用户名: 密码: 验证码:
碱矿渣水泥石碳化行为及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱矿渣水泥是环境友好型绿色胶凝材料,使用性能优异,生产过程能有效利用工业副产品和废渣,生产工艺简单,生产能耗低,自然资源消耗和温室气体排放少,被誉为二十一世纪最具开发潜力的胶凝材料。从应用的角度,提高材料耐久性是延长结构使用寿命、促进社会经济可持续发展的需要。业已证明,碳化与钢筋锈蚀是混凝土结构耐久性破坏的主要类型。虽然碱矿渣混凝土具有一系列优良性能,但已有研究表明,其碳化速率较高,特别是强度等级较低的混凝土,表现尤为突出。不仅如此,总体而言,有关碱矿渣混凝土的抗碳化性能研究极少,对其抗碳化性能的评价存在争议,对其碳化行为的内在本质没有统一认识,有效改善与提高其抗碳化能力的技术途径尚未确立,上述问题是该材料研究的薄弱环节,也是制约其应用发展的关键技术问题之一。因此,研究碱矿渣水泥石(AASS)的碳化行为与微观机理,对科学评价碱矿渣混凝土的抗碳化能力,指导碱矿渣混凝土结构的耐久性设计与应用发展均具有重要意义。
     论文以水玻璃与NaOH为碱组分制备的碱矿渣水泥石为对象,研究了碱组分种类、碱当量、水玻璃模数、水胶比、养护条件及碳化前处理方式对该水泥石碳化程度与收缩行为的影响,分析了碳化对碱矿渣水泥石孔溶液pH值及Na~+、K~+、Ca~(2+)含量的影响;采用X-射线衍射(XRD)、扫描电子电镜(SEM )、综合热分析(TG-DSC)及傅立叶转换红外光谱分析(FT-IR)等测试手段,研究了碱矿渣水泥石的碳化产物与微观结构,结合氮吸附方法分析了碳化对碱矿渣水泥石孔结构的影响;通过提高固态分散相碱度、降低水泥石干燥收缩与水泥石可溶性碱含量等技术措施,研究了改善碱矿渣水泥石抗碳化性能的技术途径。研究揭示的主要规律与取得的主要成果概括如下:
     在3%~6%范围内,碱矿渣水泥石的碳化程度随碱当量提高而减小,但减小的程度随碱当量的提高而减弱。同一碱当量水平,NaOH为碱组分的碱矿渣水泥石碳化程度大于水玻璃为碱组分的碱矿渣水泥石。在1.0~2.0范围内,随模数增加,水玻璃为碱组分的碱矿渣水泥石碳化程度先减小,后增大。碱当量为4%~6%、模数为1.2~1.5时,碱矿渣水泥石具有良好抗碳化能力。此外,碱矿渣水泥石碳化程度随水胶比提高而增加,随碳化前养护龄期延长而降低。水中养护的碱矿渣水泥石碳化程度大于同龄期标准养护的碱矿渣水泥石。
     相同水胶比时,碱矿渣水泥砂浆碳化程度大于硅酸盐水泥砂浆。相同扩展度时,碱矿渣水泥砂浆的碳化程度小于硅酸盐水泥砂浆。碳化后,硅酸盐水泥砂浆抗压强度有所提高,在碳化龄期60d内,碱矿渣水泥砂浆抗压强度随碳化龄期延长呈降低趋势。
     碱矿渣水泥石碳化收缩特征研究表明,碳化没有引起水泥石收缩的增加。在3%~6%范围内,碱矿渣水泥石碳化收缩随碱当量提高而减小。模数为1.2~1.5的水玻璃所配水泥石的碳化收缩较小。在0.30~0.35范围内,碱矿渣水泥石碳化收缩随水胶比提高而增大。随碳化前养护龄期延长,碳化收缩减小。水中养护的碱矿渣水泥石碳化收缩大于同龄期标准养护的水泥石。
     碳化前,碱矿渣水泥石孔溶液Na~+含量较多,K~+含量较少,而Ca~(2+)含量很低,NaOH为碱组分的水泥石孔溶液pH值大于水玻璃为碱组分的水泥石。碳化60d时,水泥石孔溶液pH值降低至10左右,Na~+含量增加,K~+与Ca~(2+)含量减少。水胶比为0.30,模数1.2的水玻璃配制的碱矿渣水泥石主要含孔径小于20nm的孔,体积百分率可达78%,NaOH配制的碱矿渣水泥石中,孔径大于20nm的毛细孔较多,体积百分率可达68%。碳化使碱矿渣水泥石比表面积增加、平均孔径、最可几孔径减小。碱矿渣水泥石的C-S-H凝胶是较接近托贝莫来石的水化硅酸钙,水玻璃为碱组分的碱矿渣水泥石的C-S-H凝胶C/S小于NaOH为碱组分的碱矿渣水泥石。碳化引起C-S-H凝胶脱钙,使C-S-H凝胶C/S降低,聚合度增加。碳化产物CaCO_3的存在形式主要为方解石,随碳化龄期延长,出现球霰石与文石。另外,碳化还会形成单斜钠钙石(Na_2CO_3·CaCO_3·5H_2O)与苏打石(NaHCO_3)。碱矿渣水泥石孔溶液的高碱性、水化产物不存在Ca(OH)_2、干燥收缩较大是其碳化比较严重的主要原因。
     碱组分不同,改善碱矿渣水泥石抗碳化性能的技术途径不同。水玻璃为碱组分的碱矿渣水泥石,提高固态分散相碱度比较适用,掺入适量Ca(OH)_2、Ba(OH)2与ZnCl_2能有效降低水泥石碳化程度;NaOH为碱组分的碱矿渣水泥石,降低水泥石干燥收缩比较适用,掺入适量引气剂与Na2SO4能有效降低碱矿渣水泥石碳化程度。
Alkali-activated slag cement is a kind of environmental friendly green binding material, which has the advantages of superior properties, effective utilization of industrial by-products, simple producing progress, low energy, low natural resource consuming and greenhouse gases emission. So it is praised as one of most exploration potential cementitious materials in the 21st century. From the practical application angle, improving the durability of materials can adapt well to extend service time of concrete structures and to the sustainable development of soc-economy. Carbonation and steel corrosion has been proven to be the main form of damages to the concrete structures durability. Although