solid-State Solar Cells: "Old Concepts, New Results"[J]. Advanced Functional Materials, 2009, 19(17):2735-2742.
    [61] Lee H J, Chen P, Moon S J, et al. Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator[J]. Langmuir, 2009, 25(13):7602-7608.
    [62] Zaban A, Micic O I, Gregg B A, et al. Photosensitization of nanoporous TiO_2 electrodes with InP quantum dots[J]. Langmuir, 1998, 14(12):3153-3156.
    [63] Gao X F, Li H B, Sun W T, et al. CdTe Quantum Dots-Sensitized TiO_2 Nanotube Array Photoelectrodes[J]. Journal of Physical Chemistry C, 2009, 113(18):7531-7535.
    [64] Chou C S, Yang R Y, Yeh C K, et al. Preparation of TiO_2/Nano-metal composite particles and their applications in dye-sensitized solar cells[J]. Powder Technology, 2009, 194(1-2):95-105.
    [65] Sawatsuk T, Chindaduang A, Sae-Kung C, et al. Dye-sensitized solar cells based on TiO_2-MWCNTs composite electrodes: Performance improvement and their mechanisms[J]. Diamond and Related Materials, 2009, 18(2-3):524-527.
    [66] Kitiyanan A, Sakulkhaemaruethai S, Suzuki Y, et al. Structural and photovoltaic properties of binary TiO_2-ZrO_2 oxides system prepared by sol-gel method[J]. Composites Science and Technology, 2006, 66(10):1259-1265.
    [67] Nguyen T V, Lee H C, Khan M A, et al. Electrodeposition of TiO_2/SiO_2 nanocomposite for dye-sensitized solar cell[J]. Solar Energy, 2007, 81(4):529-534.
    [68]王育乔,孙岳明,代云茜,等.二氧化钛纳米管复合薄膜电极制备及其在染料敏化太阳能电池中的应用[J].东南大学学报:自然科学版, 2008, 38(1):162-165.
    [69]庞山,谢腾峰,张宇,等. TiO_2/ZnO薄膜电极中光生电子的传输及其在太阳电池中的应用[J].高等学校化学学报, 2007, 28(11):2187-2189.
    [70] Allam N K, Grimes C A. Formation of vertically oriented TiO_2 nanotube arrays using a fluoride free HCl aqueous electrolyte[J]. Journal of Physical Chemistry C, 2007, 111(35):13028-13032.
    [71] Allam N K, Grimes C A. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO_2 nanotube arrays[J]. Solar Energy Materials and Solar Cells, 2008, 92(11):1468-1475.
    [72] Allam N K, Shankar K, Grimes C A. A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing[J]. Advanced Materials, 2008, 20(20):3942-3946.
    [73] Fabregat-Santiago F, Barea E M, Bisquert J, et al. High carrier density and capacitance in TiO_2 nanotube arrays induced by electrochemical doping[J]. Journal of The American Chemical Society, 2008, 130(34):11312-11316.
    [74] Grimes C A. Synthesis and application of highly ordered arrays of TiO_2 nanotubes[J]. Journal of Materials Chemistry, 2007, 17(15):1451-1457.
    [75] Ong K G, Varghese O K, Mor G K, et al. Application of finite-difference time domain to dye-sensitized solar cells: The effect of nanotube-array negative electrode dimensions on light absorption[J]. Solar Energy Materials and Solar Cells, 2007, 91(4):250-257.
    [76] Paulose M, Shankar K, Varghese O K, et al. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17(5):1446-1448.
    [77] Paulose M, Shankar K, Varghese O K, et al. Application of highly-ordered TiO_2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. Journal of Physics D-Applied Physics, 2006, 39(12):2498-2503.
    [78] Shankar K, Bandara J, Paulose M, et al. Highly efficient solar cells using TiO_2 nanotube arrays sensitized with a donor-antenna dye[J]. Nano Letters, 2008, 8(6):1654-1659.
    [79] Shankar K, Basham J I, Allam N K, et al. Recent Advances in the Use of TiO_2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry[J]. Journal of Physical Chemistry C, 2009, 113(16):6327-6359.
