用户名: 密码: 验证码:
淀粉基木材胶粘剂的制备及其特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用廉价生物质可再生资源开发绿色高性能环境友好型木材胶粘剂是人类不懈追求的目标。而现有以淀粉为主要原料的淀粉基木材胶粘剂的制备工艺普遍存在淀粉用量低、稳定性差、保质期短、工艺复杂等问题,限制了其相关产业的发展。针对这一问题,本论文瞄准产业需求,结合统计分析、结构表征等手段,对淀粉基环境友好型木材胶(以下简称淀粉木材胶)制备的基础工艺进行系统研究,探索出高淀粉用量下淀粉木材胶的制备工艺;在此基础上,对淀粉木材胶制备工艺中各影响因素的相关机理进行了解析,并进行了相应的工艺参数的优化和建模工作;此外,论文研究了助剂的添加对淀粉木材胶关键性能的影响,并初步探索了相关机理;在小试基础上,最终实现了中试放大,获得了一种高淀粉用量的常温使用型淀粉基环境友好型木材胶粘剂,其淀粉用量可达胶粘剂总不挥发物含量的43.9%;并且产品的各项指标达到相关胶粘剂的行业标准。
     为探析淀粉木材胶制备的基础工艺,本文首先采用物理共混和接枝共聚方法制备高淀粉含量的淀粉木材胶,结果证明物理共混会导致相分离现象出现,造成胶粘剂粘接性能及稳定性均较差;而接枝共聚可以增强胶粘剂分子结构,有利于出制备高淀粉含量的淀粉木材胶。因此确定接枝共聚作为制备淀粉木材胶的核心工艺。
     确定工艺后,本文随即研究了不同手段(糊化预处理、乳化剂)对淀粉木材胶前期接枝共聚工艺的影响及相关机理,并在此基础上利用响应面法对淀粉木材胶制备工艺进行了相关优化,建立了数学模型。相关研究内容如下:
     1.从前处理的角度研究了糊化预处理对淀粉木材胶的胶接强度和低温储藏稳定性的影响。对比没有经过糊化预处理的淀粉木材胶,经过糊化预处理的淀粉木材胶的干强度提高了20.9%,湿强度提高了45.8%,同时糊化预处理可以显著提高反应的接枝参数。耐低温稳定性实验证明糊化预处理可以增加淀粉木材胶通过低温储藏-室温解冻循环(以下简称冻融循环)的次数。动态时间扫描实验和XRD实验的结果证明了糊化预处理有利于削弱淀粉分子之间的氢键作用力,促进淀粉与单体之间发生接枝反应,从而改善了淀粉木材胶的粘接性能及结构稳定性。
     2.从促进接枝共聚反应的角度研究了乳化剂对淀粉木材胶胶接强度和低温储藏稳定性的影响。结果证明,阴离子乳化剂十二烷基硫酸钠(SDS)可以有效提高淀粉木材胶的粘接性能和耐低温储藏性能。SDS的最佳添加量为淀粉用量的1%(w/w),在此添加量下,淀粉木材胶干强度可达4.75MPa,而湿强度达到1.81MPa。此外还发现SDS可以有效的提高反应的接枝参数,如接枝率提高了80.9%,而接枝百分率提高了45.1%。动态时间扫描实验结果证明SDS提高淀粉木材胶性能的机理在于乳化剂消弱了淀粉分子之间的氢键作用力,有利于淀粉和单体之间的接枝反应,低场核磁和TEM的结果证明SDS可在淀粉表面形成保护层有助于保水作用,防止乳液粒子聚集,有利于提高乳液的稳定性。
     3.在上述研究基础上,运用响应面法(RSM)对淀粉木材胶的工艺参数进行统计分析及优化,研究了酸解时间、初始过硫酸铵(APS)用量、乳化剂SDS用量、引发pH值等四个主要影响因素分别对粘度和干强度的影响。结果表明此四个因素对干强度和粘度均存在明显的相关性,响应面优化得到的最佳工艺为酸解时间37.5min;APS用量为淀粉用量的0.94%(w/w),其中初始用量为淀粉用量的0.74%(w/w);乳化剂用量为0.82%(w/w);引发pH为5.85。
     获得较好的接枝共聚工艺之后。本文对能进一步提高淀粉木材胶性能的助剂进行了研究,主要考察了提高淀粉木材胶的储藏性能和耐水性能的相关助剂,相关研究内容如下:
     1.在提高淀粉木材胶耐储存性方面,研究了尿素对淀粉木材胶流变学特性和耐低温储藏性能以及粘接性能的影响。实验结果表明尿素的添加对粘接性能影响较小。此外,尿素的添加有效降低了淀粉木材胶的粘度及体系的假塑性,同时显著提高了淀粉木材胶通过冻融循环的次数,最佳添加量是加入干重为占淀粉用量为15%(w/w)的尿素;动态时间扫频实验和低场核磁实验的结果证明尿素提高淀粉木材胶耐冻融循环能力的机理可以归结为尿素削弱了淀粉木材胶分子之间的氢键作用,抑制了体系向弱凝胶体系发展,从而提高了淀粉木材胶的耐低温储藏能力。
     2.在提高淀粉木材胶耐水性方面,研究了纳米二氧化硅粒子(以下简称纳米硅粒子)对淀粉木材胶性能的影响。添加纳米硅粒子的淀粉木材胶后干强度和湿强度显著提高。与未添加的空白对照相比,添加干重占淀粉用量10%(w/w)的纳米二氧化硅溶胶的淀粉木材胶的干剪切强度从5.92MPa增加到8.36MPa,而湿剪切强度从2.11MPa增加到3.47MPa。利用红外热重流变等手段研究了纳米硅粒子提高淀粉木材胶性能的机理,结果证明,纳米硅粒子可以和淀粉胶分子作用形成氢键,增强了胶粘剂分子的结构,从而提高了淀粉木材胶的粘接能力。
     经一系列工艺改良后,论文最终实现了中试放大,实现了高淀粉用量下淀粉木材胶的稳定制备,其淀粉用量可达胶粘剂总不挥发物含量的43.9%左右。中试产品的各项指标并达到相关胶粘剂的行业标准。经济性分析表明淀粉木材胶具有较低的成本,其原料成本大约为商品白乳胶的70%左右。综上所述,本课题所制备的淀粉基环境友好型木材胶粘剂在具有优良性能的同时,还具有较低的成本,因此在木材工业中具有较好的推广价值和市场前景。
To develop high performance wood adhesive by utilizing low cost biomass is unremitting pursuit goal. In our paper, a new, environmentally friendly starch-based wood adhesive high starch content was synthesized via graft polymerization of vinyl acetate monomer onto waxy corn starch, and the effects of raw materials, emulsifiers, diluents urea, nano-additives was investigated and the technological parameter of starch-based was also optimized accordingly.
