用户名: 密码: 验证码:
微小空间内光合细菌产氢行为及鼓泡强化产氢实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油、煤炭等化石能源的逐渐衰竭以及日益严重的环境污染使得人们认识到发展替代性的清洁能源的重要性,氢气作为一种清洁能源被认为是人类未来能源结构的重要组成部分。但目前电解水制氢、甲烷水蒸气重整制氢等传统制氢方法能耗高,设备复杂。而利用生物方法制氢可以有效克服传统制氢的诸多缺点,已经引起了人们的广泛关注,其中利用光合细菌吸收光能降解有机废水制氢的方法是目前的一个前沿研究方向。
     目前光合细菌产氢过程中光能利用率低和产氢速率低的问题较为突出,为了提高光合细菌的光能利用率和产氢速率,增加菌体的抗冲击性,就必须将固定化技术与光合细菌产氢结合起来,包埋法是目前常用的固定化方法之一。包埋颗粒内部为不规则多孔状的复杂微结构,光合细菌被限制于微小孔道内,底物葡萄糖通过扩散作用进入包埋颗粒内部,在微孔道内被光合细菌降解,产生的氢气、二氧化碳等代谢产物分子通过反向作用传递出包埋颗粒。微小孔道为气-液相界面的稳定存在提供了有利条件,因此在固定化包埋颗粒内部会形成气-液-固三相共存的复杂状态,而相界面对光合细菌的生长代谢以及运动都会产生较大的影响。本课题以固定化包埋光合细菌Rhodoseudomonas palustris CQK-01产氢为背景,研究固定化包埋颗粒内部的产氢过程与物质传输现象。
     首先采用聚二甲基硅氧烷(PDMS)材料制作了可视化微槽道光生物制氢反应器,模拟光合细菌在固定化颗粒内部复杂结构中的代谢产氢过程。实验中发现光合细菌在不同结构形式、不同流动方式的微槽道反应器内的生长过程以及产氢行为存在差异。流速过低过高都不利于光合细菌在微槽道内的生长吸附,半封闭式微槽道反应器内光合细菌生长情况较好,而且可以保持生物量的稳定。贯通式微槽道反应器内气泡主要在槽道内部产生,逐渐生长直至从槽道口脱离。半封闭式微槽道反应器内气泡主要在微槽道的端口处形成并生长。同时,研究了进口底物浓度、进口底物流速、光照强度、光波长等操作条件对微槽道光生物反应器的产氢及底物降解特性的影响规律,最佳的产氢速率、产氢得率、底物消耗速率、光能转化效率分别为1.49 mmol/g cell dry weight/h,0.91 mol H_2/mol glucose,1.63 mmol/gcell dry weight/h和24.36%。
     在实验研究的基础上,建立了微槽道光生物反应器底物传输及消耗理论模型。分析了光照强度、底物流速、温度、pH值等外界操作条件对光生物反应器内物质传递和底物降解的影响规律,模型预测值与实验值基本吻合。并通过该模型计算了反应器主流道和微槽道两部分区域内的底物浓度分布情况,这对于以后研究固定化包埋颗粒内质量传递具有理论指导意义。
     固定化包埋颗粒的微小孔道内是多相共存的状态,其中气-液相界面是主要影响光合细菌生长分布的相界面。为了研究微小有限空间内气-液相界面与光合细菌之间的相互作用,设计加工完成平行平板微槽道光生物反应器。通过可视化显微系统拍摄气泡在微槽道内的分布、生长规律以及光合细菌和气-液相界面之间的作用。实验发现光生化反应中产生的气泡多分布于微槽道的边缘部位,同时气泡受到液相中气体分子浓度波动的影响,呈现生长和消失两种相反的现象。光合细菌与气-液相界面的作用是受静电力,范德华力,毛细力,细菌自身动能等因素综合影响的结果,导致光合细菌在气-液相界面具有吸附与排斥两种不同的现象。同时吸附于气泡表面的光合细菌会阻碍相邻气泡间的聚合。
     气-液相界面的存在有助于液相中溶解的产物气体分子快速析出,因此我们以气-液相平衡和传质理论为基础,将鼓泡法与光合细菌产氢过程相结合,研究了向反应液内鼓入惰性气体强化光合细菌产氢性能的机理。在序批式产氢实验和连续流产氢实验中,通过溶解氢微电极实时监测溶解氢气浓度变化,发现向反应器中鼓入氩气气泡可以有效降低反应液中的溶解产物气体分子浓度,从而降低反应器液相中的气体分压,减小光合细菌产氢过程中的产物反馈抑制作用,使得光合细菌的产氢性能提高。鼓泡过程影响了光合细菌的生长代谢规律,造成光合细菌的生长周期发生改变,同时也改变了中间产物的相对比例和反应液的pH值,在以上多种因素综合作用下光合细菌产氢性能得到了提升。连续流鼓泡光生物反应器在气体流速为10 ml/min产氢性能最佳,此时的产氢速率、产氢得率、光能转化效率分别为5.87 mmol/L/h、3.38 mol H2/mol glucose、47.5%。
The fast depletion of the limited fossil fuel (oil and coal) resources and the serious environment issue resulting from the use of fossil fuel have driven us to search for clean energy. Hydrogen has been regarded as the most promising candidate to ensure the future sustainable development, so-called hydrogen economy, owing to its cleanness, high energy density and wide applications. It should be recognized that the realization of hydrogen economy critically depends on the hydrogen production. However, traditional hydrogen production methods, such as water electrolysis and steam reforming of methane have the drawbacks of high energy consumption and complex system. Fortunately, biohydrogen production technologies can overcome these problems and have received ever-increasing attention. Among different biohydrogen production technologies, the use of photosynthetic bacteria to produce hydrogen (photobiohy drogen production) from the organic- contained wastewater is currently a pioneer because of high purity of the generated hydrogen, substrate conversion efficiency and no inhibition of oxygen activity.