    [80] Varghese O K, Paulose M, Grimes C A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells[J]. Nature Nanotechnology, 2009, 4(9):592-597.
    [81] Feng X J, Shankar K, Varghese O K, et al. Vertically Aligned Single Crystal TiO_2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications[J]. Nano Letters, 2008, 8(11):3781-3786.
    [82] Adachi M, Murata Y, Okada I, et al. Formation of titania nanotubes and applications for dye-sensitized solar cells[J]. Journal of the Electrochemical Society, 2003, 150(8):G488-G493.
    [83] Adachi M, Murata Y, Takao J, et al. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO_2 nanowires made by the "oriented attachment" mechanism[J]. Journal of The American Chemical Society, 2004, 126(45):14943-14949.
    [84] Jiu J T, Isoda S, Wang F M, et al. Dye-sensitized solar cells based on a single-crystalline TiO_2 nanorod film[J]. Journal of Physical Chemistry B, 2006, 110(5):2087-2092.
    [85] Jiu J T, Wang F M, Isoda S, et al. Highly efficient dye-sensitized solar cells based on single crystalline TiO_2 nanorod film[J]. Chemistry Letters, 2005, 34(11):1506-1507.
    [86] Yang L, Lin Y, Jia J G, et al. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO_2 spheres[J]. Journal of Power Sources, 2008, 182(1):370-376.
    [87] Wang W L, Lin H, Li J B, et al. Formation of titania nanoarrays by hydrothermal reaction and their application in photovoltaic cells[J]. Journal of the American Ceramic Society, 2008, 91(2):628-631.
    [88] Kang S H, Kang M S, Kim H S, et al. Columnar rutile TiO_2 based dye-sensitized solar cells by radio-frequency magnetron sputtering[J]. Journal of Power Sources, 2008, 184(1):331-335.
    [89] Kang S H, Kim H S, Kim J Y, et al. An investigation on electron behavior employing vertically-aligned TiO_2 nanotube electrodes for dye-sensitized solar cells[J]. Nanotechnology, 2009, 20(35):6.
    [90] Kang S H, Lim J W, Kim H S, et al. Photo and Electrochemical Characteristics Dependent on the Phase Ratio of Nanocolumnar Structured TiO_2 Films by RF Magnetron Sputtering Technique[J]. Chemistry of Materials, 2009, 21(13):2777-2788.
    [91] Fan X, Chu Z Z, Wang F Z, et al. Wire-shaped flexible dye-sensitized solar cells[J]. Advanced Materials, 2008, 20(3):592-595.
    [92] Chen P, Brillet J, Bala H, et al. Solid-state dye-sensitized solar cells using TiO_2 nanotube arrays on FTO glass[J]. Journal of Materials Chemistry, 2009, 19(30):5325-5328.
    [93] de Tacconi N R, Chanmanee W, Rajeshwar K, et al. Photoelectrochemical Behavior of Polychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays for Dye-Sensitized Solar Cells[J]. Journal of Physical Chemistry C, 2009, 113(7):2996-3006.
    [94] Gao X P, Zhu H Y, Pan G L, et al. Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material[J]. Journal of Physical Chemistry B, 2004, 108(9):2868-2872.
    [95] Kim S S, Yum J H, Sung Y E. Improved performance of a dye-sensitized solar c ell using a TiO_2/ZnO/Eosin Y electrode[J]. Solar Energy Materials and Solar Cells, 2003, 79(4):495-505.
    [96] Zhang X T, Liu H W, Taguchi T, et al. Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO_2 films[J]. Solar Energy Materials and Solar Cells, 2004, 81(2):197-203.
    [97] Zhang X T, Sutanto I, Taguchi T, et al. Al2O3-coated nanoporous TiO_2 electrode for solid-state dye-sensitized solar cell[J]. Solar Energy Materials and Solar Cells, 2003, 80(3):315-326.
