用户名: 密码: 验证码:
原位自生陶瓷复合堆焊层的组织与耐磨性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨损是材料的主要失效形式之一,每年由于磨损而给工程造成巨大的经济损失。利用表面工程的工艺方法,在磨损部件表面熔敷具有特殊性能的金属基复合材料涂层,改善材料表面物理、化学性质以增强构件的抗磨损能力,成为提高产品使用性能,修复部件,延长零件使用寿命的重要途径。本文利用等离子弧作为热源,在外加磁场作用下结合原位自生技术在普通低碳钢基体上制备陶瓷相增强铁基堆焊层,并对堆焊层的微观组织、物相组成、堆焊层磨损性能及外加磁场作用下堆焊层组织和性能进行了系统研究,分析了影响堆焊层组织及性能的因素和规律。
     预置合金粉末的组分是等离子弧堆焊制备原位自生陶瓷相增强铁基堆焊层的关键因素。利用高碳铬铁+钒铁作为预置粉末,采用等离子堆焊制备了M_7C_3+VC增强铁基堆焊层,所得Fe-Cr-V-C复合堆焊层同基体形成良好的冶金结合。堆焊层中VC呈开花状、球状,M_7C_3呈断续网状、截面为六边形分布于基体之中。当预置粉末中Cr,V原子比例为1:2时,堆焊层微观组织是大量均匀弥散分布的球状VC颗粒结合断续网状分布的M_7C_3复合物分布在具有较好强韧性的板条马氏体基体上,当预置粉末中Cr,V原子比例为2:1时,堆焊层微观组织是大量六边形M_7C_3复合物结合VC颗粒均匀弥散分布在铁素体及奥氏体基体中,以上两种相结构使得堆焊层具有较好的耐磨性。对Fe-Cr-V-C合金体系热力学分析表明,VC和M_7C_3相比较其它化合物具有更低的吉布斯自由能,因此在体系中具有更高的生成倾向,从热力学上证明了制备VC、M_7C_3增强铁基堆焊层的可行性。堆焊层磨粒磨损试验表明:堆焊层内大量增强相(M_7C_3、VC)的存在使得磨料在摩擦过程中对材料的粘着和犁削作用明显减弱,而且增强相在磨损过程中还起到承受载荷以及对堆焊层基体钉扎强化作用,因此使得堆焊层抗磨损性能得到显著提高。Fe-Cr-V-C合金系堆焊层的磨损机制主要是显微切削和硬质相的剥落。
     利用高碳铬铁+硼铁预置粉末,等离子弧堆焊可以制备原位合成硼化物增强铁基堆焊层,试验表明硼化物M3(C,B)呈蜂窝状或鱼骨状分布,M23(C,B)6呈菊花状或片状分布。当预置粉末中Cr,B原子比例为1:2时,大量硼化物分布在针状马氏体基体上,使得其硬度最高,但同时高硬度的针状马氏体基体组织增大堆焊层的开裂倾向,不利于耐磨性的改进。当预置粉末中Cr,B原子比例为1.8: 1时,堆焊层中所形成的硼化物硬质相数量最多,大量碳硼化物硬质相均匀弥散分布在初生枝晶奥氏体四周,因而堆焊层的耐磨性最佳。堆焊层磨粒磨损试验表明:堆焊层的磨损机制为微裂纹引起的剥落去除机制和一定数量的犁沟造成的显微切削去除机制。
     利用高碳铬铁+钛铁作为预置粉末,等离子弧堆焊制备原位自生M_7C_3+TiC增强铁基堆焊层,所得Fe-Cr-Ti-C复合堆焊层中M_7C_3截面呈六角形、TiC呈开花状,块状或团聚状分布。当Cr和Ti含量(Cr含量占16.71%,Ti含量占9.67%)均是最高的堆焊层中形成的硬质相M_7C_3和TiC的数量最多,大量M_7C_3复合物及TiC颗粒均匀弥散分布在板条马氏体及铁素体基体上使得其具有最佳的耐磨性,堆焊层磨粒磨损试验表明其堆焊层磨损机制主要为梨沟。原位合成的M_7C_3和TiC增强相均表现出小平面相特征,等离子弧堆焊快速冷却并未带来小平面相从光滑界面向粗糙界面的转变,增强相在生长过程中以二维形核和螺旋位错的生长方式长大。(M_7C_3+TiC)/Fe堆焊层中M_7C_3和TiC可以独立形核长大,但在局部区域发现TiC粒子依附于M_7C_3之上生长的结构,证明TiC为先析出相,而M_7C_3颗粒以TiC为基底异质形核长大。
     对综合性能优良的Fe-Cr-Ti-C合金体系(堆焊层中Cr含量占16.71%,Ti含量占9.67%)施加纵向交流磁场。由于在施加磁场过程中受洛伦兹力影响,高熔点的TiO2被带入熔池,同时在电磁搅拌作用下,熔池内气体容易溢出,因而堆焊层内气孔减少,成形性得到明显改善。堆焊层显微组织分析结果表明:最佳磁场电流为2A,最佳磁场频率为15Hz。在合适的磁场参数作用下,硬质相数目增多,晶粒得到显著细化,而过大的磁场参数,电磁阻尼将会占主导地位,从而硬质相的数目减少且晶粒粗大。堆焊层磨粒磨损试验表明:最佳磁场参数(磁场电流为2A,磁场频率为15Hz)作用下堆焊层磨损机制以犁沟和显微切削为主,同时存在轻度的粘着磨损。
As one of the most commonly encountered failure modes of materials, wear causes great economic loss on engineering every year. The fabrication of metal matrix composites coatings on the surface of worn components by using the technology of surface engineering can modify the physical and chemical properties of surface, which becomes an important way to improve the quality of products, maintain components and extend the service time of mechanical products. In the present study, plasma arc was employed with combination of in situ technology through magnetic field to fabricate ceramic phases reinforced Fe-based hardfacing layer on low carbon steel. Systematic analysis was carried out to study the microstructure and phase constituent of hardfacing layer, wear properties as well as the effect of magnetic field on the microstructure and properties. Besides, factors that have influence on microstructure and properties of hardfacing layer were also investigated.