     Although promising, current photobiohydrogen production still encounters the problems of low light utilization and hydrogen production rate. To resolve these problems and improve the anti-impact capability of bacteria, it is necessary to integrate biohydrogen production with immobilization technology. The entrapment technology is such an approach. Typically, the entrapment granules are a complex irregular porous structure, where the photosynthetic bacteria are restricted in micropores. Substrate is transported into the granules by diffusion and then biodegraded by photosynthetic bacteria to produce hydrogen, carbon dioxide and other metabolites who are transported out of the granules. As micropores can stabilize the gas-liquid interfaces, the complicated co-existence of gas, liquid and solid phases is formed in the entrapment granules, which significantly affects the metabolism and movement of photosynthetic bacteria and thereby the biohydrogen production performance. For this reason, this thesis is directed at the biohydrogen production by Rhodoseudomonas palustris CQK-01 to study the coupled hydrogen production and mass transport characteristics in the entrapment granules. Main conclusions are summarized as follows.
     First of all, a microchannel photobioreactor made by transparent Polydimethy lsiloxane (PDMS) was designed and fabricated to simulate the hydrogen production process by photosynthetic bacteria occurring in the entrapment granule. Experimental results reveal that the microchannel structures and flow behaviors can affect the bacteria growth and hydrogen production performance. Too high and too low flow rate could show negative effects on the photosynthetic bacteria adsorption and growth. Semi-closed microchannel photobioreactor is the best design for the bacteria growth, which also benefits for maintaining the stable the biomass. With respect to the bubble behavior in photobioreactors, it was found that bubbles were mainly formed at the inner microchannel in the flow-through type bioreactor and grew until the detachment from the outlet, while bubbles were mainly formed and grew at the vent region of microchannels in the semi-closed bioreactor. Besides, the effects of the inlet substrate concentration, flow rate, light intensity and wavelength on the biohydrogen production rate and substrate conversion efficiency of the microchannel photobioreactors were examined. The maximal hydrogen production rate, hydrogen yield, substrate consumption rate and light utilization efficiency are 1.49 mmol/g cell dry weight/h,0.91 mol H2/mol glucose,1.63 mmol/gcell dry weight/ and 24.36%, respectively.
     Based on the experimental results, a theoretical model describing the substrate transport and consumption in the microchannel photobioreactor was developed. With this model, the effects of the light intensity, substrate flow rate, operating temperature and pH value on the mass transport and substrate biodegradation in the photobioreactor were studied. The numerical results are in good agreement with the experimental results. The developed model also predicted the substrate concentration distributions in both the bulk flow channel and microchannel, which is beneficial for the future investigation of the mass transport characteristics in the entrapment particles.
     As mentioned above, there co-exist multi phases in the entrapment granules and the gas-liquid interfaces play an important role in the photosynthetic bacteria growth and distribution. Hence, to study the interaction between the gas-liquid interfaces and photosynthetic bacteria, a flat-panel microchannel photobioreactor was designed and fabricated. Through the micro-display system, the bubbles distribution, growth as well as the interaction between the photosynthetic bacteria and gas-liquid interface were visually studied. It was shown that bubbles generated by the photobioreaction were mainly positioned at the edge of the microchannel. Due to the fluctuations of the gaseous molecule concentration in liquid phase, bubbles exhibited two contradictory behaviors of growth and disappear. It was also found that the interactions between the photosynthetic bacteria and gas-liquid interfaces depended on the combined effect of the electrostatic force, Van der Waals force, capillary force and bacteria movement, resulting in the adsorption and repulsion of bacteria at the gas-liquid interfaces and in the meantime the photosynthetic bacteria adsorbed on the bubble surfaces can inhibit the bubble coalesce.
     In addition, because the gas-liquid interface is helpful for the evolution of products from the liquid phase, based on the gas-liquid equilibrium and mass transfer theory, the enhancement mechanism of the biohydrogen production by the inert gas sparging was explored by combining the gas sparging with the photobiohydrogen production. The dissolved hydrogen concentrations were in-situ measured by the dissoluble hydrogen microelectrode in both the batch and continuous operation photobioreactors. It was found that sparging the Ar gas into the photobioreactors could decrease the dissolved hydrogen concentration and thus the hydrogen partial pressure in the liquid phase so that the inhibition of products can be weakened, improving the hydrogen production performance. Meanwhile, the inert gas sparging can also affect the metabolism of photosynthetic bacteria, resulting in the variations of the bacteria metabolic pathway and ratio of different intermediate species and pH value. Because of these effects, the hydrogen production performance by the photosynthetic bacteria was improved. It was found that the continuous sparging photobioreactor yielded the best performance at the gas flow rate of 10 ml/min, corresponding to the hydrogen production rate, hydrogen yield and light utilization efficiency of 5.87 mmol/L/h, 3.38 mol H2/mol glucose, 47.5%, respectively.
引文
[1] Energy Information Administration: International Energy Outlook 2009 US Department of Energy; 2009.