    [98] Wu S, Han H W, Tai Q D, et al. Enhancement in dye-sensitized solar cells based on MgO-coated TiO_2 electrodes by reactive DC magnetron sputtering[J]. Nanotechnology, 2008, 19(21):6.
    [99] Wu S J, Han H W, Tai Q D, et al. Improvement in dye-sensitized solar cells with a ZnO-coated TiO_2 electrode by rf magnetron sputtering[J]. Applied Physics Letters, 2008, 92(12):3.
    [100] Wu S J, Han H W, Tai Q D, et al. Improvement in dye-sensitized solar cells employing TiO_2 electrodes coated with Al2O3 by reactive direct current magnetron sputtering[J]. Journal of Power Sources, 2008, 182(1):119-123.
    [101]周卫,付宏刚,潘凯,等.电泳沉积法制备介孔TiO_2/单壁碳纳米管薄膜[J].高等学校化学学报, 2009, 30(10):2036-2039.
    [102] Menzies D B, Dai Q, Bourgeois L, et al. Modification of mesoporous TiO_2 electrodes by surface treatment with titanium(IV), indium(III) and zirconium(IV) oxide precursors: preparation, characterization and photovoltaic performance in dye-sensitized nanocrystalline solar cells[J]. Nanotechnology, 2007, 18(12):1-11.
    [103] Diamant Y, Chen S G, Melamed O, et al. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO_2 core[J]. Journal of Physical Chemistry B, 2003, 107(9):1977-1981.
    [104] Liu Z Y, Pan K, Liu M, et al. Al2O3-coated SnO_2/TiO_2 composite electrode for the dye-sensitized solar cell[J]. Electrochimica Acta, 2005, 50(13):2583-2589.
    [105] Kuang S Y, Yang L X, Luo S L, et al. Fabrication, characterization and photoelectrochemical properties of Fe2O3 modified TiO_2 nanotube arrays[J]. Applied Surface Science, 2009, 255(16):7385-7388.
    [106] Kang S H, Kim J Y, Kim Y, et al. Surface modification of stretched TiO_2 nanotubes for solid-state dye-sensitized solar cells[J]. Journal of Physical Chemistry C, 2007, 111(26):9614-9623.
    [107] Seabold J A, Shankar K, Wilke R H T, et al. Photoelectrochemical Properties of Heterojunction CdTe/TiO_2 Electrodes Constructed Using Highly Ordered TiO_2 Nanotube Arrays[J]. Chemistry of Materials, 2008, 20(16):5266-5273.
    [108] Ferrere S, Gregg B A. Large increases in photocurrents and solar conversion efficiencies by UV illumination of dye sensitized solar cells[J]. Journal of Physical Chemistry B, 2001, 105(32):7602-7605.
    [109] Gregg B A, Chen S G, Ferrere S. Enhanced dye-sensitized photoconversion efficiency via reversible production of UV-induced surface states in nanoporous TiO_2[J]. Journal of Physical Chemistry B, 2003, 107(13):3019-3029.
    [110] Lewis L N, Spivack J L, Gasaway S, et al. A novel UV-mediated l ow-temperature sintering of TiO_2 for dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2006, 90(7-8):1041-1051.
    [111] Choi H, Kim S, Kang S O, et al. Stepwise Cosensitization of Nanocrystalline TiO_2 Films Utilizing Al_2O_3 Layers in Dye-Sensitized Solar Cells[J]. Angewandte Chemie-International Edition, 2008, 47(43):8259-8263.
    [112] Chigane M, Watanabe M, Izaki M, et al. Preparation of Hollow Titanium Dioxide Shell Thin Films by Electrophoresis and Electrolysis for Dye-Sensitized Solar Cells[J]. Electrochemical and Solid State Letters, 2009, 12(5):E5-E8.
    [113] Albu S P, Ghicov A, Macak J M, et al. Self-organized, free-standing TiO_2 nanotube membrane for flow-through photocatalytic applications[J]. Nano Letters, 2007, 7(5):1286-1289.
    [114] Chen Q Q, Xu D S, Wu Z Y, et al. Free-standing TiO_2 nanotube arrays made by anodic oxidation and ultrasonic splitting[J]. Nanotechnology, 2008, 19(36):365708.
