用户名: 密码: 验证码:
先驱体转化法制备氮化硼纤维研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新型高马赫数导弹天线罩对材料防热、承载和透波性能的要求不断提高,现有的透波纤维增强陶瓷基复合材料已经成为天线罩技术发展的瓶颈。氮化硼(BN)纤维具有工作温度高、高温烧蚀率低、工作性能稳定、介电常数和节电损耗小等优点,是新型陶瓷基透波复合材料增强体的理想候选材料。在此背景下,本文开展了聚合物先驱体转化法制备BN纤维的基础研究。
     在温和条件下分别以共取代和分步取代法合成了三种不同结构、可溶可熔的聚硼氮烷先驱体,合成过程均不需极低温度,简化了操作,降低了成本。分别采用NMR、FTIR、XPS、TGA和元素分析等手段对三种先驱体进行了表征。
     由三氯化硼和甲胺合成了PTMB,PTMB的分子中含有B3N3六元环、C-H、B-N、N-H和C-N等化学键;PTMB可溶于甲苯和二甲苯等溶剂,典型的PTMB的元素组成为(wt%):B(24.5), C(32.8), N(29.9)和H(10.2),其化学式可表示为BC1.20N0.94H4.5。在NH3中的处理可以提高PTMB的陶瓷产率,在NH3中的无机化可以除去碳元素;失重主要发生在600℃以下,900℃基本完成无机化;PTMB的分子结构和较低的陶瓷产率不适宜用于制备BN纤维,但可能用作制备其它BN材料;经1600℃处理的产物为t-BN,该BN在空气中900℃时的失重小于3.0wt%,表现出了较好的抗氧化性能。
     由三氯环硼氮烷和异丙胺合成的PTPiAB具有一定的熔融加工性能,PTPiAB的分子中含有B3N3六元环、C-H键、B-N键、N-H键和C-N键等特征结构;PTPiAB可溶于甲苯、二甲苯等常见有机溶剂;典型的PTPiAB的化学组成为(wt%):B (12.4)、N(35.8)、C(37.2)、H(9.3),其化学式可表示为BC2.7N2.2H8.1。1000℃时,PTPiAB在NH3中的陶瓷产率低于在Ar中的陶瓷产率;在NH3中的失重主要发生在800℃以下,800℃先驱体中的有机基团基本消失,接近无机化;NH3的除碳效果明显,600℃时已有94.0wt%的碳被除去;1400℃以上为晶粒长大的主要区间,1800℃热解产物的(002)晶面间距为0.334nm,密度为2.03g·cm-3,在空气中900℃以下的增重小于0.3wt%,抗氧化性能随结晶程度的增加而增强。
     由正丙胺/甲胺和三氯环硼氮烷合成了PPAB。通过调控原料的比例,控制合成温度和时间等参数,能得到可以熔融的PPAB先驱体,软化点随聚合反应温度的增加和保温时间的延长而升高;优化的合成工艺参数为n-PA?MA?TCB=2?1?1(摩尔比),聚合温度为150~170℃,保温时间为5~7h,所合成PPAB的软化点为90~100℃;典型的PPAB含有B、N、C和H元素,元素组成为(wt%):B(22.28)、C(23.24)、N(44.75)、H(7.78),其化学式可近似表示为BC0.94N1.55H3.75;PPAB分子中含有N-H、C-H、B-N和C-N等化学键,B3N3六元环通过-B-(NCH3)-B-连接;典型PPAB的数均分子量为1002(相对于聚苯乙烯标样),重均分子量为1359,分散系数为1.50,可溶于甲苯和二甲苯等溶剂,在Ar中1000℃的陶瓷产率约为50wt%。
     对三种先驱体进行的熔融挑丝实验表明,PPAB具有更好的成丝性,更适合用于制备BN纤维。PTMB和PTPiAB可用于制备其它形式的BN材料。
     对PPAB在空气中的稳定性研究表明,PPAB在空气中极易水解,水解程度随温度、湿度和时间的增加而增大;PPAB对少量的O2不敏感,水解主要是由于H2O引起的;PPAB的水解引入了大量氧元素,生成B-O键,形成不溶不熔的三维网状结构,不能熔融加工;水解的PPAB在Ar中的主要热解产物为BN和B2O3。比较了以PTPiAB和PPAB两种不同分子结构先驱体所制备BN的异同,结果表明:得到的BN均具有近化学计量比,不含碳杂质,具有类似的组成和结构;两种BN的结晶程度不同,具有对称结构的分子单体TPiAB得到的BN结晶程度更高,氧化性能优于由非对称结构单体PAB得到的BN。
     考察了PPAB的软化点、纺丝温度和纺丝压力等工艺参数对熔融纺丝的影响,当软化点在93~112℃,纺丝温度高于软化点20~70℃,纺丝压力为0.4~0.6MPa,可以得到连续长度大于200m的PPAB纤维。
     PPAB纤维在NH3中的不熔化过程伴随着凝胶含量变化、失重和碳含量下降,碳含量的下降主要由烷基基团的脱去引起,C-N键未参与反应;合适的不熔化工艺为,以0.5℃/min的升温速率升温至70~80℃并保温80min,由此得到的PPAB不熔化纤维的凝胶含量大于90wt%。
     PPAB在N2中热解得到含碳的BN,而在NH3中热解会脱除碳元素,得到近化学计量比的BN;在N2中的陶瓷产率高于NH3中陶瓷产率,NH3中的热解产物具有更好的结晶性能、抗氧化性能和介电性能。
     采用NH3作为热解气氛,考察了温度、NH3浓度、保温时间和升温速率等参数对PPAB不熔化纤维无机化过程的影响和无机化纤维组成、结构的影响,结果表明:在800℃基本完成无机化,在NH3/N2=1:1(vol)的混合气氛中即可实现脱碳。较优的无机化工艺为:在NH3浓度为50vol%的NH3/N2热解气氛中,以4℃/min的升温速率升至800℃并保温2h,由此得到的无机纤维碳含量小于0.5wt%。
     对无机化纤维进行高温处理有利于获得性能更优异的BN纤维,研究了处理温度对纤维结晶性能、密度、力学性能以及抗氧化性能的影响规律。结果表明:1200℃以下是纤维密实性增加的主要阶段, 1800℃得到BN纤维具有较好的抗氧化性,密度为1.92g·cm-3,(002)晶面间距和晶粒尺寸分别为0.337nm和6.50nm,拉伸强度为850MPa,在频率为10GHz处的介电常数为3左右、损耗角正切为10-3量级。
With increasing of the ultra-high speed missle radomes’demand for materials with high heat resistance, load bearing and wave transparence, the existing wave transparent fibers reinforced ceramic matrix composites have been a major bottleneck regarding the development of technology for radome. Nitride ceramic fibers, possessing high temperature resistance, good ablation performance and excellent stability, are one of novel intensifiers for wave transparent ceramic matrix composites. Hence, the major objective of the present work is dealt with the basic research on the preparation and characterization of boron nitride (BN) fibers via the polymer-derived ceramics (PDCs) method.