     Firstly, the basic process of starch-based wood adhesive was studied. Physical blending and grafted copolymerization was used to prepared to starch-based wood adhesive with high starch content. The result showed that the starch-based adhesive prepared by the physical blend had poor bonding performance and poor stability for the physical phase separation. While the starch-based wood adhesive prepared by graft copolymerization had better performance than the starch-based adhesive prepared by the physical blend.
     Secondly, based on the basic Process, the effects of gelatinization pretreatment of starch on storage stability at low temperature and bond strength of starch-based wood adhesive were investigated. Compared with starch-based wood adhesive without gelatinization pretreatment of starch, the bonding strength of starch-based wood adhesive increased after gelatinization pretreatment, the increasement were 20.9% in dry-state and 45.8% in wet-state, respectively. The grafted parameters was also remarkably increased by the gelatinization pretreatment of starch, such as G increased by 43.5% and GE increased by 38.8%. Result of freeze-thaw stability measurement indicated that the gelatinization pretreatment of starch could effectively improve the frost resistance of starch-based wood adhesive. The results of dynamic time sweep experiments and XRD analysis demonstrated that the gelatinization pretreatment of starch could weaken intermolecular hydrogen bonds of starch, and enhance the grafted reaction of starch and VAc monomer, thereby improving the bonding properties and stability of starch-based wood adhesive emulsion.
     In addition, the effects of emulsifiers (SDS) on storage stability in low temperature and bond strength of starch-based wood adhesive were also investigated. Compared to starch-based wood adhesive without emulsifiers, emulsifier-fortified starch-based wood adhesive all exhibited enhanced glue strength. The optimum amount of SDS is 1% of starch content. In particularly, SDS has a most significant effect that dry strength of starch-based wood adhesive was increased to 4.75MPa and the wet strength was increased to 1.81MPa, respectively. The grafted parameters was also remarkably increased by the added of SDS, such as G increased by 80.9% and GE increased by 45.1%. The results of dynamic time sweep experiments and TEM and Low field Nuclear magnetic resonance technique (LF-NMR) showed that SDS could weaken the hydrogen bonding force of the starch molecules, and significantly enhanced the parameters of grafted reaction, thereby finally improving the bonding properties and stability of starch-based wood adhesive emulsion.
     In order to maximize the performance of starch-based wood adhesive, response surface methodology (RSM) was employed to optimize the grafted reaction condition. The RSM model showed that the shear strength and viscosity were related to acidolysis time (X_1), initiate APS dosage (X_2), emulsifier dosage(X_3) and initiate pH(X_4). The optimum extraction conditions were acidolysis time of 37.5min, initiate APS dosage of 0.74% of starch content (the total APS of 0.94% of starch content), emulsifier dosage of 0.84% of starch content and initiate pH of 5.85.
     Thirdly, in order to enhance the performance of starch-based wood adhesive, the additives which can further improve the performance of adhesive were also studied.
     To improve the frost resistance of starch-based wood adhesive in low temperture, the effects of urea on the performance of starch-based wood adhesive were evaluated, including freeze-thaw stability, rheological properties and bond behavior. The results indicated that starch-based wood adhesive with added urea still showed characteristics of non-Newtonian fluid. With the amount of urea increased, the non-Newtonian index would increase and the structural viscosity index would decrease. Result of freeze-thaw stability measurement indicated that added 15%(w/w)urea solution could effectively improve the frost resistance of starch-based wood adhesive. Results of dynamic time sweep experiments and LF-NMR indicated that the addition of urea could inhibit the formation of weak gel in the starch-based wood adhesive system and enhance structural stability of starch-based wood adhesive, whether the room temperature or freezing and thawing conditions. In addition, result of bond behavior indicated that urea had little influence on the bonding strength of starch-based wood adhesive. Therefore, urea can be used as an effective additive for improving storage performance starch-based wood adhesive.
     Furthermore, slica nanoparticles were used to improve the water resistance of starch-based wood adhesive in this study. Compared with starch-based wood adhesive without silica nanoparticles, the bonding strength of starch-based wood adhesive with 10%(w/w)of silica nanoparticles increased to 8.36MPa in dry state and 3.47MPa in wet state. The improved performance of SiO_2/starch-based wood adhesive was supported by its strengthened molecular structure, enhanced thermal stability and beneficial changes in rheological properties from the analysis results using Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analyzer and rheometer.
     Finally, after a series of process optimization, the starch-based wood adhesive high starch content was successfully synthesized in factory, and the performance of the starch-based wood adhesive could reach the national standards of PVAc wood adhesive. The content of starch is about the 43.9% of the solid content of the starch-based wood adhesive. The economical analysis showed that the starch-wood adhesive has a lower cost, and its raw material cost is about 70% of PVAc emulsion wood adhesive. In summary, the starch-based wood adhesive is a kind of environment-friendly wood adhesives with lower cost and high performance and it will be a good extended value and market prospect in wood industy.
引文
[1]孙建.中国木材工业发展现状、趋势和政策-在中国木材工业可持续发展高层论坛会上的讲话[J].人造板通讯,2004,6:3-7.
    [2]钱小瑜.我国木材胶粘剂行业“十一五”发展趋势[J].中国人造板, 2001, 4: 13-15.
    [3]颜镇,韩桐恩.我国木材胶粘剂用量的估算和预测[J].中国胶粘剂.2000, 9(3):36-38
    [4]唐星华.木材用胶粘剂[M].北京:化学工业出版社, 2002
    [5]张玉龙,李长德,张振英.淀粉木材胶粘剂[M].北京:化学工业出版社, 2003
    [6] Kennedy H M. Starch and dextrin based adhesives, ACS Symposium Series 385, Adhesives from renewable resources, (2nd Ed.), American Chemical Society, Washington, DC (1989), pp. 326–336.