    [115] Kant K, Losic D. A simple approach for synthesis of TiO_2 nanotubes with through-hole morphology[J]. Physica Status Solidi-Rapid Research Letters, 2009, 3(5):139-141.
    [116] Li S Q, Zhang G M. One-step realization of open-ended TiO_2 nanotube arrays by transition of the anodizing voltage[J]. Journal of the Ceramic Society of Japan, 2010, 118(1376):291-294.
    [117] Meng X, Lee T Y, Chen H, et al. Fabrication of Free Standing Anodic Titanium Oxide Membranes with Clean Surface Using Recycling Process[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(7):4259-4265.
    [118] Wang J, Lin Z Q. Freestanding TiO_2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization[J]. Chemistry of Materials, 2008, 20(4):1257-1261.
    [119] Chen Q W, Xu D S. Large-Scale, Noncurling, and Free-Standing Crystallized TiO_2 Nanotube Arrays for Dye-Sensitized Solar Cells[J]. Journal of Physical Chemistry C, 2009, 113(15):6310-6314.
    [120] Lin C J, Yu W Y, Chien S H. Transparent electrodes of ordered opened-end TiO_2-nanotube arrays for highly efficient dye-sensitized solar cells[J]. Journal of Materials Chemistry, 2010, 20(6):1073-1077.
    [121] Park J H, Lee T W, Kang M G. Growth, detachment and transfer of highly-ordered TiO_2 nanotube arrays: use in dye-sensitized solar cells[J]. Chemical Communications, 2008, (25):2867-2869.
    [122] Allam N K, Shankar K, Grimes C A. A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing [J]. Advanced Materials, 2008, 20:3942-3946.
    [123] Paulose M, Peng L L, Popat K C, et al. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO_2 membranes[J]. Journal of Membrane Science, 2008, 319:199-205.
    [124] Lin C J, Yu W Y, Lua Y T, et al. Fabrication of open-ended high aspect-ratio anodic TiO_2 nanotube films for photocatalytic and photoelectrocatalytic applications[J]. Chemical Communications, 2008, (45):6031-6033.
    [125] Lin C J, Yu Y H, Liou Y H. Free-standing TiO_2 nanotube array films sensitized with CdS as highly active solar light-driven photocatalysts[J]. Applied Catalysis B-Environmental, 2009, 93(1-2):119-125.
    [126] Dilmohamud B A, Seeneevassen J, Rughooputh S D D V, et al. Surface tension and related thermodynamic parameters of alcohols using the Traube stalagmometer [J]. European Journal of Physics, 2005, 26(6):1079-1084.
    [127] Ng J W, Zhang X W, Zhang T, et al. Construction of self-organized free-standing TiO_2 nanotube arrays for effective disinfection of drinking water. In: Journal of Chemical Technology and Biotechnology; 2010; 2010. p. 1061-1066.
    [128] Prakasam H E, Shankar K, Paulose M, et al. A new benchmark for TiO_2 nanotube array growth by anodization[J]. Journal of Physical Chemistry C, 2007, 111(20):7235-7241.
    [129] Li S Q, Zhang G M, Guo D Z, et al. Anodization Fabrication of Highly Ordered TiO_2 Nanotubes[J]. Journal of Physical Chemistry C, 2009, 113(29):12759-12765.
    [130] Sreekantan S, Saharudin K A, Lockman Z, et al. Fast-rate formation of TiO_2 nanotube arrays in an organic bath and their applications in photocatalysis[J]. Nanotechnology, 2010, 21(36).
    [131] Yin H, Liu H, Shen W Z. The large diameter and fast growth of self-organized TiO_2 nanotube arrays achieved via electrochemical anodization[J]. Nanotechnology, 2010, 21(3).
    [132] Jo Y, Jung I, Lee I, et al. Fabrication of through-hole TiO_2 nanotubes by potential shock[J]. Electrochemistry Communications, 2010, 12(5):616-619.