     According to the requirement of polymeric precursor’s structure for BN fibers, three soluble and fusible polyborazines were synthesized. These low cost synthetic routes were under mild conditions without extremely low temperature, facilitating the manipulation. These preceramic polymers were characterized by NMR、FTIR、XPS、TGA and elemental analysis.
     PTMB synthesized from boron trichloride and methylamine (MA) was composed of B3N3 hexagons, C-H, B-N, N-H and C-N bonds. PTMB was soluble in toluene and oxylene. The typical composition of PTMB was (wt%):B(24.5), C(32.8), N(29.9) and H(10.2) with a chemical formula of BC1.20N0.94H4.5。
     The ceramic yield of PTMB was improved by treating under NH3. The carbon in PTMB was removed by pyrolysis in NH3. The major weight loss occurred below 600℃and the transition from organics to mineral basically happened at 900℃. The molecular structure and low ceramic yield of PTMB were not suitable for the preparation of BN fibers, while hopefully, for other forms of BN. Turbostratic BN (t-BN) was obtained by pyrolysis PTMB in NH3 and then in Ar. The t-BN showed a weight loss of less than 3.0wt% at 900℃in air, exhibiting its good oxidation resistance.
     PTPiAB synthesized from 2,4,6-trichloroborazine (TCB) and iso-propylamine showed a higher ceramic yield in Ar than that in NH3. PTPiAB was composed of B3N3 hexagons, C-H, B-N, N-H and C-N bonds. PTPiAB was soluble in toluene and oxylene. The typical composition of PTPiAB was (wt%): B(12.4), N(35.8), C(37.2), H(9.3) with a chemical formula of BC2.7N2.2H8.1。
     The weight loss in NH3 mainly occurred under 800℃and the organic groups in PTPiAB almost disappeared at 800℃. The removal of carbon in NH3 was evident and 94.0 weight percent of carbon was removed at 600℃. The range for the crystallization was mainly below 1400℃. The sample acquired by pyrolysis of PTPiAB in NH3 at 1000 ℃and then in Ar at 1800℃showed the (002) interlayer spacing of 0.334nm, with a density of 2.03g·cm-3. At 900℃, the weight loss of the sample obtained at 1800℃was less than 0.3wt% in air and the oxidation resistance was improved with the increase of crystallization.
     PPAB was synthesized from n-propylamine (n-PA), MA and TCB. Through controlling the ratio of raw materials, temperature and holding time, the soluble and fusible PPAB can be synthesized. The softening point of PPAB was heightened by the increase of temperature and holding time. The appropriate condition for the synthesis of PPAB was: n-PA?MA?TCB=2?1?1 (molar ratio), 150~170℃(polymerization temperature), 5~7h (holding time). The softening point of the as-synthesized PPAB was 90~100℃. PPAB was composed of N-H、C-H、B-N and C-N bonds, accompanied by the B3N3 hexagons linked with -B-(NCH3)-B- groups. The typical composition of PPAB was (wt%): B (22.28), C(23.24), N(44.75) and H(7.78) with a chemical formula of BC0.94N1.55H3.75.
     The number average molecular weight of typical PPAB was 1002 (relative to PS standards) and the weight number average molecular weight was 1359 with a polydispersity index of 1.50. The PPAB was soluble in toluene and oxylene with a ceramic yield of 50wt% at 1000℃in Ar.
     The melt spinning test for three polymeric precursors showed that PPAB possessed best spinnability, adapting to the preparation of BN fibers. Besides, PTMB and PTPiAB could be used to fabricate porous BN and BN coatings.
     The research on the PPAB’s stability in air showed: PPAB hydrolyzed in air easily and the hydrolyzation occurred badly with the increase of humidity, temperature and holding time. PPAB was insensitive to O2 in air and the hydrolyzation of PPAB in air was mainly due to H2O. Oxygen came into PPAB during the hydrolyzation process to engender B-O bonds, helping to the formation of insoluble and infusible structure of three-dimensional reticulation. The hydrolyzed PPAB could not be melt processed and the pyrolyzed sample in Ar was mainly BN and B2O3.
     The composition, structure and properties of BN derived from PTPiAB and PPAB were compared and the results showed that the two BN samples without carbon impurity both possessed nearly stoichiometric composition. BN derived from PTPiAB had a higher crystallinity and exhibited better oxidation resistance. This is due to that the structure of symmetric molecular derived polymeric precursor is close to that of hexagonal BN.
     The influence of softening point, spinning temperature and spinning pressure in the melt spinning process was studied. The optimum spinning condition was found to be the softening point of 93~112℃, the spinning temperature of 20~70℃higher than softening point and the spinning pressure of 0.4~0.6MPa. The corresponding PPAB fibers with a length of longer than 200m could be obtained.
     The curing process of PPAB fibers in NH3 was accompanied by the increase of gel content, weight loss and decrease of carbon content. The drop of carbon content in cured fibers was mainly due to removal of alkyl-units during curing, whereas independent of C-N bonds. The optimum curing condition was found to be the heating rate of 0.5℃/min, the temperature of 70~80℃and the holding time of 80min. The gel content of corresponding cured fibers was more than 90wt%.
     Pyrolysis of PPAB in N2 resulted in BN with carbon contaminant, whereas in NH3 led to the removal of carbon and obtainment of BN with nearly stoichiometric composition. The ceramic yield of PPAB in N2 was higher than that in NH3. The products acquired in NH3 possessed better crystallization, oxidation resistance and dielectric property than those in N2.
     The influence of temperature, NH3 concentration, holding time and heating rate during inorganic transition of cured PPAB fibers was researched. The result showed the inorganic transition of cured fibers was almost completed at 800℃. The removal of carbon could be accomplished in the mixed atmosphere of NH3/N2=1:1(vol). The optimum inorganic condition was found to be the NH3 concentration of 50vol%, the heating rate of 4℃/min, the temperature of 800℃and the holding time of 2h. The carbon content in the corresponding fibers was less than 0.5wt%.