    [7]张忠涛.我国木材工业用胶粘剂产业现状及发展趋势.林产工业, 2011,38(3):7-9
    [8] Pizzi A. Advanced wood adhesives technology[M].New York: Marcel Dekker. 1994
    [9] Adhesive for the composite wood panel industry: final report. Technical Information Center. Office of Scientific and Technical Information. US Department of Energy, Springfield, VA,1986
    [10] Marra A A. Technology of wood bonding: principles and practice [M]. New York: Van Nostrand Reinhold, 1992
    [11]王春鹏,赵临五.木材工业用胶粘剂的现状及发展趋势[J].林产工业.2001, 28(2):9-11
    [12]罗发埃尔.人造板和其他材料的甲醛散发[M].北京:中国林业出版社, 1990
    [13] Yu P H, Wright S, Fan E H, et al. Physiological and pathological implications of Semicarbazides -sensitive amine oxidase [J]. Biochim Biophys Acta, 2003, 1647(1-2):193-199.
    [14] Yu P H, Zuo D M. Oxidative deamination of methylamine by semicarbazide-sensitive amine oxidase leads to cytotoxic damage in endothelial cells. Possible consequences for diabetes [J]. Diabetes, 1993, 42(4): 594-603.
    [15] Yu P H, Deng Y L. Endogenous formaldehyde as a potential factor of vulnerability ofnatherosclerosis: involvement of semicarbazide-sensitive amine oxidase-mediated methylamine [J]. Atherosclerosis, 1998, 140(2): 357-363.
    [16] Cogliano V J, Grosse Y, Baan R A, et al. Meeting Report: Summary of IARC Monographs on Formaldehyde, 2-Butoxyethanol, and 1-tert-Butoxy-2-Propanol [J]. Environmental Health Perspectives. 2005, 113(9): 1205-1208.
    [17] IARC, International for Research on Cancer: Formaldehyde, 2-butoxyethanol, and 1-tert-butoxy-2propanol , 2006.
    [18] Adhesive for the composite wood panel industry:final report.Technical Information Center Office of Scientific and Technical Information[M].US Department of Energy, Springfield,VA,1986.
    [19] Marra A A.Technology of wood bonding: principles in practice[M].New York: Van Nostrand Reinhold, 1992.
    [20]顾继友.胶粘剂与涂料[M].北京:中国林业出版社,1999.25-26.
    [21]朱家琪,史广兴,李华.木材天然胶粘剂有望复兴[J].粘接, 2002, 24(3): 47- 48.
    [22]夏新.胶粘剂的环保问题与对策[J].建材工业信息. 2001, 9: 5-7.
    [23]王春鹏,赵临五.木材工业用胶粘剂的现状及发展趋势[J].林产工业, 2001, 28(2):9-12.
    [24]吕文华,张双保,赵广杰.再生资源制备木工胶粘剂的研究概况[J].建筑人造板, 2002, 2:14-19.
    [25]刘玉环,阮榕生,刘成梅,等.淀粉基聚酯型耐水性木材胶粘剂[J].农业工程学报, 2008, 24(9): 309-312.
    [26] Imam S H , Mao L, Chen L, et al. Wood Adhesive from Crosslinked Poly(Vinyl Alcohol) and Partially Gelatinized Starch: Preparation and Properties[J].Starch - St?rke,1999.51(6): 225-229.
    [27] Liu D., Chen H., Chang P R, et al. Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive[J]. Bioresource Technology, 2010, 101(15): 6235-6241.
    [28] Ciannamea E M, Stefani P M, Ruseckaite R A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives[J]. Bioresource Technology, 2010, 101(2):818-825.
    [29] Li X, Li Y, Zhong Z, et al. Mechanical and water soaking properties of medium density fiberboard with wood fiber and soybean protein adhesive[J]. Bioresource Technology, 2009, 100(14):3556-3562.
    [30] Kim S. Environment-friendly adhesives for surface bonding of wood-based flooring using natural tannin to reduce formaldehyde and TVOC emission[J]. Bioresource Technology, 2009, 100(2): 744-748.
    [31] Kim S, Lee Y K, Kim, H J, et al. Physico-mechanical properties of particleboards bonded with pineand wattle tannin-based adhesives[J]. Journal of Adhesion Science and Technology, 2003,17(14): 1863-1875.
    [32] Stefani, P M, Pe?a C, Ruseckaite R A, et al. Processing conditions analysis of Eucalyptus globulus plywood bonded with resol-tannin adhesives[J]. Bioresource Technology, 2008, 99(13):5977-5980.
    [33] Gosselink R J A., Snijder M H B, Kranenbarg A, et al.Characterisation and application of NovaFiber lignin[J]. Industrial Crops and Products, 2004,20(2):191-203.
    [34] Felby C, Hassingboe J, Lund M. Pilot-scale production of fiberboards made by laccase oxidized wood fibers:board properties and evidence for cross-linking of lignin[J]. Enzyme and Microbial Technology,2002,31(6): 736-741
    [35] Hüttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials[J]. Applied Microbiology and Biotechnology, 2001, 55(4):387-394.
    [36]张慧君.木材用胶粘剂的现状和发展趋势[J].南阳师范学院学报, 2008,7(12):51-54.
    [37]张俐娜.天然高分子材料的改性与应用[M].北京:化学工业出版社, 2006.10-80.
    [38] Whistler R L, Paschall E F. Starch: Chemistry and Technology [M]. New York: Academic Press, 1967.
    [39]张燕萍.变性淀粉制造与应用(第二版)[M].北京:化学工业出版社, 2007.22-161.
    [40]张友松.变性淀粉生产与应用手册[M].北京:化学工业出版社, 1999. 30-198.
    [41]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社, 1996. 1-5.
    [42]罗发兴,黄强,杨连生.淀粉基胶粘剂研究进展[J].化学与粘合, 2003, 2: 79-80.
    [43]唐朝发,张士成.玉米淀粉在木材胶粘剂中的应用[J].人造板通讯.2004, 11:29-30.