alkali-activated slag concrete has noticeable excellent properties, previous studies have demonstrated that its carbonation rate is high, which especially be reflected in the low strength grade concrete. Overall,there is little study on its carbonation resistance and there is dispute on its carbonation resistance evaluation, there is no common agreement on the essence of carbonation behavior and the proper technical approach to improve the carbonation resistance of alkali-activated slag concrete has not been established, which is the weak link and is one of the key technologies to restrict its development. Therefore, the investigation of carbonation behaviour and microscopic mechanism of alkali-activated slag cement stone(AASS) would lay a foundation to scientifically evaluate the ability of alkali-activated slag concrete to carbonation resistance and to guide the durability design and the application and development of alkali-activated slag concrete structure.
     In this project, alkali-activated slag cement stone(AASS) activated by water glass and NaOH was used to investigate the effect of main factors such as alkali activator type, Na_2O equivalent, water glass module(Ms), water binder ratio(W/B), curing condition and pretreatment method on the carbonation depth and shrinkage behavior. The effect of carbonation on the pH value, Na~+, K~+ and Ca~(2+) content of pore solution of AASS was also studied. The products of carbonation and their microscopic structure were identified by using XRD, SEM, TG-DSC, FT-IR analysis and so on. The effect of carbonation on the pore structure of AASS was analysed by using nitrogen absorption measurement. Based on the technical measures of increasing the alkalinity of solid dispersive phase and reducing the drying shrinkage and soluble alkali content of AASS, technical approach to improve the carbonation resistance of AASS was studed. Chief laws and results are summarized as follows:
     In the range of 3%~6%, carbonation depth of AASS decreases with the increase of Na2O equivalent, although the extent of reduction decreases with the increase of Na2O equivalent. At the same Na2O equivalent, the carbonation depth of AASS activated by NaOH is larger than that of AASS activated by water glass. In the range of 1.0~2.0, with the increase of module, carbonation depth of AASS activated by water glass first decreases, then followed by an increase. When Na2O equivalent is 4%~6% and the module of water glass is 1.2~1.5, AASS possesses excellent capability to carbonation resistance. Besides, carbonation depth of AASS increases when W/B increases and decreases when standard curing ages extends. Water curing can increase the carbonation depth of AASS.
