用户名: 密码: 验证码:
Fe-Ti(Zr)-C体系燃烧合成与生长行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CS (combustion synthesis)技术具有产物纯度高、操作简单、省时节能等优点,已广泛被应用于金属间化合物、复合材料、陶瓷材料等的制备。然而人们对CS合成材料的力学性能及应用的研究较多,而对其形成机制和生长行为的研究却相对有限。因此,本文通过CS技术合成了TiC、ZrC陶瓷颗粒,并利用差热分析(DTA),X射线衍射(XRD),微区X射线,场发射扫描电镜(FE-SEM),能谱(EDS)及透射电镜(TEM)等分析手段,研究了原位合成TiC、ZrC的反应特征、组织形貌、反应过程及生长行为。
     热力学计算结果表明,TiC、ZrC分别为Fe-Ti-C和Fe-Zr-C体系中最稳定的相。SHS (Self-propagating high-temperature Synthesis)反应制备TiC时,随着Fe-Ti-C混合粉末中Fe含量的增加,绝热燃烧温度、反应温度和燃烧波速降低,合成的TiC颗粒尺寸逐渐减小。通过DTA分析和燃烧波淬熄实验揭示了Fe-Ti-C体系SHS过程中的反应机制。首先,Fe和Ti相互扩散发生固态反应形成FeTi相;当温度升高到1085℃时,FeTi和Ti发生反应形成Fe-Ti液相,随后C原子溶解进入Fe-Ti熔体中并与Ti反应生成热力学上更稳定的TiC相。TE (Thermal explosion)较SHS具有更快的反应速度和冷却速度,合成的TiC颗粒更为细小,40wt.% Fe-Ti-C混合粉末TE产物中残留少量的Fe_2Ti化合物。
     Fe-Zr-C体系SHS制备ZrC时,随着体系中Fe含量的增加,绝热燃烧温度、反应温度和燃烧波速降低,产物中ZrC的颗粒尺寸明显减小,直至纳米级。体系中Fe含量为30wt.%时,SHS反应不完全,少量的Fe_2Zr化合物驻留在产物中。DTA分析和燃烧波淬熄实验表明,ZrC的形成机制主要为反应-析出机制。首先,Fe与Zr发生固-固反应生成Fe_2Zr化合物,Fe_2Zr形成时所释放的热量会促使Fe与C反应形成Fe-C液相,随后Zr溶解进入Fe-C熔体内与C反应生成ZrC,同时释放出大量的热量而导致Fe与Fe_2Zr反应形成Fe-Zr液相。最后,C扩散溶解进入Fe-Zr液相中并与Zr反应生成大量的ZrC颗粒。TE合成时,Zr和C通过固态反应生成ZrC颗粒,由于TE较SHS具有更高的反应温度,合成的ZrC颗粒尺寸略大。
     当Fe-Ti-C混合粉末中Fe含量为10~30wt.%时,SHS合成的TiC颗粒呈金字塔型层层堆砌形态,其生长模式为二维形核台阶生长。混合粉末中Fe含量为40wt.%时,高过饱和度与过冷度导致液/固界面由原子尺度光滑向原子尺度粗糙转变,其生长机制转变为连续生长。C粉颗粒尺寸能影响SHS的反应放热速度和放热量,从而改变合成产物中TiC颗粒尺寸。TE点火方式合成TiC时,体系中Fe含量的增加能降低TE的反应温度,但不影响TiC的生长机制。
     SHS点火方式合成ZrC时,0~10wt.% Fe-Zr-C混合粉末中ZrC以固态扩散形式长大,一旦Fe含量超过20wt.%,液/固界面结构转变为原子尺度粗糙界面,ZrC以连续生长方式长大。采用石墨为碳原时,C向Fe-Zr液相中扩散需要的能量较高,不利于ZrC的持续形成及放热,使得SHS反应难以维持。TE点火方式合成过程中,不规则ZrC颗粒亦是以固态扩散方式长大。
     在Fe-Ti-C混合粉末中,添加物Cr_7C_3和V_8C_7粉仅作为稀释剂降低了SHS反应温度,减小了TiC颗粒尺寸。在Cu-Zr-C体系中SHS合成了纳米级ZrC颗粒,添加物Cu粉参与并促进了ZrC的形成。
compounds, composites and ceramic particles due to due to the high purity of the products, low production cost and simplicity of the operation and equipment. However, the mechanical properties and applications of in-situ materials have been paid more attention, while few works have been focused on its formation mechanism, especially its growth behaviors. Therefore, in this paper, TiC and ZrC ceramic particulates were fabricated by the CS technology. The reaction characteristics, crystal morphologies, formation mechanisms and the growth behaviors of TiC and ZrC ceramics were investigated in detail by using the modern analyzing methods such as differential thermal analyzer (DTA), X-ray diffractometer (XRD) and micro-diffractometer, field emission scanning electron microscopy (FE-SEM), energy dispersive spectrometer(EDS), as well as transmission electron microscopy(TEM).