    [2] K. Vijayaraghavan, D. Ahmad, C. Soning. Bio-hydrogen generation from mixed fruit peel waste using anaerobic contact filter [J]. International Journal of Hydrogen Energy, 2007, 31(18): 4754-4760.
    [3] D.y. Cheong, C.L. Hansen. Feasibility ofhydrogen production in thermophilic mixed fermentation by natural anaerobcs [J]. Bioresource Technology, 2007, 98(1): 2229-2239.
    [4] S.W. Van Ginkel, B. Logan. Increased biological hydrogen production with reduced organic loading [J]. Water Research, 2005, 39(16): 3819-3826.
    [5] S. Oh, B.E. Logan.Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies [J]. WaterResearch, 2005, 39(19): 4673-4682.
    [6] S. Jebaraj, S. Iniyan. A review of energy models [J]. Renewable and Sustainable Energy Reviews, 2006, 10: 281-311.
    [7] J. Rupprecht, B. Hankamer, Jan H. Mussgnug, et al. Perspectives and advances of biological H2 production in microorganisms [J]. Appl Microbiol Biotechnol, 2006,72: 442-449.
    [8] I. Akkerman, M. Janssen, J. Rocha, et al. Photobiological hydrogen production: photochemical efficiency and bioreactor design [J]. International Journal of Hydrogen Energy, 2002, 27:1195-1208.
    [9]王景儒.制氢方法及储氢材料研制进展[J].化学推进剂与高分子材料, 2004, 2(2):13-17,21.
    [10]谭天伟,王芳,邓利.生物能源的研究现状及展望[J].现代化工, 2003, 23 (9) : 8-12 .
    [11]王继华,赵爱萍.生物制氢技术的研究进展与应用前景[J].环境科学研究, 2005, 18 (4) : 129-135.
    [12] D. Das, T. N. Veziroglu. Hydrogen production by biological processes: a survey of literature [J]. International Journal of Hydrogen Energy, 2001, 26(1):13-28.
    [13] A. Majizat, Y. Mitsunor, W. Mitsunori, et a1. Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems [J]. Water Science and Technology, 1997, 36(6-7): 279-286.
    [14]郑士民.自养微生物[M].北京:科学出版社,1983, 66-67.
    [15] T. Wakayama, J. Miyake. Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV [J]. International Journal of Hydrogen Energy, 2002,27:1495-1500.
    [16] P.A.M. Claassen, J.B. van Lier, A.M. Lopez Contreras, et al. Utilization of biomass for the supply of energy carriers [J]. Appl Microbiol Biotechnol, 1999, 52: 741-755.
    [17]傅秀梅,王亚楠,王长云,鹿守本,管华诗.生物制氢—能源、资源、环境与经济可持续发展策略[J].中国生物工程杂志, 2007, 27(2): 119-125.
    [18]柯水洲,马晶伟.生物制氢研究进展(I)-产氢机理与研究动态[J].化工进展, 2006, 25(7): 1001-1010.
    [19] G.D. Smith, G.D. Ewart, W. Tucker. Hydrogen production by cyanobacteria [J]. International Journal of Hydrogen Energy, 1992, 17:695-698.
    [20]任南琪,李建政,林明等.产酸发酵细菌产氢机理探讨[J].太阳能学报,2002, 23(1):124-127.
    [21]洪大求,郝小龙,俞汗青.有机废水厌氧发酵产氢技术的现状与发展[J].合肥工业大学学报, 2003, 26(5): 947-952.
    [22] S.M. Kotay, D. Das. Biohydrogen as a renewable energy resource-Prospect and potentials [J]. International Journal of Hydrogen Energy, 2008, 33:258-263.
    [23] M. Modigell, N. Holle. Reactor development for biosolar hydrogen production process [J]. Renewable Energy, 1998, 14(1-4):421-426.
    [24] D.B. Levin, L. Pitt, M. Love. Biohydrogen production: prospectsand limitationsto practical application [J]. International Journal of Hydrogen Energy, 2004, 29: 173-185.
    [25] A. Melis, M.R. Melnicki. Integrated biological hydrogen production [J]. International Journal of Hydrogen Energy, 2006, 31:1563-1573.
    [26] S. Manish, R. Banerjee. Comparasion of biohydrogen production processes [J]. International Journal of Hydrogen Energy, 2008, 33: 279-286.
    [27] N. Kumar, D. Das. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices [J]. Enzyme and Microbial Technology, 2001, 29:280-287.
    [28]才金玲,王广策,杨素萍,周百成.生物制氢研究进展[J].海洋科学集刊, 2007, 5: 176-190.
    [29]计红芳,陈锡时,王爱杰.光合细菌光合产氢的进展研究[J].微生物学杂志, 2002, 22(5): 44-46,60.
    [30]张明,史家粱.光合细菌光合产氢机理研究进展[J].应用与环境生物学报, 1999, 5(S1): 25-29.
    [31] J. Miyake. Biological solar energy conversion-hydrogen generation [J]. J Fibre, 1992, 48(1): 33-37.
    [32]吴永强,陈秉俭,仇哲.浑球红假单胞菌在暗处发酵生长时的固氨酶、吸氢酶以及放氢机制的研究[J].微生物学通报, 1991, 18 (2): 71-75.
    [33]刘如林,梁凤来,刁虎欣,赵大健.光合细苗及其应用[M].北京:中国农业科技出版社, 1991.
    [34] M.J. Barbosa, J.M. Rocha, J. Tramper, R.H. Wijffels. Acetate as a carbon source for hydrogen production by photosynthetic bacteria [J]. Biotechnol, 2001, 85(1): 25-33.