     Alkali-activated slag cement mortar is more easily carbonated than Portland cement mortars when water-binder ratio is the same. While the consistency of mortars is the same, alkali-activated slag cement mortar used water glass as alkali activator is less carbonated than Portland cement mortar. After being carbonated, the compressive strength of Portland cement mortar increases, while that of alkali-activated slag cement mortar shows the tendency of decline with the increase of carbonation ages within 60 days.
     The study on the characteristic of carbonation shrinkage of AASS shows that carbonation doesn’t increase the shrinkage of AASS. In the range of 3%~6%, carbonation shrinkage of AASS decreases with the increase of Na2O equivalent. When water glass is used as the activator, carbonation shrinkage is relatively small with the module of 1.2~1.5. In the range of 0.30~0.35, while W/B increases, carbonation shrinkage of AASS increases and that decreases when standard curing ages extends. Carbonation shrinkage of AASS under water curing is larger than that of standard curing at the same age.
     Before carbonation, Na~+ content is more, K~+ content is less, while Ca~(2+) content is much lower in the pore solution of AASS. The pore solution pH value of AASS activated by NaOH is larger than that of AASS activated by water glass. After being 60d carbonated, pH value of pore solution reduces to about 10 and Na~+ content increases, while K~+ and Ca~(2+) content decreases.
     When water binder ratio is 0.30, in the AASS activated with water glass, the diameter of main pores is less than 20 nm which volume percentage touches 78%. While in the AASS activated with NaOH, capillary which diameter more than 20nm is more and its volume percentage is 68%. Carbonation increases the amount of the specific surface area of AASS and reduces the average and the most probable distribution pore diameters. C-S-H gel of AASS is an amorphous gel which is more close to tobermorite. C/S ratio of C-S-H gel of AASS activated with water glass is smaller than that of AASS activated with NaOH. Carbonation causes decalcification of C-S-H gel ,so C/S ratio of C-S-H gel decreases, polymerization degree increases. As carbonation products, the main form of CaCO_3 is calcite. With the process of carbonation, vaterite and aragonite come into being. Besides, gaylussite and nahcolite have also been detected. The existence of more alkali (Na~+、K~+) in the pore solution, no existence of Ca(OH)_2 crystal in hydration product and the larger drying shrinkage of alkali- activated slag cement stone are the important reason for its serious carbonation.
     Alkali-activated slag cement stone with different activator has its own proper technical approach to improve the carbonation resistance. Increasing the alkalinity of solid dispersive phase is suitable for AASS activated with water glass. Right amount of Ca(OH)_2,Ba(OH)2 and ZnCl_2 can effectively reduce the carbonation depth of AASS. While to AASS activated with NaOH, decrescence of drying shrinkage is useful. Right amount of air entraining agent and Na2SO4 do well to reduce the carbonation depth of AASS.
引文
[1]贲克平.可持续发展理论研究扫描.人民日报. 2003-8-22.
    [2]杨久俊,吴科如.材料工业在循环经济与可持续发展中的作用[J].建筑材料学报,2001,4 (3): 259–264.
    [3]王培铭,王新友.绿色建材的研究与应用.中国建材工业出版社, 2004.10.
    [4]国际水泥评论《.Global Cement Report》(全球水泥报告).http:// www. cement. com / Global Cement Report 9.
    [5]陈全德.应用高新技术建设“环境材料型”水泥工业.第五届全国新型干法水泥生产技术交流会: 2003,5.
    [6]陈友治.碱矿渣水泥的理论基础[J].新世纪水泥导报,2000 (5): 10-12.