    
     The results of thermodynamic calculation showed that TiC and ZrC are the most thermodynamically stable phase in Fe-Ti-C and Fe-Zr-C systems, respectively. When producing TiC ceramic particles by SHS (Self-propagating high-temperature synthesis), with increasing Fe content in Fe-Ti-C system, the Tad (Adiabatic temperature), reaction temperature and combustion wave rate decreases, and also the synthesized particles sizes reduces. The formation mechanism of TiC in Fe-Ti-C system was studied DTA analysis combining with combustion wave quenched experiments. After being preheated, the solid-state reaction between Fe and Ti initially occurred and produced a few FeTi phase. With increasing temperature, FeTi would react with Ti and formed Fe-Ti liquid. Then C diffused and dissolved into the Fe-Ti liquid and reacted with Ti to synthesize the thermodynamically stable TiC phase. Compared with SHS, TE (Thermal explosion) synthesis possesses higher reaction rate and cooling rate, which led to synthesis of finer TiC particles and Fe_2Ti compound residual in the 40wt.%Fe-Ti-C powder mixtures.
     When preparing ZrC through SHS route, with increasing Fe content in Fe-Zr-C system, the Tad, reaction temperature and particles sizes decreased, and also the synthesized ZrC particles sizes reduces to nano-order. In 30wt.% Fe-Zr-C powder mixtures, SHS reaction failed to complete and a amount of Fe_2Zr phase resided in the final product. The formation mechanism of ZrC in Fe-Zr-C system is reaction-precipitation mechanism. The solid-state reaction between Fe and Ti initially occurred and synthesized a few Fe_2Zr compounds. The formation of Fe_2Zr would release some heat and resulted in the formation of Fe-C liquids through the reaction between Fe and C powders. Subsequently, Zr atoms would diffuse and dissolve into Fe-C liquid phase and reacted with C to form ZrC phase. Utilizing the heat released by ZrC-forming reaction, Fe would react with Fe_2Zr to form Fe-Zr liquids. Finally, C atoms dissolved into Fe-Zr melt and reacted with Zr to form a number of ZrC particles.
     During the processing of TE synthesis, ZrC particles were formed by the solid-sate reaction between C and Zr particles. Compared with SHS synthesis, TE synthesis has higher reaction temperature, which led to the coarsening of ZrC particles.
     As Fe content ranges from10 to 30wt.% in the Fe-Ti-C powder mixtures, the growth morphology of TiC particles in the SHS products appear layer by layer growth mode through two-dimensional method. Due to high supersaturation and undercooling, liquid/solid interface of TiC changes from smooth interface to coarse interface in atom scale, and its growth mechanism of TiC also changes to continuous growth. The particles sizes of C atoms could influence exothermic rate and amount and the particles sizes of TiC. For synthesizing TiC by TE ignition method, the increasing of Fe content in the Fe-Ti-C system could decrease the TE reaction temperature, and has no influence on the growth mechanism of TiC.
     When fabricating ZrC with SHS ignition method, the growth of ZrC particles was controlled by the solid-diffusion method. Once Fe content exceeded 20wt.%, the growth mode of ZrC changed from lateral to continuous growth modes. When graphite acted as carbon resource, higher diffusion activity energy is need for the diffusion of C atoms into the Fe-Zr liquids, which would prevent the formation of ZrC. As a result, the SHS reaction is hard to self-sustain. In TE ignition modes, the irregular ZrC particles also grow up in solid diffusion mode.
     As a dilution agent, the additive of C_7C_3 and V_8C_7 decreased SHS reaction temperature and reduced the particles sizes of TiC. In Cu-Zr-C system, nano-meter ZrC particles were synthesized by SHS method. The addition of Cu participated and promoted the formation of ZrC.
引文
[1] Tjong S C, Ma Z Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Mater Sci Eng A.2000,29:49-113.