     It is found that constituent of preplaced powder is key factor of synthesizing in situ ceramic phase reinforced Fe-based hardfacing layer by plasma arc cladding. Using high carbon ferro-chrome and ferrovanadium as precursor, M_7C_3+VC reinforced Fe-based hardfacing layers were produced by plasma arc cladding. A good metallurgical bond is obtained between the hardfacing layer and the substrate. VC particles with flower-like or globular shape and M_7C_3 carbides with interrupted netted or hexagonal shape are distributed in the substrate. The microstructure characteristic with a high volume fraction of globular VC particles and a small amount interrupted netted M_7C_3 are distributed in the lath martensite matrix with good obdurability when the atomic ratio of Cr to V in the preplaced powder is 1:2. The microstructure characteristic with a high volume fraction of hexagonal M_7C_3 complex carbides and a small amount globular VC particles are distributed in the softer ferrite and austenite matrix when the atomic ratio of Cr to V is 2:1. The above two phase constituents cause excellent wear resistance in hardfacing layer. It is shown by thermodynamic analysis that VC and M_7C_3 posse lower Gibbs free energy and greater tendency of formation than other compounds, which verifies the feasibility of VC, M_7C_3 reinforced Fe-based hardfacing layer. It was shown by abrasive wear test that the exist of high amount reinforcements can effectively decrease the adhesion and abrasion wear during friction, resulting in the substantial increase in wear resistance. Wear mechanism of Fe-Cr-V-C alloy system is micro-cutting and peeling of reinforcement.
     In situ borides reinforced Fe-based hardfacing layer were fabricated by plasma arc cladding using high carbon ferro-chrome and ferroboron as precursor. M3(C,B) borides with honeycomb or fishbone shape and M23(C,B)6 borides with rosette or plate shape are distributed in the hardfacing layer. The microstructure characteristic with a high volume fraction of borides are distributed in the acicular martensite matrix when the atomic ratio of Cr to B is 1:2, which have the highest hardness value, but the tendency of fracture in the hardfacing layer is increased because of the existing of acicular martensite. Amount of borides of hardfacing layer is the most when the atomic ratio of Cr to B is 1.8: 1. The amount of borides are distributed dispersely and uniformly in primary austenite surroundings, which improve the wear resistance significantly. It is shown by abrasive wear test that the wear mechanism of hardfacing layer is the peeling induced by micro-cracking, mild micro-cutting is also found in hardfacing layer.