    [35]杨素萍,赵春贵,刘瑞田.沼泽红假甲单胞菌乙酸光合放氢研究[J].生物工程学报, 2002, 18(4): 486-491.
    [36]朱核光,史家粱.生物产氢技术研究进展[J].应用与环境生物学报, 2002, 8 (1): 98-104.
    [37]曾定.固氮生物学[M].厦门:厦门大学出版社, 1987.
    [38]吴永强,宋鸿遇.光合细菌固氮分子生物学研究进展[J].植物生理学通讯, 1991, 27(3): 161-168.
    [39]刘灵芝,孙军德,梅韩,陈锡时.光合细菌产氢因子的研究进展[J].生态科学, 2004, (2): 184-186.
    [40] Y. Zhang, R.H. Burris, P.W. Ludden, G.P. Roberts. Comparison studies of dinitrogenase reductase ADP-ribosyl transferase/dinitrogenase reductase activating glycohydrolase regulatory systems in Rhodospirillum rubrum and Azospirillum brasilense [J]. J Bacteriol, 1995, 177(9):2354-2359.
    [41] Y. Zhang, E.L. Pohlmann, P.W. Ludden, G.P. Roberts. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum [J]. J Bacteriol, 2000, 182(4): 983-992.
    [42] P.J. Silva, E.C. van den Ban, H. Wassink, H. Haaker, B. de Castro, F.T. Robb, W.R. Hagen. Enzymes of hydrogen metabolism in Pyrococcus furiosus [J]. Eur J Biochem, 2000, 267(22): 6541-6551.
    [43]刘晶晶,龙敏南.氢酶结构及催化机理研究进展[J].生物工程学报, 2005, 21(3): 348-353.
    [44] H. Kokua,ì.Eroglu, U. Gündüz, et al. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides [J]. International Journal of Hydrogen Energy, 2002, 27: 1315-1329.
    [45] A.H. Neilson, S. Nordlund. Regulation of Nitrogenase Synthesis in Intact Cells of Rhodospirillum rubrum: Inactivation of Nitrogen Fixation by Ammonia, L-glutamine and L-asparagine[J]. Journal of General Microbiology, 1975, 91: 53-62.
    [46]朱美珍,吴永强.测定氢酶吸氢活性的光谱分析法[J].植物生理学报, 1992, 18(3): 285-292.
    [47]梁光建,吴永强.生物产氢研究进展[J].微生物学通报, 2002, 29(6): 81-85.
    [48]朱建光,冯有智.固氮类微生物产氢机理研究进展[J].南京工业大学学报:自然科学版, 2003, 25(1): 102-106.
    [49] P. F. Weaver, S. Lien, M. Seibert. Photobiological production of hydrogen [J]. Solar Energy, 1980, 24(1): 3-45.
    [50] H. W. Doelle.细菌的新陈代谢[M].北京:科学出版社, 1983,134-137
    [51] Y. Murooka, T. Imanaka. Recombinant microbe for industrial and agricultural applications [A]. Mew York: Marcel Dekker Inc, 1994, 771.
    [52] O. Jurgen, K. Sine. Control of nitrogen by oxygen in purple nonsulfur bacteria [J]. Arch Microbiol, 1996, 165: 219-225.
    [53] R. Nandi, S. Sengupta. Microbial production of hydrogen: An overview [J]. Crit Rev Microbiol, 1998, 24(1): 61-84.
    [54]孙琦,徐向阳,焦杨文.光合细菌产氢条件的研究[J].微生物学报, 1995, 35: 65-73.
    [55] K. Sasikala, Ch.V. Ramana, P.R. Rao. Photoproduction of hydrogen from the waste water of a distillery by Rhodbacter sphaeroides O.U. 001 [J]. International Journal of Hydrogen Energy, 1992, 17: 23-27.
    [56] T. Wakayama, E. Nakada, Y. Asada, et al. Effect of light /dark cycle on bacterial hydrogen production by Rhodobacter aphaeroides RV from hour to second range [J]. Appl Biochem Biotechnol, 2000, 84-86: 431-440.
    [57] J. Miyaka, S. kawamura. Efficient conversion of light energy to hydrogen by photosynthetic bacteria [A]. Proceeding of the IUPC chemraun VI World Conference on Advanced Marterial and Innovations in energy [C]. Transporation and communications, 1987, Nippor Toshi Center, Tokyo, Japan, H14.
    [58]朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子实验研究[J].应用生态学报, 1997, 8(2): 194-198.
    [59] R. Barbara, G. Sharak, D. Judy. Wall Ammoniym uptake in Rhodopseudomonas capsulata [J]. Arch Microbiol, 1985, 141: 219-224.
    [60]张全国,原玉丰,李鹏鹏,王艳锦.猪粪污水浓度对球形红假单胞菌光合制氢的影响[J].太阳能学报, 2005, 26(6): 806-809.
    [61]廖强,王永忠,朱恂,田鑫,巴淑丽,张攀,张川.初始底物浓度对序批式培养光合细菌产氢动力学影响[J].中国生物工程杂志, 2007, 27(11): 51-56.
    [62] J. Miyake, S. Kawamura. Efficient of 1ight energy conversion to hydrogen by the Photosynthetic bacterium Bhodobacter sphaeroides [J]. Int J of Hydrogen Energy, 1987, 12(3): 147-149.
    [63] E. Nakada,Y. Asada, T. Arai, J. Miyake. Light penetration into cell suspensions of photosynthetic bacteria and relation to hydrogen production [J]. Journal of Fermentation and Bioengineering, 1995, 80: 53-57.