    [7] Roy D.M. Alkali-activated cements: Opportunities and challenges [J]. Cem. Concr. Res, 1999, 29 (2): 249-254.
    [8] Fernando Pacheco-Torgal, Jo?o Castro-Gomes, Said Jalali. Alkali-activated binders A review Part 1. Historical background, terminology, reaction mechanisms and hydration products [J]. Construction and Building materials, 2008,22 ( 7 ): 1305–1314.
    [9]史才军,巴维尔·克利文科,黛拉·罗伊.碱-激发水泥和混凝土[M].北京:化学工业出版社, 2008.
    [10]徐彬.固态碱组分碱矿渣水泥的研制及其水化机理和性能的研究[D].北京:清华大学博士学位论文,1995.
    [11]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报, 1996,24 (4): 459-465.
    [12] Brough A.R., Atkinson A. Sodium silicate-based, alkali-activated slag mortars Part I. Strength, hydration and microstructure[J]. Cem Concr Res, 2002,32 (6): 865-879.
    [13] Darko Krizan, Branislav Zivanovic. Effects of dosage and modulus of water glass on early hydration of alkali–slag cements[J]. Cem Concr Res, 2002,32 (7): 1181-1188.
    [14]陈建华,焦宝祥,奚新国.碱胶凝材料[J].新型建筑材料,1999 (6): 28-29.
    [15]杨立信.前苏联碱矿渣水泥的发展概况[J].水泥,1992 (8) : 40-45.
    [16]蒲心诚,甘昌成,吴礼贤.碱矿渣(JK)混凝土的性能[J].硅酸盐通报,1989 (5): 5-11.
    [17]杨长辉.碱性水泥系统的碱集料反应研究[D].重庆:重庆建筑大学博士学位论文,1998.
    [18]刘顺妮.水泥-混凝土体系环境影响评价及其应用研究[D].武汉:武汉理工大学博士学位论文, 2003.
    [19]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报,1996,24 (2): 209-215.
    [20]蒲心诚,杨长辉.高强碱矿渣(JK)流态混凝土研究[J].混凝土, 1996, (2): 18-23.
    [21]蒲心诚.碱矿渣(JK)通过鉴定[J].建筑节能, 1987 (5): 7.
    [22]杨南如.充分利用资源,开发新型胶凝材料[J].建筑材料学报,1998,1 (1):19-25.
    [23]钟白茜,杨南如.水玻璃一矿渣水泥的水化性能研究[J].硅酸盐通报,1994 (1): 4-8.
    [24]王前政. JK混凝土电线杆通过鉴定[J].砖瓦世界, 1993 (2):3.
    [25]汴哲.上海生产碱渣空心小起块[J].建筑砌块与砌块建筑, 1994 (5): 29.
    [26]裘之凡.碱矿渣水泥生产线投产[J].建材工业信息,1994 (1): 21.
    [27]朱效容,王世彬,齐文丽.泵送碱矿渣混凝土的研究与应用[J].混凝土, 2001 (4): 16-18.
    [28]黄书谋,吴兆正.中国水泥关于凝石的几点看法[J].中国水泥,2005 (9): 17-18.
    [29]孙伟.荷载与环境因素偶合作用下结构混凝土的耐久性与服役寿命[J].东南大学学报,2006, 36 (SupⅡ): 7-14.
    [30] Dhir R.K., Hewlett P.C., Chan Y. N. Near surface characteristics of concrete: prediction of carbonation resistance[J]. Magazine of Concrete Research, 1989, 41: 137-143.
    [31] Ho D.W.S., Lewis R.L. The carbonation of concrete and its prediction[J]. Cem Concr Res,1987,17: 489-504.
    [32] Thomas M.D. A., Matthews J.D. Carbonation of fly ash concrete[J]. Magazine of Concrete Research, 1992, 44: 217~228.
    [33] Hobbs D.W. Carbonation of concrete containing PFA[J]. Magazine of Concrete Research, 1994, 46 (166): 35-38.
    [34] Kobayashi K.., Uno Y. Influence of alkali on carbonation of concrete: Part 1, preliminary tests with mortar specimens [J]. Cem Concr Res, 1989,19 (5): 821-826.