    [133] Lim J H, Hong S Y, Kang S J, et al. Electrochemical determination of whole blood clotting time by using nanodot arrays [J]. Electrochemistry Communications, 2009, 11:2141-2144.
    [134] Lin J, Chen J F, Chen X F. Facile fabrication of free-standing TiO_2 nanotube membranes with both ends open via self-detaching anodization[J]. Electrochemistry Communications, 2010, 12(8):1062-1065.
    [135] Macak J M, Aldabergerova S, Ghicov A, et al. Smooth anodic TiO_2 nanotubes: annealing and structure[J]. Physica Status Solidi a-Applications and Materials Science, 2006, 203(10):R67-R69.
    [136] Zhu K, Neale N R, Halverson A F, et al. Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO_2 Nanotube-Based Dye-Sensitized Solar Cells[J]. Journal of Physical Chemistry C, 2010, 114(32):13433-13441.
    [137] Mor G K, Varghese O K, Paulose M, et al. Transparent highly ordered TiO_2 nanotube arrays via anodization of titanium thin films[J]. Advanced Functional Materials, 2005, 15(8):1291-1296.
    [138] Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238:37-38.
    [139] Mor G K, Shankar K, Paulose M, et al. Use of Highly-Ordered TiO_2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Letters, 2006, 6(2):215-218.
    [140] Xie Z B, Blackwood D J. Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol[J]. Electrochimica Acta, 2010, 56(2):905-912.
    [141] Zhu K, Vinzant T B, Neale N R, et al. Removing structural disorder from oriented TiO_2 nanotube arrays: Reducing the dimensionality of transport andrecombination in dye-sensitized solar cells[J]. Nano Letters, 2007, 7(12):3739-3746.
    [142] Steffen Berger, Julia Kunze, Patrik Schmuki, et al. Influence of Water Content on the Growth of Anodic TiO_2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes[J]. Journal of the Electrochemical Society, 2010, 157(1):C18-C23.
    [143] Su Z X, Zhou W Z. Formation, morphology control and applications of anodic TiO_2 nanotube arrays[J]. Journal of Materials Chemistry, 2011, 21(25):8955-8970.
    [144] Raja K S, Gandhi T, Misra M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes[J]. Electrochemistry Communications, 2007, 9(5):1069-1076.
    [145]王道爱,刘盈,王成伟,等.阳极氧化法制备TiO_2纳米管阵列膜及其应用[J].化学进展, 2010, 22(6):1035-1043.
    [146] Macak J M, Schmuki P. Anodic growth of self-organized anodic TiO_2 nanotubes in viscous electrolytes[J]. Electrochimica Acta, 2006, 52(3):1258-1264.
    [147] Roy P, Albu S P, Schmuki P. TiO_2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops[J]. Electrochemistry Communications, 2010, 12(7):949-951.
    [148] Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO_2 nanotube arrays up to 220 mu m in length: use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology, 2007, 18(6):065707.
    [149] Zhang G, Huang H, Zhang Y, et al. Highly ordered nanoporous TiO_2 and its photocatalytic properties[J]. Electrochemistry Communications, 2007, 9(12):2854-2858.
    [150] Shin Y, Lee S. Self-Organized Regular Arrays of Anodic TiO_2 Nanotubes[J]. Nano Letters, 2008, 8(10):3171-3173.
    [151] Liu Z, Zhang X, Nishimoto S, et al. Highly ordered TiO_2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol[J]. Journal of Physical Chemistry C, 2008, 112(1):253-259.
    [152] Ma Q, Qin T P, Liu S J, et al. Morphology and photocatalysis of mesoporous titania thin films annealed in different atmosphere for degradation of methylorange[J]. Applied Physics a-Materials Science & Processing, 2011, 104(1):365-373.
    [153] Zhuang H F, Lin C J, Lai Y K, et al. Some critical structure factors of titanium oxide manotube array in its photocatalytic activity[J]. Environmental Science & Technology, 2007, 41(13):4735-4740.
    [154] Grimes C A, Mor G K. TiO_2 nanotube arrays:synthesis, properties, and Applications. In. New York: Springer; 2009.