    [44]茹克亚·沙吾提.脲醛树脂改性氧化淀粉木材胶的研究[J].喀什师范学院学报, 2003,24(3):42~45
    [45]李来丙,龚必珍.氧化淀粉改性脲醛树脂胶的研制[J].化工生产与技术, 2001, 8(1):8-11
    [46] Moubarik A, Charrier B, Allal A, et al. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive[J]. European Journal of Wood and Wood Products, 2010, 2 (68):167-177
    [47]徐军.氧化淀粉与聚醋酸乙烯酯乳液复合的研究[J].化学与粘合, 2003, 2: 94-95.
    [48]李敏.氧化淀粉与聚醋酸乙烯酯乳液的共混改性[J].化学技术与开发, 2005,34(1): 47-48.
    [49]陈建华,陈建平.淀粉白乳胶[P].中国专利, 1283661, 2001-02-14.
    [50]李远松.新型强力白乳胶[P].中国专利, 1190114, 1998-08-12.
    [51] Desai S D, Patel J V, Sinha V K. Polyurethane adhesive system from biomaterial-basedpoiyol for bondingwood[J]. International Journal of Adhesion &Adhesives, 2003, 23(5): 393-399
    [52]刘玉环.生物质转化新型无甲醛木材胶粘剂研究[D]:[博士学位论文].南昌:南昌大学生命科学学院,2006.
    [53] Imam S H, Gordon S H, Mao L J, et al. Environmentally friendly wood adhesivefrom a renewable plant polymer: characteristics and optimization[J]. Polymer Degradation and Stability, 2001, 73(3): 529-533
    [54]蓝平,廖安平,蓝丽红,等.双醛淀粉的制备及应用[J].广西民族学院学报(自然科学版), 2002,8 (3): 29-32
    [55] Veelaert S, Wit D D, Gotlievb K F, et al. The gelation of dialdehyde starch[J]. Carbohydrate Polymers, 1997, 32 (2): 131-139
    [56] Sveelaert D.de Wit, K.F. Gotliev, et al. Chemical and physical transitions of periodate oxidized potato starch in water[J]. Carbohydrate Polymers, 1997, 33 (2-3): 153-162
    [57]张继武,朱友益,张强,等.玉米淀粉制备双醛淀粉的试验[J].农业工程学报, 2002, 18(3): 135-138
    [58] Wongsagon R,Shobsngob S,Varavinit S. Preparation and physicochemical properties of dialdehyde tapioca starch[J]. Starch-St?rke, 2005, 57(3-4): 166-172.
    [59]王新波,吴佑实.尿素-双醛淀粉木材胶粘剂的制备[J].精细与专用化学品, 2003, 13: 18-20
    [60]王新波,吴佑实,张淑红,等.新型脲-双醛淀粉粘合剂的制备[J].化工进展, 2003, 22(12):1316-1318
    [61]胡磊,高群玉.木薯双醛淀粉制备木材用胶粘剂的研究[J].中国胶粘剂,2011,20(10):37-40
    [62] Weakley F B, Roth W B. Protein dialdehyde starch glue for birch type II plywood [J]. Starch-St?rke, 1971, 23(2):58-62.
    [63] Gu, J, Zuo, Y, Zhang, Y, et al. Preparation of plywood using starch adhesives modified with isocyanate [J]. Applied Mechanics and Materials, 2010, 26-28:1065-1068
    [64]赵连成,杜洪双,杨庚,等.冷固型木材用玉米淀粉木材胶研究[J].吉林林学院学报, 1999,15(4):203-204
    [65]林巧佳,刘景宏,杨桂娣.高性能淀粉木材胶制备机理的研究[J].福建林学院学报, 2004, 24(2): 101-106
    [66]刘景宏,林巧佳,杨桂娣.改性淀粉木材胶粘剂的研制[J].木材工业, 2004, 18(4):8-11.
    [67]时君友,韦双颖等.水性改性淀粉——多异氰酸酯胶粘剂的研究[J].林业科学, 2003, 39(5): 105-110
    [68]时君友.淀粉基API木材胶粘剂及固化与老化机理的研究[D]: [博士学位论文].哈尔滨:东北林业大学材料科学与工程学院, 2007
    [69] Karmakar N C, Sastry B S, Singh R P. Flocculation of chromite ore fines suspension using polysaccharide based graft copolymers[J]. Bulletin of Materials Science, 2002, 25(6): 477-478.
    [70] Sharma B R, Dhuldhoya N C, Merchant U C. Flocculants—an ecofriendly approach, Journal of Polymers and the Environment, 2006,14(2): 195-202.
    [71] Hao X, Chang Q, Duan L, et al. Synergetically acting new flocculants on the basis of starch-graft-poly(acrylamide)-co-sodium xanthate[J]. Starch-St?rke, 2007,59(6): 251-257 (2007).
    [72] Saroja N, Gowda L R and Tharanathan R N. Chromatographic determination of residual monomers in starch-g-polyacrylonitrile and starch-g-olyacrylate[J]. Chromatographia, 2000, 51(5-6): 345-348
    [73] Maharana T and Singh B C. Synthesis and characterization of biodegradable polyethylene by graft copolymerization of starch using glucose–Ce(IV) redox system[J]. Journal of Applied Polymer Science, 2006, 100(4): 3229–3239
    [74] Halley P, Rutgers R, Coombs S, et al. Developing biodegradable mulch films from starch-based polymers[J]. Starch-St?rke, 2001, 53(8): 362-367
    [75] Li A, Zhang J P and Wang A Q. Utilization of starch and clay for the preparation of superabsorbent composites[J]. Bioresource Technology, 2007, 98(2): 327-332.
    [76] Suo A L, Qian J M and Yao Y. Synthesis and properties of carboxymethyl cellulose–graftpoly( acrylic acid-co-acrylamide) as a novel cellulose based superabsorbent[J]. Journal of Applied Polymer Science, 2007, 103(3): 1382-1388.
    [77] Peng G, Xu S M, Peng Y. A new amphoteric superabsorbent hydrogel based on sodium starch sulphate[J]. Bioresource Technology, 2008, 99(2): 444-447.
    [78] McDermott M R, Heritage P L, Bartzoka V, et al. Polymer-grafted starch microparticlesfor oral and nasal immunization[J]. Immunology and Cell Biology. 1998, 76:256-262
    [79] Song H., Zhang,S F, Ma X C , et al. Synthesis and application of starch-graft-poly(AM-co-AMPS) by using a complex initiation system of CS-APS[J]. Carbohydrate Polymers, 2007, 69(1): 189-195.