    [2] Li P J, Kandalova E G, Nikitin V I, et al. Preparation of Al-TiC composites by self-propagating high-temperature synthesis[J]. Scripta Mater. 2003,49:699-703.
    [3] Toth L E. Transition Metal Carbides and Nitrides[M]. Acad Press. New York, 1971.
    [4] Shinada S, Nishisako M. Formation and microstructure of carbon-containing oxide scales by oxidation of single crystals of zirconium carbide[J]. J Am Ceram Soc. 1995,78:41-48.
    [5] Zhang X H, Zhu C C, Qu W, He X D, Kvaninb V L. Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic–matrix composites[J]. Comps Sci Tech. 2002,62:2037-2041.
    [6] Gotman I, Koczak M J. Fabrication of Al matrix in situ composites via self-propagating synthesis[J]. Mater Sci Eng A. 1994;187: 189-199.
    [7] Taneoka Y, Kaieda Y, Odawara O. Combustion synthesis of the titanium-aluminum-boron system[J]. J Am Ceram Soc. 1989; 72:1047-1049.
    [8] Zhang W F, Zhang X H, Wang J L, Hong C Q. Effect of Fe on the phases and microstructure of TiC-Fe cermets by combustion synthesis/quasi-isocratic pressing[J]. Mater Sci Eng A. 2004,381:92-97.
    [9] Li L H, Kim H E, Kang E S. Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid[J]. J Europ Ceram Soc. 2002,22:973-977.
    [10] Bhaumik S K, Divakar C, Singh A K, Upadhyaya G S. Synthesis and sintering of TiB2 and TiB2-TiC composite under high pressure[J]. Mater Sci Eng A. 2002,279:275-281..
    [11] Zhao H. Cheng Y B. Formation of TiB2-TiC composites by reactive sintering[J]. Ceram Inter. 1999,25:353-358.
    [12] Hwang S, Nishimura C. Compressive mechanical properties of Mg-Ti-C nanocomposite synthesized by mechanical milling[J]. Scripta Mater. 2001, 44:2457-2462.
    [13] Kuruvilla A K, Prasad K S, Bhanuprasad V V, Mahajan Y R. Microstructure-property correlation in Al/TiB2(XD)composites[J]. Scripta Metall Mater. 1990,24:873-878.
    [14] Matin M A, Lu L, Gupta M. Investigation of the reactions between boron and titanium compounds with magnesium[J]. Scripta Mater. 2001,45: 479-486.
    [15] Moore J J, Feng H J. Combustion synthesis of advanced materials: PartⅡ.Classification, application and modeling[J]. Prog Mater Sci. 1995,39(4-5):275-316
    [16]严有为,魏伯康,林汉同,蔡启舟.SHS基础研究的现状及展望[J].汽车工业与材料,1996,12:5-9.
    [17] Jarfors A, Fredriksson H. On the thermodynamics and kinetics of carbides in thealuminum-rich corner of the the Al-Ti-C diagram[J]. Mate Sci Eng A.1991, 135:119-123.
    [18] Klimowicz T F. The large scale commercialization of Al-matrix composites[J]. J Metals.1994,46(11):49-53.
    [19] Munir Z A. Synthesis of High–temperature material by self-propagating combustion methods[J]. Ceram Bull.1988,67(2):277-358.
    [20] Moore J J, Feng H J. Combustion synthesis of advanced materials:part I. reaction parameters[J]. Prog Mater Sci.1995,39:243-273.
    [21]殷声.燃烧合成[M].北京:冶金工业出版社[M].1999:1-7.
    [22]张玉龙.先进复合材料制造技术手册[M].北京:机械工业出社.2003:568-584.
    [23] Moore J J. Combustion synthesis of advanced materials :PartⅡ,Classification, applications and modeling[J]. Progr Mater Sci.1995,39:275-316.
    [24]宋谋胜.燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[博士论文].上海交通大学,2009.
    [25]朱心昆,林秋实,程抱昌等.自蔓延高温合成技术及发展[J].云南冶金.2000, 29(4):41-45.
    [26]鲁玉祥,杨德庄,陶春虎.NiAl金属间化合物热爆合成动力学的试验研究[J].材料科学与工艺.1997,5:5-8.
    [27]殷声.自蔓延高温合成技术和材料[M].北京,冶金工业出版社,1995.
    [28]袁润章.自蔓延高温合成技术研究进展[M].武汉:武汉工业大学出版社,1994.