    [64] H. Zhu, T. Wakayama, Y. Asada, J. Miyake. Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4+ [J]. International Journal of Hydrogen Energy, 2001, 26: 1149-1154.
    [65] Y.K. Oh, E.H. Seol, M.S. Kim, et al. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4 [J]. International Journal of Hydrogen Energy, 2004, 29:1115-1121.
    [66] W.J. Golz, K.A. Rusch, R.F. Malone. Modeling the major limitations on nitrification in floating-bead filters [J]. Aquacult Eng, 1999, 20: 43-61.
    [67] L. Vyacheslav, B. Eliosov, Y. Argaman. Feasibility study of complete nitrogen removal from domestic wastewater by consequent nitrification–denitrification using immobilized nitrifiers in gel beads [J].Water Environ Res, 2000, 72: 40-49.
    [68] K. Chandran, B.F. Smets. Applicability of two-step models in estimating nitrification kinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation [J]. Biotechnol Bioeng, 2000, 70(1): 54-64.
    [69] Ch.M. Lee, P.Ch. Chen, Ch.Ch. Wang, et al. Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent [J]. International Journal of Hydrogen Energy, 2002, 27: 1309-1313.
    [70]闫志明,普红平,阳立平.生物固定化技术及应用评述[J].四川化工, 2004, 7(1): 12-15.
    [71]张伟,杨秀山.酶的固定化技术及其应用[J].自然杂志, 2000, 22(5): 282-286.
    [72]山根恒夫.生化反应工程[M].西安:西北大学出版社, 1992.
    [73] A. Laca, C. Quirós, L. A. García, M. Díaz. Modelling and description of internal profiles in immobilized cells systems [J], Biochemical Engineering Journal, 1998, (1): 225-232.
    [74]周华,姜岷,欧阳平凯.固定化细胞成型机械的研究综述[J].工业微生物, 1998, 28(3): 43-45.
    [75] P. Brodelius, E. Vandamme. Immobilized cell systems [J]. Biotechnology, 1987, 7a Enzyme technology: 405-464.
    [76] M. Vincenzini, W. Balloni, D. Mannelly, G. Florenzano. A bioreactor for continuous treatment of waste waters with immobilized cells of photosynthetic bacteria [J]. Experientia, 1981, 37: 710-711.
    [77] N. Francou, P. Vignais. Hydrogen production by Rhodopseudomonas capsulata cells entrapped in carrageenan beads [J]. Biotechnol. Lett, 1984, 6: 639-644.
    [78] P.C. Hallenbeck. Immobilized microorganisms for hydrogen and ammonia production [J]. Enzyme Microb. Technol, 1983, 5: 171-180.
    [79] H.H. Weetal, L.O. Krampitz. Production of hydrogen from water using biophotolytic methods[J]. J. Solid-Phase Biochem., 1980, 5: 115-124.
    [80] P. Von Felten, H. Zurrer, R. Bachofen. Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum [J]. Appl. Microbiol. Biotechnol, 1985, 23: 15-20.
    [81] A. Planchard, L. Mignot, T. Jouenne, G.A. Junter. Photoproduction of molecular hydrogen by Rhodospirillum rubrum immobilized in composite agar layer/microorous membrane structures [J]. Appl Microbiol. Biotechnol, 1984, 31: 49-54.
    [82] L. De Backer, S. Devlemnick, R. Willaert, G. Baron. Reaction and diffusion in a gel membrane reactor containing immobilized cells [J]. Biotech. Bioeng., 1992, 40: 322-328.
    [83] T. R. Jack, J. E. Zajic. The immobilization of whole cells [J]. Adv. Biochem. Eng., 1977, 5: 126-145.
    [84] A.A. Tsygankov, Y. Hirata, M. Miyake, Y. Asada, J. Myake. Photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction [J]. J. Perm. Bioengineering, 1994, 77: 575-578.
    [85] A.A. Tsygankov, Y. Hirata, Y. Asada, J. Miyake. Immobilization of the purple nonsulfur bacterium Rhodobacter sphaeroides on glass surfaces [J]. Biotechnol. Techn., 1993, 7: 283-286.
    [86] A.A. Tsygankov, A. S. Fedorov, I. V. Talipova, T. V. Laurinavichene, J. Miyake, I. N. Gogotov. Use of immobilized phototrophic microorganisms for waste water treatment and simultaneous production of hydrogen [J]. Appl. Biochem. Microbiol, (Russ), 1998, 34: 398-402.
    [87] Xin Tian, Qiang Liao, Xun Zhu, Yongzhong Wang, Pan Zhang, Jun Li, Hong Wang. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production[J]. Bioresource Technology, 2010, 101: 977–983.
    [88] Chuan Zhang, Xun Zhu, Qiang Liao, Yongzhong Wang, Jun Li, Yudong Ding, Hong Wang. Performance of a groove-type photobioreactor for hydrogen production by immobilized photosynthetic bacteria. International Journal of Hydrogen Energy, 2010, 35: 5284-5292.
    [89] R. Bos, H. Van. Der. Mei, H. Busscher. Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study [J]. FEMS Micriobiol. Rev, 1999, 23: 179-230.