    [80] Mostfa K M, Morsy M S, Tailoring a new sizing agent via structural modification of pregelled starch molecules, Part 1: Carboxymethylation and grafting[J]. Starch-St?rke, 2004, 56(6): 254-261.
    [81] Mostafa K M, Samarkandy A R. Synthesis of new thickener based carbohydrate polymers for printing cotton fabrics with reactive dyes[J]. Journal of Applied Sciences, 2005, 5(7):1206-1213.
    [82]黄可知,铁丽云,李曦,等.乙丙一淀粉接枝共聚乳液胶粘剂的研制[J].武汉理工大学学报,2001,23(6):24-26.
    [83]吴艳波,吕成飞,韩美娜.淀粉基木材胶粘剂的制备与性能[J].化学与粘合, 2008, 6: 9-12.
    [84]吴艳波,韩美娜,吕成飞.淀粉与乙酸乙烯酯一丙烯酸乙酯的合成与应用研究[J].化工新型材料,2007, 35(4):75-77
    [85]刘昉.淀粉基木材胶粘剂的制备与性能研究[D]:[硕士学位论文].西安:西安科技大学化学与化工学院, 2009
    [86]卢利明.胶合板用淀粉木材胶的研究[D]:[硕士学位论文].南京:南京林业大学木材工业学院, 2006
    [87]李兆丰.淀粉基木材胶粘剂的制备及其性能研究[D]:[硕士学位论文].无锡:江南大学食品学院, 2005
    [88]王嫣.耐水淀粉基木材胶粘剂的制备及性能优化[D]:[硕士学位论文].无锡:江南大学食品学院, 2006
    [89]刘志敏.淀粉基木材胶粘剂配方和工艺的优化及产品性能的研究[D]:[硕士学位论文].无锡:江南大学食品学院, 2009
    [90]王辉.淀粉基木材胶粘剂的合成工艺优化及其性能的研究[D]:[硕士学位论文].无锡:江南大学食品学院, 2011.
    [1] Kennedy Harry, M. Starch and dextrin based adhesives, ACS Symposium Series 385, Adhesives from renewable resources (2nd Ed.) [M]. American Chemical Society, Washington, DC ,1989, 326-336.
    [2] Imam S H, Gordon S H, Mao L, et al. Environmentally friendly wood adhesive from a renewable plant polymer: characteristics and optimization [J]. Polymer Degradation and Stability, 2001, 73(3):529-533.
    [3] Imam S H , Mao ., Chen L, et al. Wood Adhesive from Crosslinked Poly(Vinyl Alcohol) and Partially Gelatinized Starch: Preparation and Properties [J]. Starch - St?rke, 1999, 51(6):225-229.
    [4]张玉龙,李长德,张振英,等.淀粉木材胶粘剂[M].北京:化学工业出版社, 2002,1-5.
    [5]翟广玉.瓦楞纸箱用玉米淀粉粘合剂的进展[J].中国胶粘剂,1993, 2(2):24-27.
    [6] Moubarik A, Charrier B, Allal A, et al. Development and optimization of a new formaldehyde-free cornstarch and tannin wood adhesive[J]. European Journal of Wood and Wood Products. 2010, 2(68): 167- 177
    [7]李敏.氧化淀粉与聚醋酸乙烯酯乳液的共混改性[J].化学技术与开发,2005, 34(1): 47-48.
    [8]徐军.氧化淀粉与聚醋酸乙烯酯乳液复合的研究[J].化学与粘合,2003, 2: 94-95.
    [9]潘祖仁.高分子化学(第五版) [M].上海:化学工业出版社,2011, 65-116
    [10]曹亚峰.反相乳液中淀粉接枝共聚物的合成及其絮凝性能的研究[D].大连理工大学, 2003,1-25
    [11]李兆丰,顾正彪.酸解氧化淀粉与醋酸乙烯酯的接枝共聚反应研究(I)[J].食品与生物技术学报, 2005, 24(5): 11-14
    [12]李兆丰,顾正彪.酸解氧化淀粉与醋酸乙烯酯的接枝共聚反应研究(II)[J].食品与生物技术学报, 2005, 24(6): 24-28
    [13]王嫣,顾正彪,洪雁,等.淀粉接枝醋酸乙烯酯(VAc)胶粘剂的性能优化[J].食品与生物技术学报, 2007, 26(6): 25-30
    [14]刘志敏,顾正彪,程力,等.原淀粉和预处理方法对淀粉基木材胶粘剂性能的影响研究[J].食品与生物技术学报, 2009, 28(3): 325-328
    [15]王辉,顾正彪,程力,等.淀粉木材胶粘剂接枝参数的影响因素及对其压缩剪切强度的影响[J].食品与生物技术学报, 2011, 30(4): 535-541
    [16]中华人民共和国化学工业部技术监督司.HG/T 2727-95聚乙酸乙烯酯木材胶粘剂[S].北京:化工部标准化研究所,1995
    [17] Qiao L, Easteal A J. Aspects of the performance of PVAc adhesives in wood joints [J]. Pigment & Resin Technology, 2001, 30(2): 79-87.
    [18] Samaha S H, Nasr H E, Hebeish A. Synthesis and Characterization of Starch-Poly(vinyl Acetate) Graft Copolymers and their Saponified Form[J]. Journal of Polymer Research, 2005, 12(5): 343-353.
    [19]顾继友.胶接理论与胶接基础[M].科学出版社, 2003,154-161
    [20] Kaewtatip K, Tanrattanakul V. Preparation of cassava starch grafted with polystyrene by suspension polymerization[J].Carbohydrate Polymers. 2008, 73(4): 647-655.
    [21] Marinich J A, Ferrero C, Jiménez-Castellanos M R. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: Physicochemical and technological characterisation[J].European Journal of Pharmaceutics and Biopharmaceutics, 2009, 72(1): 138-147.
    [22] Meshram M W, Patil V V, Mhaske S T, et al. Graft copolymers of starch and its application in textiles[J]. Carbohydrate Polymers, 2009, 75(1): 71-78.
    [23] Chi H, Xu K, Wu X, et al. Effect of acetylation on the properties of corn starch[J]. Food Chemistry, 2008, 106(3): 923-928.