    [29]张衍诚. Al(Cr)<,2>O<,3>-Cr(Mo)金属陶瓷的燃烧合成与性能[硕士论文].南京:东南大学,2005.
    [30] Wang T, Lu Y X, Zhu M L, Zhang J S. Identification of the comprehensive kinetics of thermal explosion synthesis Ti+3Al=TiAl3 using non-isothermal differential scanning calorimeter[J]. Materials Letters.2002,54:284-290.
    [31] Biswas A. Porous NiTi by thermal explosion mode of SHS: processing, mechanism and generation of single phase microstructure[J]. Acta Mater. 2005,53:1415-1425.
    [32] Merzhanov A G. Worldwide evolution and present status of SHS as a branch of modern R&D[J]. Inter J S H S.1997,6(2):119-163.
    [33] Hlavacek V. Combustion synthesis: a historical perspective[J]. Am Ceram Soc Bull.1991,70(2):240-243.
    [34] Merzhanov A G. History and recent developments in SHS[J]. Ceram Inter.1995,21:371-379.
    [35] Merzhanov A G, Borvinskaya I P. Self-propagating high-temperature synthesis of refractory inorganic compounds[J]. Doklady Akademii Nauk SSSR.1972,204:429-432.
    [36]李强,于景媛,穆柏椿.自蔓延高温合成(SHS)技术简介[J].辽宁工学院学报. 2001,21(5):61-64.
    [37]杨遇春.自蔓延高温合成(SHS)及其应用(一)[J].稀有金属.1991,5:371-377.
    [38]张廷安,赫冀成.自蔓延高温合成研究动态[J].中国有色金属学报.1998,8(2): 272-276.
    [39] Wang H Y, Jiang Q C, Li X L. In situ synthesis of TiC from nanopowders in a molten magnesium alloy[J]. Mater Research Bull.2003,381:1387-1392.
    [40] Jiang Q C, Wang H Y, WANG J G. Fabrication of TiC/Mg composites by the thermal explosion synthesis reaction in molten magnesium[J]. Mater Lett.2003,57:2580-2583.
    [41] Jiang Q C, Li X L, Wang H Y. Fabrication of TiC particulate reinforced magnesium matrix composites[J]. Scripta Mater.2003,48:713-717.
    [42]傅正义.SHS技术研究进展—纪念SHS技术诞生三十周年[J].复合材料学报. 2000,17(1):5-10.
    [43]张廷安,赵亚平,杨欢等.自蔓延高温合成的研究进展[J].材料导报.2001, 15(9):5-8.
    [44] Merzhanov A G. Self-propagating high-temperature synthesis: twenty years of search and finding in combustion and plasma synthesis of high-temperature materials[M]. Edited by Munir Z A and Holt J B.New York:VCH,1990:1-153.
    [45] Bowen C R, Derby B. Finite-difference modeling of self-propagating high-temperature synthesis of materials[J]. Acta Metal Mater. 1995, 43(10):3903-3913.
    [46] Pampuch R, Lis J. Self-Propagating High-Temperature Synthesis of Ceramic Powders[J]. Sci Ceram.1988,14:15-26.
    [47] Hardt A P. Propagation of gasless reactions in solids. Analytical study of exothermic intermetallic reaction rates[J]. Combus Flame.1973,21:77-89.
    [48] Alekdanyan A G, Akopyan A G. Complex transition metal hydrides and hydride-nitrides prepared by SHS[J]. Powd Metal Metal Ceram. 1999, 38(1-2):40-43.
    [49] Martirosyan N A, Dolukhanyan S K, Merzhanov A G. Principles and mechanism of combustion in the zirconium-Carbon-Hydrogen system[J].Combust Explos Shock Waves.1985,21(5):557-561.
    [50] Borovinskaya I P. Chemical classes of the SHS processes and materials[J]. Pure Appl Chem.1992,64(7):919-940.
    [51] Dunmead S D, Readey D W, Semler E et al. Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems[J]. Journal of the Am Ceram Soc.1989,72(12):2318-2324.
    [52] Rice R W. Microstructural aspects of fabricating bodies by self-propagating synthesis[J].J Mater Sci.1991,26:6533-6541.
    [53] Semenov N N. On some problems of chemical kinetics and reactivity[M]. Princeton: Princeton University Press,1958:421.
    [54]江涛,鲁玉祥,祝美丽,张俊善.燃烧合成动力学参数的研究进展[J].材料导报.2000;14(12):3-8.