     In situ M_7C_3+TiC reinforced Fe-based hardfacing layer were fabricated by plasma arc cladding using high carbon ferro-chrome and ferrotitanium as precursor. TiC particles with flower-like, globular or agglomerated shape and M_7C_3 carbides with hexagonal shape are distributed in the substrate. Amount of M_7C_3 and TiC is the most when the content of Cr and Ti is the most in the hardfacing layer, the microstructure characteristic with a high volume fraction of M_7C_3 complex carbides and a small amount globular TiC particles are distributed in the ferrite and lath martensite matrix, which suggest that the hardfacing layer has a excellent wear resistance. It is shown by abrasive wear test that the wear mechanism of hardfacing layer is mainly micro-cutting. In situ synthesized reinforcements of M_7C_3+TiC exhibit faceted nature, which shows that the rapid solidification process during plasma arc cladding does not transform the solid-liquid interface from smooth to rough. In the (M_7C_3+TiC) /Fe hardfacing layer, M_7C_3 and TiC nucleate separately, but phenomenon of TiC growing on M_7C_3 particles is observed, which shows that TiC fist separates from the melt, the heterogeneous nucleate growth of M_7C_3 particles is based on the TiC.
     AC longitudinal magnetic field was used on the Fe-Cr-Ti-C alloy system when Cr content was 16.71% and Ti content was 9.67%. TiO_2 with high melting point was brought into the weld pool on the influence of lorentz force, and at the same time the gas escaped easily from the weld pool, as a result, amount of pores was decreased in hardfacing layer and formability was improved significantly. The analysis of microstructure shows that the optimum magnetic field current is 2A and magnetic field frequency is 15Hz. Amount of hard phases increases and grain is refined substantially under proper magnetic field parameters. The electromagnetic damping will play major role under larger magnetic field parameters, which causes the decrease of amount of hard phases. It is shown by abrasive wear test that the wear mechanism at optimum magnetic field parameters is mainly ploughing and micro-cutting, it is also found mild adhesive wear in hardfacing layer.
引文
[1]邵荷生,张清.金属的磨料磨损与耐磨材料[M].北京:机械工业出版社,1988.
    [2]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993.
    [3]磨损失效分析案例编委会编.磨损失效分析案例汇集[M].北京:机械工业出版社,1985.
    [4] Ruiz-Navas E M, Delgado M L, Torralba J M. Properties improvement by (TiCN)p and trace additions[J]. J Mater Sci, 2006, 41: 3735~3741.
    [5] Leon C A, Drew R A L. Preparation of nickel-coated powders as precursors to reinforce MMCs[J]. Journal of Material Science, 2000, 35: 4763~4768.
    [6] Massardier V, Santini P, Merle P. In(?)uence of (?)bre-matrix interactions and of matrix microstructure on the mechanical properties of Aluminium-based MMCs reinforced with Altex (?)bers and processed by medium pressure in(?)ltration[J]. Journal of Material Science, 1999, 34: 5371~5386.
    [7] Cavalierei P, Cerri E, Leo P, et al. Friction stir welding of ceramic particle reinforced aluminium based metal matrix composites[J]. Applied Composite Materials, 2004, 11(4): 247~258.
    [8]王蕾,张静浩编.耐磨材料及其应用[M].湖北:湖北科学技术出版社,2004.
    [9] Sing A, Dahotre N B. Laser in-situ synthesis of mixed carbide coating on steel[J]. Journal of Material Science, 2004, 39 (14): 4553~4560.
    [10]王新洪,邹增大,曲仕尧.表面熔融凝固强化技术[M].北京:化学工业出版社,2005.
    [11]李智,马椿喻,刘相华.激光表面合金化工艺进展[J].材料科学与工程,1999,17 (2):81~84.
    [12]孙会来,赵方方,林树忠等.激光熔覆研究现状与发展趋势[J].激光杂志,2008,29 (1):4~6.
    [13]孙荣禄,杨贤金.激光熔覆TiC陶瓷涂层的组织和摩擦磨损性能研究[J].光学技术,2006,32 (2):287~289.
    [14]刘秀波,王华明.TiAl合金激光熔覆复合材料涂层耐磨性研究[J].材料热处理学报,2006,27 (1):87~91.