     The high temperature treatment of inorganic fibers favored BN fibers’better properties. The influence of temperature in the crystallinity, density, tensile strength and oxidation resistance was studied. The results showed the density of BN fibers increased mainly from 600℃to 1200℃and that of BN fibers prepared by pyrolysis of cured PPAB fibers in NH3 at 800℃and then in Ar at 1800℃was 1.92g·cm-3. For the BN fibers obtained at 1800℃, the (002) interlayer spacing and the crystalline size were 0.337nm and 6.50nm, respectively. The BN fibers with a tensile strength of 850MPa showed a good oxidation resistance. Besides, the BN fibers possessed a dielectric constant of 3 and a dielectric loss of 10-3 at 10GHz.
引文
[1]黎义,张大海,陈英,等.航天透波多功能材料研究进展[J].宇航材料与工艺, 2001, 30(5): 1-3.
    [2]韩桂芳,陈照峰,张立同,等.高温透波材料研究进展[J].航空材料学报, 2003, 23(1): 57-62.
    [3]李超,刘建超,陈青.航天透波复合材料的研究进展[J].高科技纤维与应用, 2003, 28(6): 34-39.
    [4]唐云.先驱体转化法制备SiBN陶瓷纤维研究[D].长沙:国防科技大学, 2010.
    [5]倪尔湖.材料科学中的介电谱技术[M].北京:科学出版社, 1979.
    [6]张佳明,章桥新,张建红,等.透波多功能复合材料的研究[J].材料导报, 2006, 20(2): 37-39.
    [7] Brown D, Fiscus T E, Meierbachtol C J. Results of a study using RT duroid 5870 material for a missile radome [C]. Proceeding of the 15th symposium on electromagnetic windows, Atlanta, Georiga, l980.
    [8]张煜东,苏勋家,侯根良.高温透波材料研究现状和展望[J].飞航导弹, 2006, 3: 56-58.
    [9] Walfon J D. Radome engineering hand book [M]. New York: Marcel Dekker inc, 1970.
    [10] Welsh E A, Ossin A. Evaluation of ablative materials for high performance radome applications [C]. Proceedings of the 15th symposium on electromagnetic windows, Atlanta, GA, 1980.
    [11]黄新松,李文钦,简科.耐高温陶瓷透波纤维研究进展[J].安全与电磁兼容, 2010, 2: 53-56.
    [12]齐共金.先驱体合成及其转化制备石英织物增强氮化硅基天线罩材料研究[D].长沙:国防科技大学, 2006.
    [13]邓橙.氮化硼纤维先驱体——聚硼氮烷的合成及热解特性研究[D].长沙:国防科技大学, 2009.
    [14]李斌.耐烧蚀、透波氮化物陶瓷基复合材料及其天线罩的制备与性能研究[D].长沙:国防科技大学, 2007.
    [15]陈虹,胡利明,贾光耀,等.陶瓷天线罩材料的研究进展[J].硅酸盐通报, 2002, 21(4): 40-44.
    [16] Rudge A W, Milne K, Olver A D, et al. The handbook of antenna design [M]. London: Peter peregrinus Ltd, 1983.
    [17]秦明礼,曲选辉,黄栋生,等.氮化铝(AlN)陶瓷的特性、制备及应用[J].陶瓷工程, 2000, 4: 39-42.
    [18]邓世均.高性能陶瓷涂层[M].北京:化学工业出版社, 2004.
    [19] Ainger F W, Herbert J M. The preparation of phosphorus-nitrogen compounds as non-porous solids [M]. New York: Academic press, 1960: 168-182.
    [20] Chantrell P G, Popper P. Inorganic Polymers and Ceramics [M]. New York: Academic Press, 1965: 87-103.
    [21] Yajima S, Hayashi J, Omori M, et al. Development of a silicon carbide fiber with high tensile strength [J]. Nature, 1976, 261(5562): 683-685.
    [22] Yajima S, Hayashi J, Omori M. Continuous silicon carbide fiber of high tensile strength [J]. Chemistry letters, 1975, 9: 931-934.
    [23] Colombo P, Mera G, Riedel R, et al. Polymer-derived caramics: 40 Years of research and innovation in advanced ceramics [J]. Journal of the American Ceramic Society, 2010, 93(7): 1805-1837.
    [24] Birot M, Pillot J P, Dunogues J. Comprehensive chemistry of polycarbosilanes, polysilazanes and polycarbosilazanes as precursors of ceramics [J]. Chemical Reviews, 1995, 95(5): 1443-1477.
    [25]王浩.先驱体高分子/模板技术制备有序多孔非氧化物陶瓷[D].长沙:国防科技大学, 2004.
    [26]熊亮萍,许云书.陶瓷先驱体聚合物的应用[J].化学进展, 2007, 19(4): 567-574.
    [27] Lindquist D A, Janik J F, Datye A K, et al. Boron nitride fibers processed from poly(borazinylamine) solutions [J]. Chemistry of Materials, 1992, 4(1): 17-19.
    [28]李义和.聚硅氮烷陶瓷先驱体的光固化改下研究[D].长沙:国防科技大学, 2007.
    [29]薛金根,王应德,李效东,等.分子设计在聚硅烷合成中的应用[J].有机硅材料, 2005, 19(3): 13-16.
    [30]孔杰,张国彬,刘勤. PBSZ陶瓷前驱体分子结构设计和合成[J].化学进展, 2007, 19(11): 1791-1799.
    [31]李公义.碳化硅和氮化硅超长纳米线的制备与性能研究[D].长沙:国防科技大学, 2010.
    [32] Yu H J, Zhou X G, Zhang W, et al. Mechanical properties of 3D KD-I SiCf/SiC composites with engineered fibre-matrix interfaces [J]. Composites Science and Technology, 2011, 71(5): 699-704.
    [33]于海蛟.多层界面制备、表征及其对SiCf/SiC复合材料性能的影响[D].长沙:国防科技大学, 2011.
    [34] Haug R, Weinmann M, Bill J, et al. Plastic forming of preceramic polymers [J]. Journal of the European Ceramic Society, 1999, 19(1): 1-6.
    [35] Galusek D, Sedlacek J, Riedel R. Al2O3–SiC composites prepared by warmpressing and sintering of an organosilicon polymer-coated alumina powder [J]. Journal of the European Ceramic Society, 2007, 27(6): 2385-2392.
    [36] Kumar R, Cai Y, Gerstel P, et al. Processing, Crystallization and characterization of polymer derived nano-crystalline Si–B–C–N ceramics [J]. Journal of Materials Science, 2006, 41(21): 7088-7095.
    [37] Bunsell A R, Piant A. A review of the development of three generations of small diameter silicon carbide fibres [J]. Journal of Materials Science, 2006, 41(3): 823-839.