    [155] Kontos A G, Kontos A I, Tsoukleris D S, et al. Photo-induced effects on self-organized TiO_2 nanotube arrays: the influence of surface morphology[J]. Nanotechnology, 2009, 20(4):045603.
    [156] Liu Z Y, Zhang X T, Nishimoto S, et al. Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO_2 Nanotube Arrays[J]. Environmental Science & Technology, 2008, 42(22):8547-8551.
    [157] Vijayan B, Dimitrijevic N M, Rajh T, et al. Effect of Calcination Temperature on the Photocatalytic Reduction and Oxidation Processes of Hydrothermally Synthesized Titania Nanotubes[J]. Journal of Physical Chemistry C, 2010, 114(30):12994-13002.
    [158] Xiao N, Li Z, Liu J, et al. Effects of calcination temperature on the morphology, structure and photocatalytic activity of titanate nanotube thin films[J]. Thin Solid Films, 2010, 519(1):541-548.
    [159] Kang X, Chen S. Photocatalytic reduction of methylene blue by TiO_2 nanotube arrays: effects of TiO_2 crystalline phase[J]. Journal of Materials Science, 2010, 45(10):2696-2702.
    [160] Kim G-S, Ansari S G, Seo H-K, et al. Effect of annealing temperature on structural and bonded states of titanate nanotube films[J]. Journal of Applied Physics, 2007, 101(2):024314.
    [161] Kontos A G, Katsanaki A, Maggos T, et al. Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes[J]. Chemical Physics Letters, 2010, 490(1-3):58-62.
    [162] Adan C, Bahamonde A, Fernandez-Garcia M, et al. Structure and activity of nanosized iron-doped anatase TiO_2 catalysts for phenol photocatalytic degradation[J]. Applied Catalysis B-Environmental, 2007, 72(1-2):11-17.
    [163] Ghicov A, Macak J M, Tsuchiya H, et al. Ion implantation and annealing for an efficient N-doping of TiO_2 nanotubes[J]. Nano Letters, 2006, 6(5):1080-1082.
    [164] Zhou L., Deng J., Zhao Y.B., et al. Preparation and characterization of N-I co-doped nanocrystal anatase TiO_2 with enhanced photocatalytic activity under visible-light irradiation[J]. Materials Chemistry and Physics, 2009, 117(2-3):522-527.
    [165] Smith Y R, Kar A, Subramanian V. Investigation of Physicochemical Parameters That Influence Photocatalytic Degradation of Methyl Orange over TiO_2 Nanotubes[J]. Industrial & Engineering Chemistry Research, 2009, 48(23):10268-10276.
    [166] Wang D, Xiao L, Luo Q, et al. Highly efficient visible light TiO_2 photocatalyst prepared by sol-gel method at temperatures lower than 300 degrees C[J]. Journal of Hazardous Materials, 2011, 192(1):150-159.
    [167]刘芬,赵志娟,邱丽美,等. XPS光电子峰和俄歇电子峰峰位表[J].分析测试技术与仪器, 2009, 15(1):1-17.
    [168] Hamal D B, Klabunde K J. Valence State and Catalytic Role of Cobalt Ions in Cobalt TiO_2 Nanoparticle Photocatalysts for Acetaldehyde Degradation under Visible Light[J]. Journal of Physical Chemistry C, 2011, 115(35):17359-17367.
    [169] Huang D, Liao S, Quan S, et al. Preparation of anatase F doped TiO_2 sol and its performance for photodegradation of formaldehyde[J]. Journal of Materials Science, 2007, 42(19):8193-8202.
    [170] Soares G B, Bravin B, Vaz C M P, et al. Facile synthesis of N-doped TiO_2 nanoparticles by a modified polymeric precursor method and its photocatalytic properties[J]. Applied Catalysis B-Environmental, 2011, 106(3-4):287-294.
    [171] Saha C N, Hadand G T. Titanium nitride oxidation chemistry: An X-ray Photoelectron Spectroscopy Study[J]. Journal of Applied Physics, 1992, 72(7):3072.