    [55]邹兵林.Al-Ti-B4C体系燃烧合成行为及钢基复合材料的制备[博士论文].长春:吉林大学,2009.
    [56]金云学,张二林,曾松研.自蔓延合成技术及原位自生复合材料[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [57] He X D, Xu X L, Han J C, Wooi J V. Kinetic parameters of the thermal explosion reaction of Ni-Al-Fe system [J], J Mater Sci Lett. 1999,18:1201-1202.
    [58] Choi Y, Rhee S W. Reaction of TiO2-Al-C in the combustion synthesis of TiC-Al2O3[J]. J Am Ceram Soc.1995,78(4):986-992.
    [59] Knyazik V A, Shteinberg A S, Gorovenko V I. Thermal analysis of high-speed high-temperature reactions of refractory carbide synthesis[J]. J Therm Analysis and Calorimetry.1993,40:363.
    [60]杨波.Al-TiO2-C体系反应动力学与燃烧过程的研究[J].哈尔滨:哈尔滨工业大学,1999.
    [61] Lee J H, Thadhani N N. Enhanced solid-state reaction kinetics of shock-compressed titanium and carbon powder mixtures[J]. J Mater Research. 1998,13(11):3160-3173.
    [62] Akhtar N, Janes R, Parker M J. Solid-state kinetics and reaction mechanisms for the formation of Y2Cu2O5[J].J Mater Sci.1996,31:3053-3056.
    [63]章桥新.锆的难熔化合物价电子结构.中国有色金属学报[J].2000,10:516-518.
    [64] Gangler J J. Some Physical Properties of Eight Refractory Oxides and Carbides[J]. J Am Ceram Soc.1950,33(12):367-374.
    [65] Liu Z G, Guo J T, Ye L L. Formation mechanism of TiC by mechanical alloying[J]. Appl Phys Lett. 1994,65(21):2666-2668.
    [66] Song M S,Huang B, Zhang M X, Li J G. Formation and growth mechanism of ZrC hexagonal platelets synthesized by self-propagating reaction[J]. J Crystal Growth. 2008,310,4290-4294.
    [67]武振生,王树奇,苗润生.TiC颗粒增强钢基表面复合材料的制备[J].特种铸造及有色合金.2006,26(2):126-128.
    [68] Guan Q F, Jiang Q C, Zhao Y Q. In situ production of Fe-TiC composites by self-propagation high-temperature synthesis reaction in liquid iron alloy[J]. ISIJ Inter.2002,42:673-675.
    [69] Wang H Y, Huang L, Jiang Q C. In situ synthesis of TiB2-TiC particulates locally reinforced medium carbon steel–matrix composites via the SHS reaction of Ni-Ti-B4C system during casting[J]. Mater Sci Eng A. 2005,407:98-104.
    [70] Yang Y F, Wang H Y, Liang Y H Jiang Q C. Fabrication of steel matrix composites locally reinforced with different ratios of TiC/TiB2 particulates using SHS reactions of Ni-Ti-B4C and Ni-Ti-B4C-C systems during casting[J]. Mater Sci Eng A.2007,446:398-404.
    [71] Jiang Q C, Ma B X, Wang H Y. Fabrication of steel matrix composites locally reinforced with in situ TiB2-TiC particulates using self-propagating high-temperature synthesis reaction of Al-Ti-B4C system during casting[J].Composites Part A: Applied Science and Manufacturing, 2006,37:133-138.
    [72] Jiang Q C, Zhao F, Wang H Y. In situ TiC-reinforced steel composite fabricated via self-propagating high-temperature synthesis of Ni-Ti-C system[J]. Mater Lett.2005,59:2043-2047.
    [73]纪朝辉.浇注过程中制备铸造钢基表面自蔓延高温合成TiC/Fe复合材料的研究[J].稀有金属.2004,28:9-12.
    [74]丁路芬.原位自生TiC/Fe、VC/Fe复合材料切削加工性能的研究[硕士论文].广西:广西大学,2008.
    [75] Luo A H, Dean L J. Creep behavior of a tungsten-3.6% rhenium-0.33% zirconium carbide alloy[J].J Mater Sci Lett.1998,17(30):1739-1741.
    [76] Bandyopadhyay T K, Karabi D. Processing and characterization of ZrC-reinforced steel-based composites[J]. J Mate Proc Tech. 2006,178:335-341.
    [77] Zhang Q M, He J J, Liu W J, Zhong M L. Microstructure characteristics of ZrC-reinforced composite coating produced by laser cladding[J]. Surf Coat Tech.2003,162:140-146.