    [38] Okamura K, Shimoo T, Suzuya K, et al. SiC-based ceramic fibers prepared via organic-to-inorganic conversion process—A review [J]. Journal of the Ceramic Society of Japan, 2006, 114(6): 445-454.
    [39] Cromme P, Scheffler M, Greil P. Ceramic tapes from preceramic polymers [J]. Advanced Engineering Materials, 2002, 4(11): 873-877.
    [40] Satoa K, Tezuka A, Funayama O, et al. Fabrication and ressure testing of a gas-turbine component manufactured by a receramic-polymer-impregnation method [J]. Composites Science and Technology, 1999, 59(6): 853-859.
    [41]马彦. PIP法Cf/SiC复合材料组成、结构及性能高温演变研究[D].长沙:国防科技大学, 2011.
    [42] Sung I K, Yoon S B, Yu J S, et al. Fabrication of macroporous SiC from templated preceramic polymers [J]. Chemical Communications, 2002, 14: 1480-1481
    [43] Bahloul-Hourlier D, Doucey B, Laborde E, et al. Investigations on thermal reactivity of Si/C/N nanopowders produced by laser aerosol or gas interactions [J]. Journal of Materials Chemistry, 2001, 11(8): 2028-2034.
    [44] Malenfant P R L, Wan J L, Taylor S T, et al. Self-assembly of an organic–inorganic block copolymer for nano-ordered ceramics [J]. Nature Nanotechnology, 2007, 2(1): 43-46.
    [45] Zhang T, Evans J R G, Woodthorpe J. Injection moulding of silicon carbide using an organic vehicle based on a preceramic polymer [J]. Journal of the European Ceramic Society, 1995, 15(8): 729-734.
    [46] Walter S, Suttor D, Erny T, et al. Injection moulding of polysiloxane/filler mixtures for oxycarbide ceramic composites [J]. Journal of the European Ceramic Society, 1996, 16(4): 387-393.
    [47] Miele P, Bernard S, Cornu D, et al. Recent developments in polymer-derived ceramic fibers (PDCFs): Preparation, properties and applications—A review [J]. Soft Materials, 2007, 4(2-4): 249-286.
    [48]肖汉宁,高朋召.高性能结构陶瓷及其应用[M].化学工业出版社:北京, 2006.
    [49]王东,刘永胜,成来飞,等.氮化物高温透波材料及其应用研究进展[J].航空制造技术, 2008, 3: 70-73.
    [50]宋永才,冯春祥,薛金根.氮化硅纤维研究进展[J].高科技纤维与应用, 2002, 27(2): 6-11.
    [51] Legrow G E, Lim T F, Lipowitz J, et al. Ceramics from hydridopolysilazane [J]. American Ceramic Society Bulletin, 1987, 66(2): 363-367.
    [52] Arai M, Funayama O, Nishii H, et al. High-purity silicon nitride fibers [P]. US 4 818 611, 1986.
    [53] Mocaer D, Pailler R, Naslain R, et al. SiCN ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors [J]. Journal of Material Science, 1993, 28(10): 2615-2631.
    [54]宋永才,李永强,王得印,等.一种由聚碳硅烷(PCS)纤维制备连续Si-B-N-O纤维的方法[P].中国专利, 201010185378.5.
    [55] Kamimura S, Seguchi T, Okamura K. Development of silicon nitride fiber from Si-containing polymer by radiation curing and its application [J]. Radiation Physics and Chemistry, 1999, 54(6): 575-581.
    [56]唐云,王军,李效东,等. SiBNC体系中陶瓷先驱体的研究进展[J].高分子材料科学与工程, 2008, 24(4): 23-27.
    [57] Seyferth D, Plenio H. Borasilazane polymeric precurosrs for borosilicon nitride [J]. Journal of the American Ceramic Society, 1990, 73(7): 2131-2133.
    [58] Sneddon L G, Mirabelli M G L, Lynch A T, et al. Polymeric precursors to boron based ceramics [J]. Pure & Applied Chemistry, 1991, 63(3): 407-410.
    [59] Takamizawa M, Kobayashi T, Hayashida A, et al. Organborosilicon polymer and a method for the preparation thereof [P]. US 4 550 151, 1985.
    [60] Funayama O, Nakahara H, Okoda M, et al. Conversion mechanism of polyborosilazane into silicon nitride-based ceramics [J]. Journal of Materials Science, 1995, 30(2): 410-416.
    [61] Tang Y, Wang J, Li X D, et al. Polymer-derived SiBN fiber for high-temperature structural/functional applications [J]. Chemistry—A European Journal, 2010, 16(22): 6458-6462.
    [62]唐云,王军,李效东,等.先驱体转化法制备高性能Si-B-N陶瓷纤维[J].化学学报, 2009, 67(23): 2750-2754.
    [63] Tang Y, Wang J, Li X D, et al. One-pot synthesis of novel polyborosilazane to SiBNC fibres [J]. Inorganic Chemistry Communication, 2009, 12(7): 602-604.
    [64]楚增勇,先驱体法碳化硅纤维缺陷形成机理与性能提高研究[D].长沙:国防科技大学, 2003.
    [65] Weinmann M, Kroschel M, J?schke T, et al. Towards continuous processes for the synthesis of precursors of amorphous Si/B/N/C ceramics [J]. Journal of MaterialsChemistry, 2008, 18(15): 1810-1818.
    [66] Bernard S, Weinmann M, Gerstel P, et al. Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: Synthesis, melt-spinning, curing and ceramic conversion [J]. Journal of Materials Chemistry, 2005, 15(2): 289-299.
    [67]宗宫重泽.近代陶瓷[M].上海:同济大学出版社, 1988.
    [68]王零森.特种陶瓷[M].长沙:中南工业大学出版社, 1994.
    [69]葛雷,杨建,丘泰.六方氮化硼的制备方法研究进展[J].电子元件与材料, 2008, 27(6): 22-29.
    [70] Paine R T, Narula C K. Synthetic routes to boron nitride [J]. Chemical Reviews, 1990, 90(1): 73-91.
    [71] Ooi N, Rajan V, Gottlieb J, et al. Structural properties of hexagonal boron nitride [J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(3): 515-535.
    [72] Cornu D, Bernard S, Duperrier S, et al. Alkylaminoborazine-based precursors for the preparation of boron nitride fibers by the polymer-derived ceramics (PDCs) route [J]. Journal of the European Ceramic Society, 2005, 25(2-3): 111-121.