    [35] Kobayashi K., Uno Y. Influence of alkali on carbonation of concrete: Part 2, influence of alkali in cement on rate of carbonation [J]. Cem Concr Res, 1990, 20 (4): 619-622.
    [36]柳俊哲.混凝土碳化研究与进展(1)—碳化机理与碳化评价[J].混凝土,2005 (11): 10-13.
    [37]阿列克谢耶夫著,黄可信,吴兴祖,蒋仁敏等译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [38]日本建筑学会建筑设计标准委员会编,张富春译.建筑物的损伤和耐久性对策[M].北京:中国建筑工业出版社,1988:23-28.
    [39]施惠生,方泽锋.粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,32 (1): 95-98.
    [40]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007.
    [41]沈旦申,冒镇恶.混凝土与钢筋混凝土耐久性技术讲座文集.上海市建筑学会,上海市土木工程学会,上海市电机工程学会: 1984.9-1984.12.
    [42]沈旦申,吴正严,杨云凌.粉煤灰利用技术学术会议文集.中国建筑学会建筑材料学术委员会粉煤灰组.1984.9.
    [43] Cengiz D.A.Accelerated carbonation and testing of concrete made with fly ash[J]. Construction and Building Materials,2003,17 (3): 147-152.
    [44] Kritsada Sisomphon,d Lutz Franke. Carbonation rates of concretes containing high volume of pozzolanic materials [J]. Cement and Concrete Research,2007,37 (12): 1647-1653.
    [45] Khunthongkeaw J., Tangtermsirikul S., Leelawat T. A study on carbonation depth prediction for fly ash concrete [J]. Construction and Building Materials, 2006, 20 (9): 744-753.
    [46] Roy S K.,Poh K B.,Northwood D O.Durability of concrete-accelerated carbonation and weathering studies[J].Building and Environment,1999,34 (5) : 597-606.
    [47]金祖全,孙伟.荷载作用下混凝土的碳化深度[J].建筑材料学报,2005,8 (2): 179-183.
    [48]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报(自然科学版), 2003,33 (5): 573-576.
    [49]牛建刚.一般大气环境多因素作用混凝土中性化性能研究[D].西安:西安建筑科技大学博士学位论文,2008.
    [50] L Ying-yu,W Gui-dong.The meehanism of carbonation of mortar and the dependence of Carbonation on pore structure. In: Proc Katharine and Bryant Mather Int Conf on Concrete Durability. Atlanta[C].1987.22: 1915-1943.
    [51] Parrott L.J.Carbonation in a 36 year old in-situ concrete[J]. Cem Concr Res, 1989,19: 649-656.
    [52]叶绍勋.混凝土碳化反应的热力学计算[J].硅酸盐通报,1989 (8): 2-5.
    [53] Papadakis V.G., Vayenas C.G., Fardis M.N. A reaction engineering approach to the problem of concrete carbonation[J]. AICHE Journal,1989,35(10):1639-1650.
    [54] Papadakis V.G., Vayenas C.G., Fardis M.N. Physical and chemical characteristics affecting the durability of concrete[J]. ACI Materials journal, 1991, 88: 186.
    [55] Papadakis V.G., Vayenas C.G., Fardis M.N. Fundamental modeling and experimental investigation of concrete carbonation[J].ACI Materials journal, 1991, 88 (4): 363-373.
    [56] Papadakis V.G., Vayenas C.G., Fardis M.N. Experimental investigation and mathematical modeling of the concrete carbonation problem[J].Chemical Engineering Science, 1991, 46: 1333-1338.
    [57] Fernández Bertos M., Simons S.J.R., Hills C.D. et al. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. Journal of Hazardous Materials, 2004,112(3):193-205.
    [58] Ha-Won Song, Seung-Jun Kwon.Permeability characteristics of carbonated concrete considering capillary pore structure[J]. Cem. Concr. Res, 2007,37 (6) : 909–915.
    [59]朱安民.混凝土碳化与钢筋混凝土耐久性[J].混凝土,1992 (6): 18-22.