    [78]黄忠东,牛建平,才庆魁,黄文力.外加微米ZrC颗粒对低碳微合金钢组织及性能的影响[J].材料科学与工程学报.2010,28:637-641.
    [79]吴胜琴,朱心昆,罗毅,赖华,张修庆.机械合金化合成(ZrC+TiC)/Cu复合材料的研究[J].材料科学与工程学报. 2004,2:272-275.
    [80]宋瑞颖,刘宁,张红芹,刘忠,伟蔡威. ZrC陶瓷的性能、制备及应用[J].硬质合金.2009,26;134-140.
    [81] Choi Y, Rhee S W. Effect of iron and cobalt addition on TiC combustion synthesis[J].J Mater Research.1993,8(12):3202-3209.
    [82]邹正光,傅正义,袁润章.Ti-C-xFe体系自蔓延高温合成及机理[J].材料研究学报.2000,14(5):531-537.
    [83]邹正光,傅正义,袁润章.Ti-C-Fe体系自蔓延高温合成的反应动力学过程和结构形成过程[J].复合材料学报.1999,16(3):78-82.
    [84] Contreras L, Turrillas X, Mas-Guindal M J, M.Vaugham G B, Kvick A. Rodriguez. Synchrotron diffraction studies of TiC/FeTi cermets obtained by SHS[J]. J Solid State Chem.2005,178:1595-1600.
    [85]范群成.燃烧波淬熄法对自蔓延高温合成机理的研究[博士论文].西安:交通大学, 2000.
    [86] Fan Q C, Chai H F, Jin Z H. Mechanism of combustion synthesis of TiC-Fe cermet[J]. J Mater Sci,1999;34(1):115-122.
    [87] Fan Q C, Chai H F, Jin Z H. Microstructural evolution in the combustion synthesis of titanium carbide[J]. J Mater Sci.1996,31(10):2573-2577.
    [88] Fan Q C, Chai H F, Jin Z H. Microstructural evolution during combustion synthesis of TiC-Fe cermet[J]. Trans Nonferrous Met Soc.China,1999,9(2):286-291.
    [89] Saidi A, Chrysanthou A, Wood J V, Kellie J L E. Characteristics of the combustion synthesis of TiC and Fe-TiC composites[J]. J Mater Sci.1994, 29(19):4993-4998.
    [90] Capaldi M J, Saidi A, Wood J V. Reaction synthesis of TiC and Fe-TiC composites[J]. ISIJ International,1997;37(2):188-193.
    [91]李静,傅正义,王为民,王皓,李秀完.自蔓延高温技术制备ZrC粉体[J].硅酸盐学报.2010,38(5),979-985.
    [92] Song M S, Huang B, Zhang M X, Li J G. In situ synthesis of ZrC particles and its formation mechanism by self-propagating reaction from Al-Zr-C elemental powders[J]. Powd Tech. 2009,191; 34–38.
    [93] Song M S, Huang B, Zhang M X, Li J G. Reaction synthesis of Nano-ZrC particulates by self-propagating reaction from Al-Z-C powder mixtures[J]. ISIJ International. 2008, 48;1026-1029.
    [1]叶大伦,胡建华.实用无机物热力学数据手册[M].冶金工业出版社.第2版,2002.
    [2]梁英教,车荫昌.无机物热力学数据手册[M].东北大学出版社.1993.
    [3]赵玉谦. TiC颗粒局部增强铸造钢基复合材料的制备[博士论文].长春:吉林大学.2005.
    [4]战磊.Ni-Ti-C/B4C-BN体系燃烧合成反应行为与机制[博士论文].长春:吉林大学.2010.
    [5] Liang Y H, Wang H Y, Yang Y F, Wang Y Y, Jiang Q C. Evolution process of the synthesis of TiC in the Cu-Ti-C system[J]. J Alloys Compds. 2008,452:298-303.
    [6] Merzhanov A G. Self-propagating high-temperature synthesis: twenty years of search and finding in combustion and plasma synthesis of high-temperature materials[M]. Edited by Munir Z A and Holt J B. New York: VCH, 1990:1-153.
    [7] Servant C, Gueneau C, Ansara I.Experimental and Thermodynamic Assessment of the Fe-Zr System[J]. J Alloys Compds. 1995, 220:19-26.