    [24] De Graaf, Lammers R A, Janssen G, et al. Quantitative Analysis of Chemically Modified Starches by 1H-NMR Spectroscopy[J]. Starch - St?rke, 1995, 47(12): 469-475.
    [25] Wang X -L., Yang K -K., Wang Y -Z, et al. Synthesis and nuclear magnetic resonance analysis of starch-g-poly(1,4-dioxan-2-one) copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(14): 3417-3422.
    [26] Xiao C, Lu D, Xu S, et al. Tunable synthesis of starch-poly(vinyl acetate) bioconjugate[J]. Starch-St?rke, 2011, 63(4): 209-216
    [27] López D, Cendoya I, Torres F, et al. Preparation and characterization of poly(vinyl alcohol)-based magnetic nanocomposites. 1. Thermal and mechanical properties [J]. Journal of Applied Polymer Science, 2001, 82(13): 3215-3222.
    [28] Aurélie Taguet, Michel A H, Favis B D. Interface/morphology relationships in polymer blends with thermoplastic starch[J]. Polymer, 2009, 50(16): 5733-5743
    [29] Silva I, Gurruchaga M, Go?i I. Physical blends of starch graft copolymers as matrices for colon targeting drug delivery systems[J]. Carbohydrate Polymers, 1983, 76(4): 593-601
    [30] Backman A C, Lindberg K A H. Interaction between wood and polyvinyl acetate glue studied with dynamic mechanical analysis and scanning electron microscopy[J]. Journal of Applied Polymer Science, 2004, 91(5): 3009-3015
    [31] C?téW A, Hanma R B. Ultrastructural Characteristics of Wood Fracture Surfaces[J].Wood and Fiber Science,1983, 15(2): 135-163
    [32] Coutts R S P, Kightly P. Bonding in wood fibre-cement composites[J]. Journal of Materials Science, 1984, 19(10): 3355-3359
    [1]林华.木薯淀粉与醋酸乙烯酯接枝共聚物的制备及其性能研究[D]:[硕士学位论文].儋州:华南热带农业大学,2007, 1-5
    [2] Fanta, G F, Burr R C, Doane W M, et al. Influence of starch granule swelling on graft copolymer composition: A comparison of monomers[J]. Journal of Applied Polymer Science. 1971, 15(11), 2651-2660.
    [3]潘松汉,王贞,黎国康,等.淀粉糊化对淀粉-丙烯酰胺接枝共聚的影响[J].广州化学, 1991, (1):60-67.
    [4]张干伟,童群义.淀粉来源及与处理方式对淀粉接枝共聚反应的影响[J].无锡轻工大学学报,2004, 23 (6) : 23-26
    [5]周锰,林建明,李国清,等.淀粉接枝共聚丙烯酰胺制造超吸水剂研究[J].华侨大学学报(自然科学版) 1999, 20 (4): 362-365
    [6]杨锦宗,曹亚峰,刘兆丽,等.非离子乳化剂对淀粉接枝丙烯酰胺-丙烯酸反相乳液聚合反应的作用[J].应用化学,2003, 20(8):768-771
    [7]胡今生,曹同玉,刘从普.乳液聚合[M].北京:化学工业出版社,1997. 561-587
    [8]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用(第二版)[M].北京:化学工业出版社,2007, 598-613
    [9] Lent P J, Grant L A. Effects of additives and storage temperature on staling properties of bagels [J]. Cereal Chemistry,2001, 78(5):619- 624.
    [10] Mark.R J. Retrogradation of starchs from different botanical sources [J]. Cereal Chemistry, 1997, 74(5):511- 518.
    [11] Villareal C P , Hizukuri Susumu, Juliano B O Amylopectin staling of cooked milled rices and properties of amylopectin and amylose[J].Cereal Chemistry, 1997, 74(2):163- 167.
    [12] Kim C S, Walker C E. Interactions between starchs,sugars,and emulsifiers in high- ratio cake model system[J]. Cereal Chemistry, 1992, 69(2):206- 212.
    [13] Xu A, CHUNG O K, PONTE J G, et al. Bread crumb amylograph studies.I. effects of storage time, shortening, flour lipids, and surfactants[J]. Cereal Chemistry, 1992, 69(5):495- 501.
    [14]王显伦,许红,顾芯.方便米饭回生抑制研究[J].郑州工程学院学报, 2002, 23(1): 43-47.
    [15]陈德文,张粹兰,沈伊亮等.大米发糕的抗老化技术研究[J].中国食品学报,2009, 9(5):147-150
    [16]李兆丰.淀粉基木材胶粘剂的制备及其性能研究[D]:[硕士学位论文].无锡:江南大学食品学院, 2005
    [17]王嫣.耐水淀粉基木材胶粘剂的制备及性能优化[D]:[硕士学位论文].无锡:江南大学食品学院, 2006
    [18]刘志敏.淀粉基木材胶粘剂配方和工艺的优化及产品性能的研究[D]:[硕士学位论文].无锡:江南大学食品学院, 2009
    [19]王辉.淀粉基木材胶粘剂的合成工艺优化及其性能的研究[D]:[硕士学位论文].无锡:江南大学食品学院, 2011.
    [20] Baranowska H M., Sikora M, Kowalski S, et al. Interactions of potato starch with selected polysaccharide hydrocolloids as measured by low-field NMR[J]. Food Hydrocolloid, 2008, 22: 336-345.
    [21]林向阳.核磁共振及成像技术在面包制品加工与储藏过程中的研究[D]:[博士学位论文].南昌:南昌大学生命科学学院, 2006,16-63.
    [22] Ritota M, Gianferri R, Bucci R, et al. Proton NMR relaxation study of swelling and gelatinisation process in rice starch–water samples[J] .Food Chemistry. 2008, 110 (1):14-22.
    [23]梅小峰,朱谱新,吴大诚.淀粉糊化对接枝共聚反应的影响[J].棉纺织技术, 2005, 33(5): 261-265
    [24]王漓江,曹伟.淀粉的链结构及聚集态对高吸水树脂吸水性能的影响研究综述[J].辽东学院学报(自然科学版) , 2011, 18(1): 1-5
    [25]李明达,周永元.淀粉的物理化学状态对淀粉接枝高吸水性树脂吸水性能的影响[J].东华大学学报(自然科学版, 2002, 28(5): 52-55
    [26]陈夫山,赵华,吴海鹏,等.淀粉预处理方式对接枝共聚反应的影响[J].造纸化学品, 2010,22(6):2-5
    [27] Kaewtatip K, Tanrattanakul V. Preparation of cassava starch grafted with polystyrene by suspension polymerization[J]. Carbohydrate Polymers, 2008, 73(4), 647-655.