    [90] A. A. Tsygankov, AS. Fedorov, T. V. Laurinavichene, I. N. Gogotov, K. K. Rao, D. O. Hall. Actual and potential rates of hydrogen photoproduction by continuous culture of the purple non-sulfur bacterium Rhodobacter capsulatus [J]. Appl. Microbiol. Biotechnol., 1998, 49: 102-108
    [91] X. Tian, Q. Liao, W. Liu, Y.Z. Wang, X. Zhu, J. Li, H. Wang. Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells [J].International Journal of Hydrogen Energy, 2009, 34:4708-4717.
    [92] C.Y. Chen, J.S. Chang. Enhancing phototropic hydrogen production by solid-carrier assisted fermentation and internal optical-fiber illumination [J]. Process Biochemistry, 2006, 41: 2041-2049.
    [93] H.G. Zhu, T. Suzuki, A.A. Tsygankov, Y. Asada, J. Miyake. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels [J]. International Journal of Hydrogen Energy, 1999, 24: 305-310.
    [94] J. Fi?ler, G.W. Kohring, F. Giffhorn. Enhanced hydrogen production from aromatic acids by immobilized cells of Rhodopseudomonas palustris [J]. Applied Microbiology and Biotechnology, 1995, 44: 43-46.
    [95] D. J. Dickson, C. J. Page, R.L. Ely. Photobiological hydrogen production from Synechocystis sp.PCC 6803 encapsulated in silica sol-gel [J]. International Journal of Hydrogen Energy, 2009, 34: 204-215.
    [96] H. Zhu, T. Wakayama, T. Suzuki, Y. Asada, J. Miyake. Entrapment of Rhodobacter sphaeroides RV in cationic polymer/agar gels for hydrogen production in the presence o f NH4+ [J]. Journal of Bioscience and Bioengineering, 1999, 88: 507-512.
    [97]沈耀良,黄勇,赵丹.固定化微生物污水处理技术[M].北京:化学工业出版社, 2002.
    [98] H. Yokoi, A. Saitsu, H. Uchida, J. Hirose, S. Hayashi, Y. Takasaki. Microbial hydrogen production from sweet potato starch residue [J]. Journal of Bioscience and Bioengineering, 2001, 91(1): 58-63.
    [99] A.A. Tsygankov, Y. Hirada , M. Miyake, Y. Asada, J. Miyake. photobioreactor with photosynthetic bacteria immobilized on porous glass for hydrogen photoproduction [J]. J Ferment Bioeng, 1994, 77(5): 575-578.
    [100] A. Mitsui, T. Matsunaga, H. Ikemoto, B.R. Renuka. Organic and inorganic waste treatment and simultaneous photoproduction of hydrogen by immobilized photosynthetic bacteria [J]. Develop Industr Microbiol, 1985, 26: 209-222.
    [101]徐向阳,俞秀娥,郑平,冯孝善.固定化光合细菌利用有机物产氢的研究[J].生物工程学报, 1994, 10(4): 362-368.
    [102] Y. Kourkoutas, A. Bekatorou, I.M. Banat, et al. Immobilization technologies and support materials suitable inalcohol beverages production: a review [J]. Food Microbiology, 2004, 21: 377-397.
    [103] A. Freeman, M.D. Lilly. Effect of processing parameters on the feasibility and operational stability of immobilized viable microbial cells [J]. Rev. Enzyme Microb. Technol, 1998, 2: 335-345.
    [104] H. Tanaka, S. Irie, H. Ochi. A novel immobilization method for prevention of cell leakage from the gel matrix [J]. J. Ferment. Bioeng. , 1989, 68: 216-219.
    [105] P. Taillandier, M.L. Cazottes, P. Strehaiano. Deacidification of grape musts by Schizosaccharomyces entrapped in alginate beads: a continuous-fluidised-bed process [J]. Chem. Eng. J. Bioch. Eng, 1994, 55: 29-33.
    [106] F. Ramon-Portugal, S. Silva, P. Taillandier, P. Strehaiano. Immobilized yeasts: actual oenologic utilizations. Wine Internet Technical Journal. 2003. (1), (www.vinidea.net).
    [107] C.N. Lin, S.Y. Wu, J.S.. Chang. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge [J], International Journal of Hydrogen Energy, 2006, 31: 2200 -2210.
    [108]王修垣.微生物与界面[J].微生物学通报, 1999, 26 (3).
    [109] K.C. Marshall. Theoretical and practical significance of bacteria at interface [J]. Industrial Microbiology Biotechnology, 1999, 22: 400-406.
    [110] M. Hermansson.The DLVO theory in microbial adhesion [J]. Colloids and Surfaces B: Biointerfaces, 1999, 14: 105-119.
    [111] B.V. Derjaguin, L.D. Landau. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes [J]. Acta Phys. Chim. U.S.S.R., 1941, 14: 633.
    [112] E.J.W. Verwey, J.Th.G. Overbeek. Theory of the Stability of Lyophobic Colloids [J]. J. Phys. Chem., 1947, 51 (3): 631-636.
    [113] D.J. Shaw. Introduction to colloid & surface chemistry-4th ed. Butterworth Herinemann. 1992.
    [114] K.C. Marshall, R. Stout, R. Mitchell. Mechanism of the initial events in the sorption of marine bacteria to surfaces [J]. J.Gen.Microbiol, 1971, 68: 337-348.
    [115] C.J. Van Oss. Interfacial forces in aqueous media [M]. Marcel Dekker Ltd. 1994, New York.
    [116] M. C. M. Van Loosdrecht, J. Lyklema, W. Norde, A.J.B. Zehnder. Bacterial adhesion: a physicochemical approach [J]. Microb.Ecol, 1989, 17:1-15.