    [60]许丽萍,黄士元.预测混凝土中碳化深度的数学模型[J].上海建材学院学报, 1991 (4).
    [61]龚洛书.混凝土多系数碳化方程及其应用[J].混凝土及加筋混凝土, 1985 (6): 10-16.
    [62]张誉,蒋利学.基于碳化机理的混凝土碳化实用数学模型[J].工业建筑, 1998,28 (1): 16-19.
    [63]牛狄涛,董振平,蒲聿修.预测混凝土碳化深度的随机模型[J].工业建筑,1999,29 (4): 41-45.
    [64]王培铭,朱艳芳,计亦奇等.掺粉煤灰和矿渣大流动度混凝土的碳化性能[J].建筑材料学报, 2001,4(4): 305-310.
    [65] Khunthongkeaw J., Tangtermsirikul S., Leelawat T. A study on carbonation depth prediction for fly ash concrete [J]. Construction and Building Materials, 2006, 20 (9): 744-753.
    [66] Ho D.W.S., Lewis R.L. Carbonation of concrete incorporating fly ash or a chemical admixture. Proceedings of the First International Conference on The Use of Fly Ash, Silica Fume, Slag and other Mineral By-Products in Concrete. Montebello, Canada: SP-79, 1983: 333–346.
    [67] Byfors K. Carbonation of concrete with silica fume and fly ash. Nordic Concrete Research, Publication No. 4, Oslo, 1985: 26–35.
    [68] Ogha H., Nagataki S. Prediction of carbonation depth of concrete with fly ash. Proceedings of the Third International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Trodheim, Norway, SP-114, 1989: 275–294
    [69] Aillere A.M., Raverdy M., Grimaldi G. Carbonation of concrete with low-calcium fly ash and granulated blast furnace slag: Influence of air-entraining agents and freezing and thawing cycles. Proceedings of ACI Canmet Second International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Spain, Madrid, SP-91, 1986: 541–562.
    [70] Kasai Y., Matsui I., Fukushima Y. et al. Air permeability and carbonation of blended cement mortars. Proceedings of the First International Conference on The Use of Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, Montebello, Canada,SP-79, 1983: 435-450.
    [71] Bakharev T., Sanjayan J. G., Cheng Y.B. Resistance of alkali activated slag concrete to carbonation [J]. Cem Concr Res, 2001 (31): 1277-1283.
    [72] Deja J. Durability of Alkali-Activated Slags Mortars and Concretes [J]. Ceram. Sci (in Polish ), 2003, 83.
    [73] Puertas F., Palacios M. and Vazquez T. Carbonation process of alkali-activated slag mortars [J].J MATER SCI,2006(41): 3071-3082.
    [74]蒲心诚,甘昌成,何桂等.碱矿渣混凝土耐久性研究[J].混凝土, 1991 (5): 13-21.
    [75]吕春飞.碱矿渣水泥砂浆抗碳化性能研究[D].重庆:重庆大学硕士学位论文,2009.
    [76] Wang S.D. The role of sodium during the hydration of alkali-activated slag[J]. Advances in Cement Research, 2000, 12 (2): 65-69.
    [77] Stade H. On the reaction of C-S-H (di poly) with alkali hydroxide[J]. Cem.Concr.Res, 1989,19 (5): 802–810.
    [78] Hong S.Y., Glasser F.P. Alkaline binding in cement pastes [J]. Cem.Concr.Res, 1999, 29(12): 1893–1904.
    [79] Vladimír ?ivica. Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures[J].Construction and Building Materials, 2007, 21 (7): 1463~1469.
    [80] Shi C.J., Day R. L. A calorimetric study of early hydration of alkali-slag cements[J]. Cem.Concr.Res, 1995, 25(6): 1333–1346.
    [81]肖忠明,张大同等.水玻璃对水玻璃型碱矿渣水泥的凝结时间及力学性能的影响[J].水泥石灰, 1994 (4):13–15.
    [82] Bakharev T.,Sanjayan J. G., Cheng Y.B. Alkali-activation of Australian slag cements [J]. Cem Concr Res,1999,29(1): 113–120.