    [28] Marinich J A, Ferrero C, Jiménez-Castellanos M R. (2009). Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: Physicochemical and technological characterisation [J]. European Journal of Pharmaceutics and Biopharmaceutics. 2009, 72(1), 138-147.
    [29] Meshram M W, Patil V V, Mhaske S T, et al. Graft copolymers of starch and its application in textiles[J]. Carbohydrate Polymers, 2009, 75(1), 71-78.
    [30] Planchot V, Colonna P, Buleon A. Enzymatic hydrolysis of [alpha]-glucan crystallites[J]. Carbohydrate Research, 1997, 298(4):319-326.
    [31]何曼君,张红东,陈维孝,等.高分子物理(第三版) [M].上海:复旦大学出版社,2007, 220-258
    [32]郑强,左敏.高分子复杂体系的结构与流变行为[J].中国科学(B辑:化学), 2007, 37(6): 515-524
    [33] Tharwat Tadros. Application of rheology for assessment and prediction of the long-term physical stability of emulsions[J]. Advances in Colloid and Interface Science, 2004, 108-109: 227-258
    [34]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社, 2003, 93-97
    [35] Moubarik A, Allal A, Pizzi A, et al. Characterization of a formaldehyde-free cornstarch-tannin wood adhesive for interior plywood[J]. European Journal of Wood and Wood Products, 2009, 68(4): 427-433
    [36] Samaha S H, Nasr H E, Hebeish A. Synthesis and Characterization of Starch-Poly(vinyl Acetate) Graft Copolymers and their Saponified Form[J]. Journal of Polymer Research, 2005, 12(5):343-353.
    [37] Go?i I, Gurruchaga M, Valero M, et al. Graft polymerization of acrylic monomers onto starch fractions: I Effect of reaction time on grafting methyl methacrylate onto amylose [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21(8):2573-2580.
    [38] Gurruchaga M, Go?i I, Valero M, et al. Graft polymerization of acrylic monomers onto starch fractions. II. Effect of reaction time on grafting of methyl methacrylate onto amylopectin [J]. Journal of Polymer Science: Polymer Letters Edition, 1984, 22(1): 21-24.
    [39] Gurruchaga M, Go?i I, Valero M, et al. Graft copolymerization of hydroxylic methacrylates and ethyl acrylate onto amylopectin [J]. Polymer, 1992, 33(13), 2860-2862.
    [40] Ni H, Ma G, Nagai, et al. Effects of ethyl acetate on the soap-free emulsion polymerization of 4-vinylpyridine and styrene. I. Aspects of the mechanism [J]. Journal of Applied Polymer Science, 2001, 82(11):2679-2691.
    [41] Ni H, Du Y., Ma G, et al. Mechanism of Soap-Free Emulsion Polymerization of Styrene and 4-Vinylpyridine: Characteristics of Reaction in the Monomer Phase, Aqueous Phase, and Their Interface[J]. Macromolecules, 2001, 34(19):6577-6585.
    [42]张心亚,涂伟萍等.乳液聚合中乳化剂对聚合物乳液稳定性的影响[J].粘接, 2002, 23(3).16-18
    [43]章悦庭,孙付霞.乳化剂和保护胶体对乳液稳定性及粘度的影响[J].维纶通讯, 2003, 23(4):1-5.
    [44]谢新玲,童张法,黄祖强.机械活化木薯淀粉丙烯酰胺反相乳液接枝共聚反应[J].食品科技, 2008, 33(5): 34-37
    [45]王娜,张锦胜,阮榕生.核磁共振技术研究淀粉及其抗性淀粉中水分的流动性[J].食品科学, 2009, 30(17):20-23.
    [46]朱玲,张雅媛,洪雁,等.木薯淀粉-黄原胶复配体系中淀粉糊化机理[J].食品科学, 2011, 32(3):81-85
    [47] Ring S G, Colonna1 P, I'Anson, K J, et al. The gelation and crystallisation of amylopectin. [J].Carbohydrate Research, 1987, 162(2): 277–293
    [48] Gidley M J, Bulpin P V. Crystallisation of maltooligosaccharides as models of the crystalline forms of starch: minimum chain length requirement for the formation of double helices. Carbohydrate Research, 1987, 161(2): 291–300
    [49]陈卫江.核磁共振技术在淀粉糊化回生中的研究与应用[D]:[硕士学位论文].南昌:南昌大学生命科学学院, 2007.41-52
    [50] Box G P, Behnken D W. Some new three level design for the study of quantitative variables [J]. Technometrics, 1960, 2(4): 456-475.
    [51] Joglekar A M, May A T. Product excellence through design of experiments [J]. Cereal Food World, 1987, 32(12): 857-868
    [52]谢季坚.农业科学中的模糊数学方法[M].武汉:华中理工大学出版社, 1993.
    [53]余家林.农业多元试验统计[M].北京:中国农业大学出版社, 1993
    [1] Qiao L, Easteal A J. Aspects of the performance of PVAc adhesives in wood joints[J]. Pigment & Resin Technology, 2001, 30(2),79-87.
    [2]李子东,李广宇,宋颖韬,等.胶粘剂助剂(二版) [M].北京:化学工业出版社, 2009
    [3] Hebeish A, El-Thalouth A I, Kashouti M E. Gelatinization of Rice Starch in Aqueous Urea Solutions[J]. Starch– St?rke, 1981, 33(3):84–90,
    [4]马骁飞,于九皋.尿素和甲酰胺塑化热塑性淀粉[J].高分子学报, 2004, 4:483-489.
    [5]孟令,曹龙奎.高速混合条件下不同增塑剂对热塑性淀粉结构及性能的影响[J].食品工业科技, 2011, 32(1):112-114.
    [6]姚东明,何和智.尿素甘油共塑化热塑性淀粉[J].化工进展, 2011, 30(9):2018-2020, 2034.
    [7]曹旭勇,王强,范雪荣,等.尿素与淀粉混合浆液的性能研究[J].棉纺织技术, 2001, 29(8):457-459.