    [73]张俊宝,雷廷权,温广武,等.先驱体法合成氮化硼研究进展[J].材料科学与工艺, 2000, 8(2): 1-7.
    [74]向阳春,陈朝辉,曾竞成.氮化硼陶瓷纤维的合成研究进展[J].材料导报, 1998, 12(4): 66-69.
    [75] Zhong B, Wu Y, Huang X X, et al. Hollow BN microspheres constructed by nanoplates: synthesis, growth mechanism and cathodoluminescene property [J]. CrystEngComm, 2011, 3(13): 819-826.
    [76] Toury B, Cornu D, Chassagneux F, et al. Complete characterisation of BN fibres obtained from a new polyborylborazine [J]. Journal of the European Ceramic Society, 2005, 25(2-3): 137-141.
    [77]王磊. BN晶须制备与性能[D].长沙:国防科技大学, 2007.
    [78] Zhong B, Huang X X, Wen G W, et al. Preparation and ultraviolet-visible luminescence property of novel BN whiskers with a cap-stacked strcuture [J]. Journal of Physical Chemistry C, 2010, 114(49): 21165-21172.
    [79] Rohr C, Boo J-H, Ho W. The growth of hexagonal boron nitride thin films on silicon using single source precursor [J]. Thin Solid Films, 1998, 322(1-2): 9-13.
    [80] Termoss H, Toury B, Pavan S, et al. Preparation of boron nitride-based coatings on metallic substrates via infrared irradiation of dip-coated polyborazylene [J]. Journal of Materials Chemistry, 2009, 19(18): 2671-2674.
    [81]杨辉,张铭霞,唐杰,等.防热材料用氮化硼纤维的制备及其在空间技术领域中的应用[J].硅酸盐通报, 2005, 4: 62-65.
    [82] Haubner R, Wilhelm M, Weissenbacher R, et a1. Boron nitrides-properties, synthesis and applications [J]. High performance non-oxide ceramic II. Structure & bonding, 2002, 102: 1-45.
    [83]李东风,王浩静,王心葵.高性能无机连续纤维[J].合成纤维工业, 2005, 28(2): 40-43.
    [84]胡连成,黎义,于翘.俄罗斯航天透波材料现状考察[J].宇航材料工艺, 1994, 24(1): 48-52.
    [85]张铭霞,唐杰,杨辉,等.利用化学转化法制备氮化硼纤维的反应热力学动力学研究[J].硅酸盐通报, 2004, (6): 15-19.
    [86]雷永鹏,王应德,宋永才,等.氮化硼纤维先驱体聚硼氮烷的研究进展[J].高分子材料科学与工程, 2010, 26(12): 164-167, 172.
    [87]张铭霞,程之强,任卫,等.前驱体法制备氮化硼纤维的研究进展[J].现代技术陶瓷, 2004, 6: 21-25.
    [88] Economy J, Erson R. A new route to boron nitride [J]. Inorganic Chemistry, 1966, 5: 989-992.
    [89] Economy J. Exploratory development on formation of high strength, high modulus boron nitride continuous filament yarns [P]. AD, 901 949, 1972.
    [90] Economy J, Anderson R V. Boron nitride fibers manufacture [P]. US 3 620 780, 1971.
    [91]高庆文,张清文,童申勇,等.氮化硼纤维制备工艺及其设备[P].中国专利, 1059507A, 1992.
    [92]高学绪,任卫,高庆文,等.有机硼聚合物前驱体合成BN纤维的初步探索[J].工业陶瓷, 1992, 2: 5-7.
    [93] Paciorek K J L. Boron nitride and its precursors [R]. AD-A 233 538, 1991.
    [94] Kimura Y, Kubo Y, Hayashi N. High-performance boron-nitride fibers from poly(borazine) preceramics [J]. Composites Science and Technology, 1994, 51(2): 173-179.
    [95] Okana Y, Yamashita H. Boron nitride fiber and process for production thereof [P]. US 5 780 154, 1998.
    [96] Bernard S, Chassagneux F, Berthet M P, et al. Structural and mechanical properties of a high-performance BN fibre [J]. Journal of the European Ceramic Society, 2002, 22(12): 2047-2059.
    [97] Dupperrier S, Chiriac R, Sigala C, et al. Thermal behavior of a series of poly[B-(methylamino)borazine] for the preparation of boron nitride fibers [J]. Journal of the European Ceramic Society, 2009, 29(5): 851-855.
    [98] Stock A, Pohland E. Borwasserstoffe, IX: B3N3H6 [J]. Chemische Berichte, 1926, 59(9): 2215-2223.
    [99] Fazen P J, Remsen E E, Carrol P J, et al. Synthesis, properties and ceramic conversion reactions of polyborazylene. A high yield polymeric precursor to boron nitride [J]. Chemistry of Materials, 1995, 7(10): 1942-1956.
    [100] Taniguchi I, Takeshirodai S O, Yoshiharu K, et al. Process of preparing organoboron nitride polymer [P]. US 4 731 437, 1988.
    [101] Wideman T, Remsen E E, Cortez E, et al. Amine-modified polyborazylenes: Second generation precursors to boron nitride [J]. Chemistry of Materials, 1998, 10(1): 412-421.
    [102] Wideman T, Sneddon L G. Dipentylamine-modified polyborazylenes: A new, melt-spinnable polymeric precursor to boron nitride [J]. Chemistry of Materials, 1996, 8(1): 3-5.
    [103] Li J S, Zhang C R, Li B, et al. Boron nitride coatings by chemical vapor deposition from borazine [J]. Surface and Coating Technology, 2011, 205(12): 3736-3741.
    [104] Moon K T, Min D S, Kim D P. A route to boron nitride via simply prepared borazine precursor [J]. Bulletin of the Korean Chemical Society, 1998, 19(2): 222-226.
    [105]李斌,张长瑞,曹峰,等.混杂聚硼氮烷的陶瓷化过程研究[J].无机材料学报, 2008, 23(2): 229-232.
    [106] Bonnetot B, Guilhon F, Viala J C, et al. Boron nitride matrices and coatings obtained from tris(methy1amino)borane. Application to the protection of graphite against oxidation [J]. Chemistry of Materials, 1995, 7(2): 299-303.
    [107] Doche C, Guilhon F, Bonnetot B, et al. Elaboration and charaterization of Si3N4–BN composites from tris(methylamino)borane as a boron nitride precursor [J]. Journal of Materials Science Letters, 1995, 14(12): 847-850.
    [108] Thévenot F, Doche C, Mongeot H, et al. Si3N4–BN composites obtained from aminoboranes as BN precursors and sintering aids [J]. Journal of the European Ceramics Society, 1997, 17(15-16): 1911-1915.