    [83]付兴华,陶文宏,孙凤金.水玻璃对地聚物胶凝材料性能影响的研究[J].水泥工程,2008 (2): 6-9.
    [84] Wang S. D., Scrivener K., Pratt P. Factors affecting the strength of alkali-activated slag [J]. Cem Concr Res, 1994(24): 1033-43.
    [85] Chang J.J., Weichung Yeih, Chi Che Hung. Effects of gypsum and phosphoric acid on the properties of sodium silicate- based alkali-activated slag cement pastes[J].Cement & Concrete Composites, 2005, 27(1): 85-91.
    [86] Hobbs S. V. A study of non-evaporable water content in cement-based mixtures with and without pozzolanic materials[D].Dissertation of Cornell University,Aug.2000.
    [87] Valckenborg R. M. E., Hazrati L.P. K. Pore water distribution in mortar during drying as determined by NMR[J].Materials and Structures,2001,34(10): 599-604.
    [88] Barnes P. Structure and Performance of Cements [M]. London: Applied science publishers, 1983: 338-349.
    [89]西德尼.明德斯,丁.弗郎西斯,戴维.达尔文著,吴科如等译.混凝土[M].北京:化学工业出版社.2005.
    [90] Thomas J.J., Jennings H.M. Changes in the Size of Pores During Shrinkage(or Expansion) of Cement Paste and Concrete[J]. Cem.Concr.Res, 2003,33(11): 1897-1900.
    [91] Wan Chao-jun, Kang Zhi-jian. Dimensional stability of hardened cement pastes during and after accelerated leaching process.Proceedings of the sixth international symposium on cement&concrete,CANMET/ACI international symposium on concrete technology for sustainable development.Xi’an,China.September 19-22.2006.Foreign languages press. 2006,Volume 3: 1709-1715.
    [92] Wan Chao-jun, Kang Zhi-jian. Effect of heat cure and decalcification on the drying shrinkage behavior of hydrated cement pastes.Proceedings of 1st international workshop on service life design for underground structures,Serviceability of underground structures. Shanghai,China. 2006.10.Tongji University press.2006,10: 170-177.
    [93] Wan Chao-jun, Jennings H.M., Thomas J.J. et al.The shrinkage behavior of decalcified cement paste. 12th international congress on the chemistry of cement. Montreal, Canada. July 8-13.2007.
    [94] Pointeau I., Piriou B., Fedoroff M., et al. Sorption mechanisms of Eu3+ on C-S-Hphases of hydrated cements[J].Journal of Colloid and Interface Science,2001,236: 252-259.
    [95] Jennings H.M. A model for microstructure of calcium silicate hydrate in cement paste[J]. Cem.Concr.Res, 2000,30(1): 101-116.
    [96]周亚栋.无机材料物理化学[M].武汉:武汉工业大学出版社,1994.
    [97]浙江大学,武汉建筑材料工业学院,上海化工学院,等.硅酸盐物理化学[M].北京:中国建筑工业出版社,1983.
    [98] Shi C.J., Day R.L. Alkali-slag Cements for the Solidification of Radioactive Wastes.In Gilliam and Wiles(eds) Stabilization and Solidification of Hazardous,Radioactive,and Mixed Wastes, ASTM STP 1240,American Society for Testing and Materials, Philadelphia,USA,163-173.
    [99] Van Breugel K. Numerical modeling of volume change at early ages-potential, pitfalls and challenges[J].Materials and Structures.2001,(1): 293-230.
    [100] Tarek Aly, Sanjayan J.G. Mechanism of early age shrinkage of concretes[J].Materials and Structures 2009,42(4): 461-468.
    [101]封孝信,冯乃谦.碱在C-S-H凝胶中的存在形式[J].建筑材料学报,2004,7(1): 1-7.
    [102] Taylor H.F.W. Proposed structure for calcium silicate hydrate gel[J].Journal of American Ceramic Society, 1986,69(6): 464-467.