    [8]沈艳琴,武海良,本德萍,等.淀粉加尿素混合物和尿素淀粉浆料的性能研究[J].西安工程科技学院学报,2005, 19(1):1-5.
    [9]邹丽霞,杨继.改性木薯淀粉胶的研制[J].华东地质学院学报, 1997, 20(2):183-186
    [10]郑强,左敏.高分子复杂体系的结构与流变行为[J].中国科学(B辑:化学), 2007, 37(6):515-524.
    [11]许元泽.高分子结构流变学[M].成都:四川教育出版社, 1988,17-25
    [12]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社, 2003, 93-97
    [13] Sun S, Li C, Zhang L, et al. Effects of surface modification of fumed silica on interfacial structures and mechanical properties of poly(vinyl chloride) composites[J]. European Polymer Journal, 2006, 42(7):1643-1652.
    [14] Wang H, Li H, Xue B, et al. Solid-State Composite Electrolyte LiI/3-Hydroxypropionitrile/SiO2 for Dye-Sensitized Solar Cells[J]. Journal of the American Chemical Society, 2005, 127(17):6394-6401.
    [15] Yang H, Zhang Q, Guo M, et al. Study on the phase structures and toughening mechanism in PP/EPDM/SiO2 ternary composites[J]. Polymer, 2006, 47(6):2106-2115.
    [16] Zhang M Q, Rong M Z, Zhang H B, et al. Mechanical properties of low nano-silica filled high density polyethylene composites[J]. Polymer Engineering and Science. 2003, 43(2):490-500.
    [17] Zhou S X, Wu L M, Sun J, et al. Effect of nanosilica on the properties of polyester-based polyurethane[J]. Journal of Applied Polymer Science, 2003, 88(1):189-193.
    [18] Tang S, Zou P, Xiong H, et al. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films[J]. Carbohydrate Polymers. 2008, 72(3):521-526.
    [19] Gabrielson L, EdirisingheM J. On the Dispersion of Fine Ceramic Powders in Polymers[J]. Journal of Materials Science Letters, 1996, 15(13): 1105-1107
    [20] Tiarks F, Landfester K, Antonietti M. Silica Nanoparticles as Surfactants and Fillers for Latexes Made by Miniemulsion Polymerization [J]. Langmuir, 2001, 17 (19):5775-5780
    [21] Luna X J L,Bourgeat L E, Guyot A. The Role of Initiation in the Synthesis of Silical Poly(methyl methacrylate) Nanocomposite Latex Particles through Emulsion Polymerization[J]. Colloid Polymer Science, 2001, 279(10): 947-958
    [22] Bourgeat-Lami E, Espiard P H, Guyot A, Poly (ethyl acrylate) Latexes Encapsulating Nanoparticles ofSilica:1 .Functionaliztion and Dispersion of Silica [J]. Polymer, 1995, 36 (23):4385-4389
    [23] Vega-Baudrit J, Navarro-Ba?ón, Virtudes V P, et al. Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives[J]. International Journal of Adhesion and Adhesives, 2006, 26(5):378-387
    [24] Bauer F, Gl?sel H J, Hartmann E, et al. Functionalized inorganic/organic nanocomposites as new basic raw materials for adhesives and sealants [J]. International Journal of Adhesion and Adhesives, 2004, 24(6):519-522.
    [25]孙文兵,王世敏,许祖勋,等,原位乳液聚合法制备聚醋酸乙烯酯/纳米SiO2复合乳液[J],化学研究与应用,2005, 17(2): 255-258
    [26] Schwerin B. Manufacture of chemical pure soluble silicic acid: US, 1132394[P]. 1915208224.
    [27] Bird P G. Colloidal solutions of inorganic oxides: US, 2244325[P]. 1941207225.
    [28]田华,陈连喜,刘全文.硅溶胶的性质,制备和应用[J].国外建材科技. 2007, 28(2): 8-11.
    [29]中华人民共和国国家质量监督检验检疫总局. GB/T 11175-2002合成树脂乳液试验方法[S].北京:中国标准出版社,2002
    [30]中华人民共和国化学工业部. GB-T 8325-1987聚合物和共聚物水分散体pH值测定方法[S].北京:中国标准出版社,1987
    [31]中华人民共和国化学工业部技术监督司.HG/T 2727-95聚乙酸乙烯酯木材胶粘剂[S].北京:化工部标准化研究所,1995
    [32] Tharwat Tadros. Application of rheology for assessment and prediction of the long-term physical stability of emulsions[J]. Advances in Colloid and Interface Science, 2004, 108 -109:227-258
    [33]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用(第二版)[M].北京:化学工业出版社,2007, 598-613
    [34] Cheetham, N.W.H., Tao,L. Amylose conformational transitions in binary DMSO/water mixtures [J]. Carbohydrate Polymers, 1998, 35(3):287-295
    [35] Kaewtatip K, Tanrattanakul V. Preparation of cassava starch grafted with polystyrene by suspension polymerization. Carbohydrate Polymers, 2008, 73(4):647-655.
    [36] Marinich J A, Ferrero C, Jiménez-Castellanos M R. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: Physicochemical and technological characterisation[J]. European Journal of Pharmaceutics and Biopharmaceutics. 2009, 72(1):138-147.
    [37]Meshram, M W, Patil V V, Mhaske S T, et al. Graft copolymers of starch and its application in textiles[J].Carbohydrate Polymers. 2009, 75(1):71-78.
    [38] Xiong, H G, Tang S W, Tang H L, et al. The structure and properties of a starch-based biodegradable film[J]. Carbohydrate Polymers. 2008, 71(2):263-268.
    [39] Friedlander S K. Polymer-like Behavior of Inorganic Nanoparticle Chain Aggregates[J]. Journal of Nanoparticle Research. 1999, 1(1):9-15.
    [40] Lu S, Duan M, Lin S. Synthesis of superabsorbent starch-graft-poly(potassium acrylate-co-acrylamide) and its properties[J]. Journal of Applied Polymer Science, 2003, 88(6):1536-1542.
    [41] López D, Cendoya I, Torres F, et al. Preparation and characterization of poly(vinyl alcohol)-based magnetic nanocomposites:1. Thermal and mechanical properties[J]. Journal of Applied Polymer Science, 2001, 82(13):3215-3222.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700