    [109] Cornu D, Miele P, Faure R, et al. Conversion of B(NHCH3)3 into boron nitride and polyborazine fibres and tubular BN structures derived therefrom [J]. Journal of Materials Chemistry, 1999, 9(3): 757-761.
    [110] Okano Y, Yamashita H. Boron nitride fiber and process for production thereof [P]. US 5 780 l54, 1998.
    [111] Xie W W, Han K Q, Li S T, et al. Synthesis and characterization of monomer and its polymer as a precursor to boron nitride fiber [C]. Proceedings of 2007 International Conference. China: Shanghai, 2007, 72-74.
    [112]张光友,陈朝辉.氮化硼纤维的研制[J].高分子材料科学与工程, 1998, 14(2): 94-96.
    [113]张光友.先驱体法制备氮化硼陶瓷纤维[D].长沙:国防科技大学, 1995.
    [114]曾竟成,陈朝辉,向阳春,等.氮化硼纤维先驱体的合成及其热解研究[J].高分子材料科学与工程, 1999, 15(6): 53-55.
    [115]李文华,王军,谢征芳,等.新型氮化硼陶瓷纤维先驱体——含硅聚硼氮烷的合成与表征[J].化学学报, 2011, 69(16): 1936-1940.
    [116] Kimura Y, Kubo Y, Hayashi N. Boron nitride preceramics based on B,B,B-triaminoborazine [J]. Journal of Inorganic and Organometallic Polymers, 1992, 2(2): 231-242.
    [117] Bernard S, Ayadi K, Berthet M P, et al. Evolution of structural features and mechanical properties during the conversion of poly[(methylamino)borazine] fibers into boron nitride fibers [J]. Journal of Solid State Chemistry, 2004, 177(6): 1803-1810.
    [118] Duperrier S, Gervais C, Bernard S, et al. Design of a series of preceramic B-tri(methylamino)borazine-based polymers as fiber precursors: architecture, thermal behavior, and melt-spinnability [J]. Macromolecules, 2007, 40(4): 1018-1027.
    [119] Toury B, Miele P, Cornu D, et al. Boron nitride fibers prepared from symmetric and asymmetric alkylaminoborazines [J]. Advanced Functional Materials, 2002, 12(3): 228-234.
    [120]邓橙,宋永才,王应德,等.三氯环硼氮烷与聚硼氮烷先驱体的合成研究[J].材料科学与工艺, 2008, 16(s1): 120-125.
    [121]邓橙,宋永才,王应德,等.氮化硼纤维先驱体的制备与表征[J].高等学校化学学报, 2010, 31(3): 623-628.
    [122]邓橙,宋永才,王应德,等.甲胺/二甲胺共取代合成氮化硼先驱体聚硼氮烷[J].化学学报, 2010, 98(12): 1217-1222.
    [123] Wynne K J, Rice R W. Ceramics via polymer pyrolysis [J]. Annual review of materials science, 1984, 14: 297-334.
    [124] Toury B, Cornu D, Chassagneux F, et al. Complete characterization of BN fibres obtained from a new polyborylborazine [J]. Journal of the European Ceramic Society, 2005, 25(2-3): 137-141.
    [125] Duriez C, Framery E, Toury B, et al. Boron nitride thin fibres obtained from a new copolymer borazine-tri(methylamino)borazine precursor [J]. Journal of Organometallic Chemistry, 2002, 657(1-2): 107-114.
    [126] Shriver D F, Drezdz M A. The manipulation of air-sensitive compounds. 2nd ed [M]. New York: Wiley Press, 1986.
    [127]王钰.六方氮化硼(h-BN)前驱体的合成研究[D].北京:北京化工大学, 2007.
    [128] Yajima S, Hayashi J, Omori M. Continuous silicon carbide fiber of high tensile strength [J]. Chemistry Letters, 1975, 4(9): 931-934.
    [129]杨大祥. PCS和PMCS的新合成方法及高耐温性SiC纤维的制备研究[D].长沙:国防科技大学, 2009.
    [130] Jenkins R, Snyder R L. Introduction to X-ray powder diffractometry [M]. New York: Wiley Press, 1996.
    [131] Shi L, Gu Y L, Chen L Y, et al, Synthesis and morphology control of nanocrystalline boron nitride [J]. Journal of Solid State Chemistry, 2004, 177(3): 721-724.
    [132] Yan X B, Xu T, Xu S, et al, Fabrication of carbon spheres on a-C:H films by heat-treatment of a polymer precursor [J]. Carbon, 2004, 42(12-13): 2735-2777.
    [133] Jeon J K, Uchimaru Y, Kim D P. Synthesis of novel amorphous boron carbonitride ceramics from the borazine derivative copolymer via hydroboration [J]. Inorganic Chemistry, 2004, 43(16): 4796-4798.
    [134] GB/T 3362-2005,碳纤维复丝拉伸性能试验方法[S].
    [135] Qu Y F. Physical properties of functional ceramics [M]. Chemical Industry Press: Beijing, 2007.
    [136] ASTM Test Method D 3379-75 [S], Annual book of ASTM standards, American Society for Testing and Materials, Philadelphia, PA, 1998: 131.
    [137] Okubo T, Wakihara T, Plévert J, et al. Heteroepitaxial growth of a Zeolite [J]. Angewandte Chemie International Edition, 2001, 40(6): 1069-1071.
    [138]郑春满,李效东,余煜玺,等. SiC陶瓷纤维先驱体设计原则及合成研究进展[J].高分子材料科学与工程, 2005, 21(6): 6-10.
    [139]楚增勇.先驱体转化法碳化硅纤维缺陷形成机理与改善方法研究[D].长沙:国防科技大学, 2003.
    [140] Bonnetot B, Guilhon F, Viala J C, et al. Boron nitride matrices and coatings obtained from tris(methy1amino)borane. Application to the protection of graphite against oxidation [J]. Chemistry of Materials, 1995, 7(2): 299-303.
    [141] Doche C, Guilhon F, Bonnetot B, et al. Elaboration and charaterization of Si3N4–BN composites from tris(methylamino)borane as a boron nitride precursor [J]. Journal of Materials Science Letters, 1995, 14(12): 847-850.
    [142] Thévenot F, Doche C, Mongeot H, et al. Si3N4–BN composites obtained from aminoboranes as BN precursors and sintering aids [J]. Journal of the European Ceramic Society, 1997, 17(15-16): 1911-1915.