    [103]杨南如,曾燕伟.化学激发胶凝材料专题研讨(连载二),研究和开发化学激发胶凝材料的必要性和可行性(下) [J].建材发展导向,2006(2) : 42-46.
    [104] Taylor H.F.W.A method for predicting alkali ion concentration in cement pore solution. Advances in cement research[J]. 1987,1(1): 5-16.
    [105] Puertas F., Fernandez-Jimenez A., Blanco-Varela M.T. Pore solution in alkali-activated slag cement pastes, relation to the composition and structure of C-S-H. [J]. Cem.Concr.Res, 2004,34(1): 139-148.
    [106] Hong S.Y., Kia J.C., Kim J.K.Studies on the hydration of alkali-activated slag. 3rd Beijing International Symposium on Cement and Concrete, Beijing, P.R.China,2,1059-1063.
    [107]杨正红,高原.含有微孔的多孔固体材料的比表面测定[J].现代科学仪器, 2010 (1): 97-102.
    [108] Thomas J.J., Jennings H.M., Allen A.J.The surface area of cement paste as measured by neutron scattering:evidence for two C-S-H morphologies[J]. Cement and Concrete Research.1998.28(6):897-905.
    [109] Ngala V.T., Page C.L. Effect of carbonation on pore structure and diffusional properties of hydrated cement pastes[J]. Cem. Concr. Res. 1997,27 (7): 995–1007.
    [110] Thomas J.J., Chen J.J., Allen A.J. et al. Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes[J]. Cem. Concr. Res,2004,34(12): 2297-2307.
    [111]钟白茜,程麟,郭斌.用IR方法研究硅酸钙水化产物的碳化[J].南京工业大学学报(自然科学版),1982(2): 39-43.
    [112] Mozgawa W., Deja J. Spectroscopic studies of alkaline activated slag geopolymers[J]. Journal of Molecular Structure,2009,924-926 (C): 434-441.
    [113] García Lodeiro I., Macphee D.E., Palomo A. et al. Effect of alkalis on fresh C-S-H gels. FTIR analysis[J]. Cem. Concr. Res,2009,39(3): 147-153.
    [114]秦力川,杨俊峰.建筑材料微观测试分析基础[M].重庆:重庆大学出版社,1990.
    [115] Bensted J., Varma S.P. Infrared and raman spectroscopy in cement chemistry- iscellaneous applications[J]. World Cement Tochnology,1977,8(1): 1618-1620.
    [116]郭斌,闵盘荣,王国宾.水化硅酸钙的碳化作用[J].硅酸盐学报,1984,12(3): 287-295.
    [117]孙抱真,苏而达.水化硅酸钙的结晶度与碳化速度[J].硅酸盐学报,1984,12(3): 281-286.
    [118]蔡安兰,黄颖星,严生等.水泥石的结构、组成与干缩性能的关系[J].材料科学与工程学报, 2005,23(4): 574-578.
    [119]朱和国,王恒志.材料科学与测试方法[M].南京:东南大学出版社,2007.
    [120]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000.
    [121] Géraldine Villain, Thiery Micka?l, Platret Gérard. Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry [J]. Cem. Concr. Res, 2007,37 (8): 1182-1192.
    [122] Sauman Z. Carbonization of porous concrete and its main binding components [J]. Cem. Concr. Res, 1971 (1):645–662.
    [123] Chen J. J., Thomas J. J., Taylor H.F.W. et al.Solubility and structure of calcium silicate hydrate[J]. Cem. Concr. Res,2004,34(9): 1499–1519.
    [124]祁之如,关雅先.单斜钠钙石晶体结构的初步研究[J].长春地质学院学报,1978(2): 39-42.
    [125]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社,1996.
    [126]沙际德.引气混凝土的抗冻机理[J].混凝土, 1990 (4): 2-5.
    [127] Bakharev T., Sanjayan J.G., Cheng Y.B. Effect of admixtures on properties of alkali-activatedslag concrete[J]. Cem. Concr. Res,2000,30(9): 1367–1374.
    [128]蒲心诚.碱矿渣水泥与混凝土[M].北京:科学出版, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700