    [8] Jiang M, Oikawa K, lkeshoji T, Wulff T and Ishida K. Thermodynamic Calculations of Fe-Zr and Fe-Zr-C systems[J]. J Phase Equilibria. 2001,22(4): 407-417.
    [9] Chatain s, Larousse B, Maillault C, Gueneau C, Chatillon C. Thermodynamic activity measurements of iron in Fe-Zr alloys by high temperature mass spectrometry[J]. J Alloys Compds. 2007,457:157-163.
    [1]邹正光,傅正义,袁润章.Ti-C-Fe体系自蔓延高温合成的反应动力学过程和结构形成过程[J].复合材料学报.1999,16(3):78-82.
    [2] Fan Q C, Chai H F, Jin Z H. Microstructural evolution during combustion synthesis of TiC-Fe cermet[J]. Trans Nonferrous Met Soc China.1999,286-291.
    [3] Choi Y, Rhee S W. Effect of iron and cobalt addition on TiC combustion synthesis[J].J Mater Research. 1993,8(12):3202-3209.
    [4] Contreras L, Turrillas X, Mas-Guindal M J, M.Vaugham G B, Kvick A R. Synchrotron diffraction studies of TiC/FeTi cermets obtained by SHS[J]. J Solid State Chem. 2005,178:1595-1600.
    [5] Fan Q C, Chai H F, Jin Z H. Mechanism of combustion synthesis of TiC-Fe cermet[J]. J Mater Sci.1999,34(1):115-122.
    [6] Tsuchida T, Yamamoto S. MA-SHS and SPS of ZrB2-ZrC composites[J].Solid State Ionics.2004,172:215-216.
    [7] Tsuchida T, Yamamoto S. Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures[J]. J Europ Ceram Soc.2004,24:45-51
    [8]宋丹,张万宁,张洪兵,李德元,袁晓光,邱克强.原位合成ZrCp/Fe复合材料的组织与性能[J].铸造.2010,59(8):808-810.
    [9]宋瑞颖,刘宁,张红芹,刘忠伟,蔡威.ZrC陶瓷的性能、制备及应用[J].硬质合金.2009,26(2):134-140.
    [10]杨亚峰. Ni-Ti-C/B4C体系燃烧合成反应机制[博士论文].长春:吉林大学,2009.
    [11] Dunmead S D, Ready D W, Semier C E. Kinetics of combustion synthesis in the Ti-C and Ti-C-Ni systems[J]. J Am Ceram Soc.1989,72(12):2318-2324.
    [12]宋谋胜.燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[博士论文].上海:交通大学,2009.
    [13]梁云虹.Cu-Ti-C/B4C体系燃烧合成行为及钢基复合材料的制备[博士论文].长春:吉林大学,2008.
    [14] Philpot K A,Munir Z A.An investigation of the synthesis of nickel aluminides through gasless combustion[J].J Mater Sci.1987,22:159-169.
    [15] Merzhanov A G. Self-propagating high-temperature synthesis: twenty years of search and finding in combustion and plasma synthesis of high-temperature materials[M] .Edited by Munir Z A and Holt J B. New York:VCH,1990:1-153.
    [16] Yang Y F, Wang H Y, Zhao R Y, Liang Y H, Zhan L, Jiang Q C. Effect of Ni content on the reaction behaviors of self-propagating high-temperature synthesis in the Ni-Ti-B4C system[J]. Int J Refract Met Hard Mater.2007,:2677-83.
    [17] Song M S, Huang B , Zhang M X, Li J G. Study of formation behavior of TiC ceramic obtained by SHS from Al-Ti-C elemental powders[J]. Int J Refract Met Hard Mater. 2009,27:584-589.
    [18] Jiang M, Oikawa K, lkeshoji T, Wulff T and Ishida K. Thermodynamic Calculations of Fe-Zr and Fe-Zr-C systems[J]. J Phase Equilibria. 2001,22(4): 407-417.
    [19] Song M S, Huang B , Zhang M X, Li J G. In situ synthesis of ZrC particles and its formation mechanism by self-propagating reaction from Al-Zr-C elemental powders[J]. Powd Tech. 2009,191:34-38.
    [20]李静,傅正义,王为民,王皓,李秀完.自蔓延高温技术制备ZrC粉体[J].硅酸盐学报.2010,38(5):979-985.
    [21] Mukasyan A S, Epstein P, Dinka P. Solution combustion synthesis of nanometerials[J]. Proceed Combust Inst. 2007,31:1789-1795.