    [143] Rye R R, Tallant D R, Borek T T, et al. Mechanistic studies of the conversion of borazine polymers to boron nitride [J]. Chemistry of Materials, 1991, 3(2): 286-293.
    [144] Hamilton E J M, Dolan S E, Mann C M, et al. Preparation of amorphous boron nitride and its conversion to a turbostratic, tubular form [J]. Nature, 1993, 260(5108): 659-661.
    [145]金邦坤,季明荣,杨碚芳,等.聚酰亚胺LB膜热解制备SiC薄膜的XPS研究[J].高分子学报, 2002, 2: 208-212.
    [146] Yan X B, Gottardo L, Bernard S, et al. Ordered mesoporous silicoboron carbonitride materials via preceramic polymer nanocasting [J]. Chemistry of Materials, 2008, 20(20): 6325-6334.
    [147] Brown C A, Laubengayer A W. B-Trichloroborazole [J]. Journal of The American Chemical Society, 1955, 77(14): 3699-3700.
    [148]王钰,王希,曹维良,等.三氯环硼氮烷及其衍生物的制备与表征[J].过程工程学报, 2007, 7(6): 1099-1105.
    [149] Watanabe H, Narisada M, Nakagawa T, et al. Infrared absorptions of borazole derivatives [J]. Spectrochimica Acta, 1960, 16(1-2): 78-86.
    [150]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社, 2001.
    [151]邓芹英,刘岚,邓慧敏.波谱分析教程[M].北京:科学出版社, 2003.
    [152] Yu Y X, Guo Y D, Cheng X, et al. Preparation of TiO2/SiO2 composite fiber by thermal decomposition of polycarbosilane–tetrabutyl titanate hybrid precursor [J]. Journal of Materials Chemistry, 2009, 19(31): 5637-5642.
    [153] Cofer C G, Economy J. Oxidation and hydrolytic stability of boron nitride- A new approach to improving the oxidation resistance of carbonaceous structure [J]. Carbon, 1995, 33(4): 389-395.
    [154] Lei Y P, Wang Y D, Song Y C, et al. Facile synthesis of a melt-spinnable polyborazine from asymmetric alkylaminoborazine [J]. Chinese Chemical Letters, 2010, 21(9): 1079-1082.
    [155] Toury B, Bernard S, Cornu D, et al. High-performance boron nitride fibers obtained from asymmetric alkylaminoborazine [J]. Journal of Materials Chemisry, 2003, 13(2): 274-279.
    [156]李永清,陈朝辉,张长瑞,等.有机硅先驱体在陶瓷成型中的应用[J].现代技术陶瓷, 1996, 4: 32-35.
    [157]李厚补,张立同,成来飞,等.先驱体转化法制备碳化硅陶瓷产率研究评述[J].高分子材料科学与工程, 2007, 23(4): 20-23.
    [158]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社, 1992.
    [159] Su K, Remsen E E, Zank G A, et al. Synthesis, characterization, and ceramic conversion reaction of borazine-modified hydridopolysilazane: New polymeric precursors to SiNCB ceramic composites [J]. Chemistry of Materials, 1993, 5(4):547-556.
    [160]王宗明,何欣翔,孙殿卿.实用红外光谱学[M].北京:石油工业出版社, 1978.
    [161] Jaschke T, Jansen M. Improved durability of Si/B/N/C random inorganic networks [J]. Journal of the European Ceramic Society, 2005, 25(2-3): 211-220.
    [162]邢欣,李效东,郭爱青,等.聚甲基硅烷稳定性的研究[J].硅酸盐学报, 2004, 32(4): 402-406.
    [163] Zheng M T, Gu Y L, Xu Z L, et al. Synthesis and characterization of boron nitride nanoropes [J]. Materials Letters, 2007, 61(8-9): 1943-1945.
    [164] Bauer F, Decker U, Dierdorf A, et al. Preparation of moisture curable polysilazane coatings: Part I. Elucidation of low temperature curing kinetics by FT-IR spectroscopy [J]. Progress in Organic Coatings, 2005, 53(3): 183-190.
    [165]蒋舰,彭云庆,郑知敏,等.硅氮化合物的结构与水解稳定性的关系[J].高等学校化学学报, 2002, 23(6): 1189-1192.
    [166]蒋舰.硅氮化合物结构与稳定性的关系[D].北京:中国科学院化学研究所, 2001.
    [167]李凯,廉刚,姜海辉,等.用水热方法合成氮化硼过程中反应原料种类的影响[J].功能材料, 2007, 38(10): 1678-1681.
    [168] Yang Z H, Jia D C, Zhou Y, et al. Oxidation resistance of hot-pressed SiC-BN composites [J]. Ceramics International, 2008, 34(2): 317-321.
    [169] Toury B, Duriez C, Cornu D, et al. Influence of molecular precursor structure on the crystallinity of boron nitride [J]. Journal of Solid State Chemistry, 2000, 154(1): 137-140.
    [170]董纪震,罗鸿烈,王庆瑞,等.合成纤维生产工艺学[M].北京:纺织工业出版社, 1996.
    [171]毛仙鹤,宋永才,李伟.由聚碳硅烷纤维通过化学气相交联法制备低氧含量碳化硅纤维[J].硅酸盐学报, 2006, 34(1): 16-20.
    [172] Mao X H, Song Y C, Li W. Mechanism of curing process for polycarbosilane fiber with cyclohexene vapor [J]. Journal of Applied Polymer Science, 2007, 105(3): 1651-1657.
    [173]王军,姚闽,王娟,等.异形截面聚碳硅烷纤维的制备[J].材料工程, 2000, 9: 38-41.
    [174]吴义伯,张国建,刘春佳,等.聚碳硅烷制备连续SiC纤维的不熔化处理工艺研究进展[J].材料导报, 2006, 20(7): 80-83, 87.
    [175]余煜玺,李效东,曹峰,等.先驱体法制备SiC陶瓷纤维过程中聚碳硅烷纤维的交联方式[J].宇航材料工艺, 2002, 6: 10-13.
    [176]陈曼华. PIP工艺制备陶瓷基复合材料中先驱体的交联固化研究[D].长沙:国防科技大学, 2005.
    [177] Hasegawa Y. Synthesis of continuous silicon carbide fibre. PartⅥ: Pyrolysis process of cured polycarbonsilane fibre and structure of SiC fibre [J]. Journal of Materials Science, 1989, 24(4): 1177-1190.
    [178]王军,冯春祥,宋永才.聚碳硅烷纤维的空气不熔化处理[J].化学学报, 1998, 56(1): 77-80.
    [179]郑春满,李效东,王亦菲,等.低氧含量SiC纤维研究进展[J].宇航材料工艺, 2005, 3: 7-10.