    [172] Chen D, Jiang Z, Geng J, et al. Carbon and nitrogen co-doped TiO_2 with enhanced visible-light photocatalytic activity[J]. Industrial & Engineering Chemistry Research, 2007, 46(9):2741-2746.
    [173] Chang H T, Wu N M, Zhu F Q. A kinetic model for photocatalytic degradation of organic contaminants in a thin-film TiO_2 catalyst[J]. Water Research, 2000, 34(2):407-416.
    [174] Ku Y, Fan Z R, Chou Y C, et al. Effects of TiO_2 nanotube array dimension and annealing temperature on the Acid Red 4 degradation in aqueous solution by photocatalytic process[J]. Water Science and Technology, 2010, 61(11):2943-2949.
    [175] Zhang X M, Huo K F, Hu L S, et al. Synthesis and Photocatalytic Activity of Highly Ordered TiO_2 and SrTiO3/TiO_2 Nanotube Arrays on Ti Substrates[J]. Journal of the American Ceramic Society, 2010, 93(9):2771-2778.
    [176] In S-i, Nielsen M G, Vesborg P C K, et al. Photocatalytic methane decomposition over vertically aligned transparent TiO_2 nanotube arrays[J]. Chemical Communications, 2011, 47(9):2613-2615.
    [177] Lin J, Zong R L, Zhou M, et al. Photoelectric catalytic degradation of methylene blue by C-60-modified TiO_2 nanotube array[J]. Applied Catalysis B-Environmental, 2009, 89(3-4):425-431.
    [178] Jha H, Roy P, Hahn R, et al. Fast formation of aligned high-aspect ratio TiO_2 nanotube bundles that lead to increased open circuit voltage when used in dye sensitized solar cells[J]. Electrochemistry Communications, 2011, 13(3):302-305.
    [179] Yan J, Zhou F. TiO_2 nanotubes: Structure optimization for solar cells[J]. Journal of Materials Chemistry, 2011, 21(26):9406-9418.
    [180] Wang Q, Pan Y Z, Huang S S, et al. Resistive and capacitive response of nitrogen-doped TiO_2 nanotubes film humidity sensor[J]. Nanotechnology, 2011, 22(2):025501.
    [181] Lin C J, Yu W Y, Chien S H. Rough conical-shaped TiO_2-nanotube arrays for flexible backilluminated dye-sensitized solar cells[J]. Applied Physics Letters, 2008, 93(13).
    [182] Li L L, Chen Y J, Wu H P, et al. Detachment and transfer of ordered TiO_2 nanotube arrays for front-illuminated dye-sensitized solar cells[J]. Energy & Environmental Science, 2011, 4(9):3420-3425.
    [183] Hsiao P T, Liou Y J, Teng H S. Electron Transport Patterns in TiO_2 Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations[J]. Journal of Physical Chemistry C, 2011, 115(30):15018-15024.
    [184]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京:北京大学出版社, 2001.
    [185]戴松元,李永舫.太阳能电池基础与应用(第七章).北京:科学出版社; 2005.
    [186]杨术明.染料敏化纳米晶太阳能电池.郑州:郑州大学出版社; 2007.
    [187] Ito S, Murakami T N, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%[J]. Thin Solid Films, 2008, 516(14):4613-4619.
    [188] Sommeling P M, O'Regan B C, Haswell R R, et al. Influence of a TiCl4 post-treatment on nanocrystalline TiO_2 films in dye-sensitized solar cells[J]. Journal of Physical Chemistry B, 2006, 110(39):19191-19197.
    [189] O'Regan B C, Durrant J R, Sommeling P M, et al. Influence of the TiCl4 treatment on nanocrystalline TiO_2 films in Dye-sensitized solar Cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit[J]. 2007 Journal of Physical Chemistry B.
    [190] Mathew A, Rao G M, Munichandraiah N. Effect of TiO_2 electrode thickness on photovoltaic properties of dye sensitized solar cell based on randomly oriented Titania nanotubes[J]. Materials Chemistry and Physics, 2011, 127(1-2):95-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700