    [1] Liang Y H, Wang H Y, Yang Y F, Jiang Q C. Evolution process of the synthesis of TiC in the Cu-Ti-C system [J]. J Alloys compd. 2008,452;298-303.
    [2] Fan Q C, Chai H F,Jin Z H. Combustion synthesis mechanism of TiC-Fe cermet [J]. in proceedings of international ecomaterials conference.1995,Part A:212.
    [3] Villars P, Prince A, Okamoto H. Handbook of Ternary Alloy Phase Diagrams[M]. ASM; 1995.
    [4] German R M, Dunlap J W. Processing of iron-titanium powder mixtures by transient liquid phase sintering [J]. Metall Transa.1986,17:205-213.
    [5] Liu Y, Chen LF, Tang HP, Liu CT, Liu B, Huang BY. Design of powder metallurgy titanium alloys and composites [J]. Mater Sci A. 2006,34(18):25-35.
    [6] Gotman I et al. Fabrication of Al matrix in situ composites via self-propagating synthesis[J]. Mater Sci Eng A.1994,187:189-199.
    [7] Jiang M, Oikawa K, Lkeshoji T, Wulff T and Ishida K. Thermodynamic Calculations of Fe-Zr and Fe-Zr-C systems[J]. J Phase Equilibria. 2001,22(4): 407-417.
    [8] Servant C, Gueneau C, Ansara I. Experimental and Thermodynamic Assessment of the Fe-Zr System[J]. J Alloys Compds. 1995, 220:19-26.
    [9] Makino A, Low C K. SHS combustion characteristics of several ceramics and intermetallic compounds. J Am Ceram Soc.1994, 77:778-786.
    [1] Jackson K A.Crystal growth kinetics[J].Mater Sci Eng.1984,65:7-13.
    [2] Offerman S E, Van Dijk N H. Grain nucleation and growth during phase transformations[J]. Science. 2002,298:1003-1005.
    [3] Cochepin B, Heian E. TiC nucleation/growth processes during SHS reactions[J]. Powd Tech. 2005,157:92-99.
    [4] Cochepin B,Gauthier V.Crystal growth of TiC grains during SHS reactions[J].J Crystal Growth.2007,304:481-486.
    [5] Cabrera N.In:Growth and Perfection of Crystals[M].John Wiley,New York, 1958.
    [6] Lighthill M J,Whitham G B.On kinematics waves[J].Proce Roy Soc A.1955, 229:281-345.
    [7]宋谋胜.燃烧合成TiC、ZrC晶体的形成过程与生长动力学研究[博士论文].上海:交通大学,2009.
    [8] Cahn J W, Hilling W B, Sears G W. The molecular mechanism of solidification[J]. Acta Metallurgical. 1964, 12:1421-1439.
    [9]李新林. TiC颗粒增强镁基复合材料的制备[博士论文].长春:吉林大学, 2005
    [10] Yang Y F, Wang H Y, Zhao R Y, Liang Y H, Zhan L, Jiang Q C. Effects of C particle size on the ignition and combustion characteristics of the SHS reaction in the 20wt.%Ni-Ti-C system[J]. J Alloys Compds. 2008,460:276-282.
    [11] Knacke O. Thermochemical properties of inorganic substances[M]. Berlin: Springer-verlag, 1991.
    [12] Leela-adisorn U, Choi S M. FeZrC2 synthesis[J]. Ceramics InternationFe. 2006, 32:431-439.
    [13] Locci A M, Cincotti A. Advanced modelling of self-propagating high-temperature synthesis:the case of the Ti–C system[J]. Chem Eng Sci.2004,59:5121-5128.
    [14]张二林.Al/TiCp复合材料反应生成热力学和动力学过程的研究[博士论文].哈尔滨:哈尔滨工业大学,1996.
    [15]胡维杰,宁桂玲等编译.结晶过程[M].大连:大连理工大学出版社,1991.
    [16]李静,傅正义,王为民,王皓,李秀完.自蔓延高温技术制备ZrC粉体[J].硅酸盐学报.2010,38(5):979-985.
    [17] Song M S, Huang B , Zhang M X, Li J G. Reaction Synthesis of Nano-scale ZrC Particulates by Self-propagating High-temperature Synthesis from Al-Zr-C Powder Mixtures[J]. ISIJ International. 2008,48(7):1026-1029.
    [18] Choi Y,Rhee S W.Effect of aluminum addition on the combustion reaction of titanium and carbon to form TiC[J]. J Mater Sci. 1993,28:6669-6675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700