    [117] A. Schafer, H. Harms, A.J.B Zehnder. Bacterial accumulation at the air-water interface [J]. Environ Sci Technol, 1998, 32: 3704-3712.
    [118] C.J Van Oss. Hydrophobicity of biosurfaces-origin, quantitative determination and interaction energies [J]. Colloid Surfaces B,1995, 5:91-110.
    [119] K.A. Strevett, G. Chen. Microbial surface thermodynamics and applications [J]. Res Microbiol., 2003, 154: 329-335.
    [120] M. Hermansson. The DLVO theory in microbial adhesion [J]. Colloids Surf B: Biointerfaces, 1999, 14: 105-119.
    [121] W.J. Wu, G.H. Nancollas. Application of the extended DLVO theory-the stability of alatrofloxacin mesylate solutions [J]. Colloid Surface B, 1999, 14: 57-66.
    [122] Y.I. Chang, P.K. Chang. The ro1e of hydration force on the stability of the suspension of Saccharomyces cerevisiae-application of the extended DLVO theory [J]. Colloid Surface A, 2002, 211: 67-77.
    [123]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社, 2001.
    [124] C.J. Van Oss, W. Wu, R.F. Giese, T.A. Horbett, J.L. Brash. Proteins at InterfacesII [M]. Amerjcall Chem.Soc., WaShington, DC, USA, 1995.
    [125] J. Feldner, W. Bredt, I. Kahane. Innuence of cell shape and surface charge on attchment of Mycoplasma penumoniae to glass surfaces [J]. J. Bacteriol., 1983, 153: 1-5.
    [126] M.C.M. Van Loosdrecht, J. Lyklema, W. Norde, G. Schraa, A.J.B. Zehnder. The role of bacterial cell wall hydrophobicity in adhesion [J]. Appl. EnViron. Microbiol., 1987, 53: 1893-1897.
    [127] S. F. Simoni, H. Harms, T.N.P. Bosma, A.J.B. Zehnder. Population heterogeneity affects transport of bacteria through sand columns at low flow rates [J]. Environ. Sci. Technol., 1998, 32: 2100-2105.
    [128] A. Zita, M. Hermansson. Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system [J]. Appl EnViron Microb, 1994, 60: 304l-3048.
    [129] C.R. Bunt, D.S. Jones, L.G. Tucker. The effcts of Ph, ionic strength and organic phase on the bacterial adhesion to hydrocarbons (BATH) test [J]. J. Pharm., 1993, 99:93-98.
    [130] A.I. Abdel-Fattah, M.S. El-Genk. Sorption of Hydrophobic, Negatively Charged Microspheres onto a Stagnant Air/Water Interface [J]. Journal of Colloid and Interface Science, 1998, 202: 417-429.
    [131] J.M. Wan, J.L. Wilson, T.L. Kieft. Influence of the gas water interface on transport of microorganisms through unsaturated porous media [J]. Appl. Envir. Microbiol., 1994, 60: 509-516.
    [132] J.M. Wan, J.L. Wilson. Visualization of the role of the gas-water interface on the fate and transport of colloids in porous media [J]. Water Resources Research, 1994, 30: 11-23.
    [133] D.F. James.The meniscus on the outside of a small circular cylinder [J]. J. Fluid Mech., 1974, 63: 657-664.
    [134] A.V. Rapacchietta, A.W. Neumann. Force and free energy analysis at fluid interfaces II [J]. Spheres J. Colloid Interface Sci., 1977, 59: 555-567.
    [135] D.F. Williams, J.C. Berg. A ggregatioonf colloidapl articlesa the air-water interface [J]. J. Colloid Interface Sci., 1992, 152: 218-229.
    [136] B. Mandal, K. Nath, D. Das. Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae [J]. Biotechnol Lett, 2006, 28: 831-835.
    [137] D.H. Kim, S.K. Han, S.H. Kim, H.S. Shin. Effect of gas sparging on continuous fermentative hydrogen production [J]. International Journal of Hydrogen Energy, 2006, 31: 2158-2169.
    [138] O. Mizuno, R. Dinsdale, F.R. Hawkes, D.L. Hawkes, T. Noike. Enhancement of hydrogen production from glucose by nitrogen gas sparging [J]. Bioresource Technology, 2000, 73: 59-65.
    [139] L.T. Angenent, K. Karim, M.H. Al-Dahhan, B.A. Wrenn, R. Dom?′guez-Espinosa. Production of bioenergy and biochemicals from industrial and agricultural wastewater [J]. TRENDS in Biotechnology, 2004, 22(9): 477-485.
    [140] R. J. Lamed, J.H. Lobos, T.M. Su. Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum [J]. Appl Environ Biol., 1988, 54(5): 1216-1221.
    [141] S. Tanisho, M. Kuromoto, N. Kadokura. Effect of CO2 removal on hydrogen production by fermentation [J]. International Journal of Hydrogen Energy, 1998, 23(7): 559-563.
    [142] P.M. Crabbendam, O.M. Neijssel, D.W. Tempest. Metabolic and energetic aspects of the growth of clostridium-butyricum on glucose in chemostat culture [J]. Arch Microbiol, 1985, 142(4): 375-382.
    [143] D.W. Liu, D.P. Liu, R.J. Zeng, I. Angelidaki. Hydrogen and methane production from household solid waste in the two-stage fermentation process [J]. Water Res, 2006, 40(11): 2230-2236.
    [144] J.T. Kraemer, D.M. Bagley. Improving the yield from fermentative hydrogen production [J]. Biotechnol Lett, 2007, 29: 685-695.