    [180]黎阳.射线辐照聚碳硅烷先驱丝热解合成碳化硅陶瓷纤维及陶瓷纤维管的研究[D].绵阳:西南科技大学, 2008.
    [181]毛仙鹤.碳化硅纤维若干基础问题研究[D].长沙:国防科技大学, 2007.
    [182]童林剑.聚碳硅烷纤维在含氧气氛下电子束辐射交联和热氧化交联的研究[D].厦门:厦门大学, 2009.
    [183] Takamizawa M, Kobayashi T, Hayashida A, et al. Method for the preparation of an inorganic fiber containing silicon, carbon, boron and nitrogen [P]. US 4 604 367, 1986.
    [184]宋永才,楚增勇,许云书,等.聚碳硅烷、聚硅氮烷纤维电子束辐射交联的对比研究[J].高技术通讯, 1999, 9: 32-35.
    [185]黎阳,许云书,徐光亮,等.空气中γ射线辐照聚碳硅烷陶瓷先驱丝热解合成SiC纤维[J].核化学与放射化学, 2007, 29(3): 166-170.
    [186] Xiong L P, Xu Y S, Li Y, et al. Synthesis of SiC ceramic fibers from nuclear reactor irradiated polycarbosilane ceramic precursor fibers [J]. Journal of Materials Science, 2008, 43(14): 4849-4855.
    [187] Hasegawa Y. New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fiber [J]. Composites Science and Technology, 1994, 51(2): 161-166.
    [188] Hasegawa Y. Si-C fiber prepared from polycarbosilane cured without oxygen [J]. Journal of Inorganic and Organometallic Polymers and Materials, 1992, 2(1): 161-169.
    [189] Toutois P, Miele P, Jacques, et al. Structural and mechanical behavior of boron nitride fibers derived from poly[(methylamino)borazine] precursors: Optimization of the curing and pyrolysis procedures [J]. Journal of the American Ceramic Society, 2006, 89(1): 42-49.
    [190]王亦菲.连续碳化硅纤维高温性能及基于热交联的改进工艺研究[D].长沙:国防科学技术大学, 2004.
    [191]朱冰.低预氧化聚碳硅烷纤维热交联技术的研究[D].长沙:国防科技大学, 2002.
    [192]郑春满,朱冰,李效东,等.聚碳硅烷纤维的热交联研究[J].高分子学报, 2004, 2: 246-250.
    [193]曹峰.耐超高温碳化硅纤维新型先驱体研究及纤维制备[D].长沙:国防科技大学, 2002.
    [194]郑春满.聚铝碳硅烷纤维的无机化及生成碳化硅纤维的连续化过程研究[D].长沙:国防科技大学, 2006.
    [195] Duperrier S, Gervais C, Bernard S, et al. Controlling the chemistry, morphology and structure of boron nitride-based ceramic fibers through a comprehensive mechanistic study of the reactivity of spinnable polymers with ammonia [J]. Journal of Materials Chemisry, 2006, 16(30): 3126-3138.
    [196] Seyferth D, Strohmann C, Dando N R, et al. Poly(ureidosilazanes): Preceramic polymeric precursors for silicon carbide and silicon nitride. Synthesis, characterization, and pyrolytic conversion to Si3N4/SiC ceramics [J]. Chemistry of Materials, 1995, 7(11): 2058-2066.
    [197] Dibandjo P, Bois L, Chassagneux F, et al. Synthesis of boron nitride with ordered mesostructure [J]. Advanced Materials, 2005, 17(5): 571-574.
    [198] Bernard S, Cornu D, Miele P, et al. Pyrolysis of poly[2,4,6-tri(methylamino)borazine] and its conversion into BN fibers [J]. Journal of Organometallic Chemistry, 2002, 657(1-2): 91-97.
    [199] Paciorek K J L, Harris D H, Kratzer R H. Boron-nitrogen polymers. I. Mechanistic studies of borazine pyrolyses [J]. Joumal of Polymer Science: Polymer Chemistry, 1986, 24(1): 173-185.
    [200] Mera G, Riedel R, Poli F, et al. Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides) [J]. Journal of the European Ceramic Society, 2009, 29(13): 2873-2883.
    [201] Wang H J, Yu J L, Zhang J, et al. Preparation and properties of pressureless- sintered porous Si3N4 [J]. Journal of Materials Science, 2010, 45(13): 3671-3676.
    [202]李军奇,周万城,罗发,等.晶相组成对Si3N4陶瓷介电性能的影响[J].稀有金属材料与工程, 2009, 38(2): 384-386.
    [203] Burns T G. Pyrolysis of preceramic polymers in ammonia: preparation of silicon nitride powders [J]. Journal of the American Ceramic Society, 1989, 72(2): 333-337.
    [204] Reschke S, Haluschka C, Ralf R, et al. In situ generated homogeneous and functionally graded ceramic materials derived from polysilazane [J]. Journal of the European Ceramic Society, 2003, 23(11): 1963-1970.
    [205] Schmidt W R, Marchetti P S, Interrante L V, et al. Ammonia-induced pyrolytic conversion of a vinylic polysilane to silicon nitride [J]. Chemistry of Materials, 1992, 4(4): 937-947.
    [206] Galusek D. In-situ carbon content adjustment in polysilazane derived amorphous SiCN bulk ceramics [J]. Journal of the European Ceramic Society, 1999, 19(10): 1911-1921.
    [207]谢征芳,陈朝辉,李永清,等.活性填料在先驱体转化制备陶瓷材料中的应用[J].无机材料学报, 2000, 15(2): 200-208.
    [208] Li H B, Zhang L T, Cheng L F, et al. Effect of curing and pyrolysis processing on the ceramic yield of a highly branched polycarbosilane [J]. Journal of materials science, 2009, 44(3): 721-725.
    [209] Ichikawa H, Teranishi H, Ishikawa O. Effect of curing conditions on mechanical properties of SiC fiber (Nicalon) [J]. Journal of Materials Science Letters, 1987, 6(4): 420-422.
    [210] Vincent H, Chassagneux F, Vincent C, et al. Microtexture and structure of boron nitride fibres by transmission electron microscopy, X-ray diffraction, photoelectron spectroscopy and Raman scattering [J]. Materials Science and Engineering A, 2003, 340(1-2): 181-192.
    [211] Müller A, Gerstel P, Weinmann M, et al. Correlation of boron content and high temperature stability in Si-B-C-N ceramics [J]. Journal of the European Ceramic Society, 2000, 20(14-15): 2655-2659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700