    [145] J.T. Kraemer, D.M. Bagley Supersaturation ofdissolved H2 and CO2 during fermentative hydrogen production with N2 sparging [J]. Biotechnol Lett, 2006, 28(18): 1485-1491.
    [146] S. Hoekema, M. Bijmans, M. Janssen, J. Tramper, R.H. Wijffels. A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium [J]. International Journal of Hydrogen Energy, 2002, 27: 1331-1338.
    [147] D. Nehring, P. Czermak, J. Vorlop, et al. Experimental Study of a Ceramic Microsparging Aeration Systemin a Pilot-Scale Animal Cell Culture [J]. Biotechnol. Prog, 2004, 20: 1710-1717.
    [148]刘春朝,王玉春,郑重,欧阳藩.剪切力对植物细胞悬浮培养的影响[J].化工冶金, 1998, 19(4): 379-384.
    [149] M. Bouaifi, G. Hebrard, D. Bastoul, M. Roustan. A comparative study of gas holdup, bubblesize, interfacial area and mass transfer coefficients in stirred gas liquid reactors and bubble columns [J]. Chem. Eng. Process, 2001, 40(1): 97-111.
    [150] Y. Chisti. Animal-cell damage in sparged bioreactors [J]. Trends in Biotechnol, 2000, 18(10): 420-432.
    [151] G. Molina, Y. Chisti., M. Moo-Young. Characterization of shear rates in airlift bioreactors for animal cell culture [J]. Journal of Biotechnology, 1997, 54(3): 195-210.
    [152] K. Kanokwaree, P.M. Doran. Application of Membrane Tubing Aeration and Perfluorocarbon To Improve Oxygen Delivery to Hairy Root Cultures [J]. Biotechnol. Prog, 1998, 14: 479-486.
    [153] K.H. Kwok, P.M. Doran. Kinetic and stoichiometric analysis of hairy roots in a segmented bubble column reactor [J]. Biotechnol. Prog, 1995, 11: 429-435.
    [154] X.F. Yin, Q. Fang, Y.Y. Lin. Microfabrication Techniques for Production of Microfluidic Chips [J]. Modern Scientific Instruments, 2001, 4: 10-14.
    [155] B. Schnyder, T. Lippert, et al. UV-irradiation induced modification of PDMS films investigated by XPS and spectroscopic ellipsometry [J]. Surface Science, 2003, 532-535: 1067-1071.
    [156]张龙翔,张庭芳,李令嫒.生化实验方法和技术.北京:高等教育出版社, 2003, 1-3.
    [157] X. Tian, Q. Liao, X. Zhu, Y.Z. Wang, P. Zhang, J. Li, H. Wang. Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production [J]. Bioresource Technology 2010, 101: 977-983.
    [158]戚以政,汪叔雄.生化反应动力学与反应器.北京:化学工业出版社, 1996.
    [159]王永忠.固定化光合细菌光生物制氢反应器传输与产氢特性[D].重庆大学博士学位论文. 2008.
    [160] J.T. Kraemer, D.M. Bagley Supersaturation ofdissolved H2 and CO2 during fermentative hydrogen production with N2 sparging [J]. Biotechnol Lett, 2006, 28(18): 1485-1491.
    [161] A.A. Keller, M. Auset. A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions [J]. Advances in Water Resources, 2007, 30: 1392-1407.
    [162] V. Lazouskaya, Y. Jin. Colloid retention at air-water interface in a capillary channel [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2008, 325: 141-151.
    [163] V. Lazouskaya, Y. Jin, D. Or. Interfacial interactions and colloid retention under steady flows in a capillary channel [J]. Colloid and Interface Science, 2006, 303: 171-184.
    [164]党楠.光合细菌生物膜生长特性实验及模拟[D].重庆大学硕士学位论文. 2008
    [165]周汝雁,尤希凤,张全国.光合微生物制氢技术的研究进展[J].中国沼气, 2006, 24(2): 31-34.
    [166]王文生,魏德洲,郑龙熙.微生物在矿物表面吸附的意义及研究方法[J].国外金属矿选矿, 1998, 35(3): 37-40.
    [167] A. I. Abdel-Fattah, M. S. El-GenkU. On colloidal particle sorption onto a stagnant air-water interface [J]. Advances in Colloid and Interface Science, 1998, 78: 237-266.
    [168]吴大诚,朱谱新,王罗新.表面、界面与胶体[M].北京:化学工业出版社, 2005: 231.
    [169]李永峰,任南琪,胡立杰,李建政,王兴祖,张妮,李鹏.底物与pH值对菌株Clostridium R33 sp.nov.产氢能力的影响[J].化工学报, 2004, 55: 116-118.
    [170] J.T. Kraemer, D.M. Bagley. Improving the yield from fermentative hydrogen production [J]. Biotechnol Lett, 2007, 29: 685-695.
    [171] M.A. Hejazi, E. Andrysiewicz, J. Tramper, R.H. Wijffels. Effect of Mixing Rate on B-Carotene. Production and Extraction by Dunaliella. Salina in Two-Phase Bioreactors [J]. Biotechnol Bioeng, 2003, 84(5): 591-596.
    [172] P.E. Cruz, A. Cunha, C.C. Peixoto, J. Clemente, J.L. Moreira, M.J. Carrondo. Optimization of the production of virus-like particles in insect cells [J]. Biotechnol Bioeng, 1998, 60(4): 408-418.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700