    [15] Chiang K A, Chen Y C. Microstructural characterization and microscopy analysis of laser cladding Stellite 12 and tungsten carbide[J]. Journal of Materials Processing Technology, 2007, 182 (1-3): 297~302.
    [16] Cheng F T, Lo K H, Man H C. NiTi cladding on stainless steel by TIG surfacing process[J]. Surfacing and Coatings Technology, 2003, 172: 308~315.
    [17] Niederhauser S, Karlsson B. Mechanical properties of laser cladded steel[J]. Materials Science and Technology, 2003, 19 (11): 1611~1616.
    [18] Ocelik V, Matthews D, De H, et al. Sliding wear resistance of metal matrix composite layers prepared by high power laser[J]. Surface and Coatings Technology, 2005. 197(2-3): 303~315.
    [19] Godfrey C, Davim J, Carlosoliveira P, et al. Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search[J]. Optics&Laser Technology, 2007, 39(6): 1130~1134.
    [20] Hamidreza A, Shahrzad E, Ehsan T. Deposition of Co-Ti alloy on mild steel substrate using laser cladding[J]. Materials Science and Engineering:A, 2007, 456(l-2): 156~161.
    [21] Wang H M, Tang H B, Cai L X, et al. Microstructure and wear properties of laser clad Ti2Ni3Si/ Ni3Ti multiphase intermetallic coatings[J]. Applied Physics A: Materials Science and Processing, 2005, 80 (8): 1677~1682.
    [22] Yue T M, Huang K J, Man H C. Laser cladding of Al_2O_3 coating on aluminium alloy by thermite reactions[J]. Surface and Coatings Technology, 2005, 194 (2-3): 232~237.
    [23]赵冠琳,邹增大,王新洪等.激光熔覆原位自生TiC-VC复合增强铁基合金层的研究[J].山东大学学报,2008,38(2):6~9.
    [24]武晓雷,陈光南.激光形成原位TiC颗粒增强涂层的组织及性能[J].金属学报,1998, 34(12):1284~1288.
    [25]王振廷,陈丽丽,张显友.钛合金表面氩弧熔覆TiC增强复合涂层组织与性能分析[J].焊接学报,2008,29(9):43~45.
    [26]宋思利.钨极氩弧原位合成TiC增强铁基熔覆层的研究[D]:(博士学位论文).山东:山东大学,2007.
    [27] Soner B, Mustafa U, Mustafa Y M. Dry sliding wear behavior of TIG welding clad WC composite coatings[J]. Applied Surface Science, 2005, 252(5): 1313~1323.
    [28] Mridha S, Ong H S, Poh L S, et al. Intermetallic coatings produced by TIG surface melting[J]. Journal of Materials Processing Technology, 2001, 113(1-3): 516~520.
    [29]吴玉萍.等离子弧熔覆Fe基合金+TiC涂层中的陶瓷相行为与相结构[J].焊接学报,2001,22(6):89~91.
    [30] Hyung J K, Byoung H Y, Chang H L. Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process[J]. Wear, 2002, 249: 846~852.
    [31] Lakshminarayanan A K , Balasubramanian V , Varahamoorthy R , et al. Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology[J]. Metals and Materials Internationa, 2008, 14(6): 779~789l.
    [32]刘政军,季杰,董晓强等.Cr-B-W-V系铁基高温耐磨堆焊合金及耐磨机理的研究[J].硬质合金,1997,14(4):234~239.
    [33]王晓峰,单平,王惜宝等.等离子弧堆焊TiB2-金属陶瓷涂层的组织及性能[J].焊接学报,2005,26(7):33~36.
    [34]彭竹琴,卢金斌,吴玉萍等.铸铁表面等离子熔覆Fe-Cr-Si-B涂层的组织特征[J].材料热处理学报,2008,29(1):124~127.
    [35] Xie Y, Hawthorne H M. The damage mechanisms of several Plasma-sprayed ceramic coatings in controlled scratching[J]. Wear, 1999, 233-235: 293~305.
    [36] Wang X B, Zhang W Y. New Longitudinal strengthening method forplasma arc powder surfacing coating[J]. Transactions andTianjin university, 2000, 6(2): 157~161.
    [37]赵昆,王红英,程志国.利用等离子弧堆焊获得铁基合金+碳化钨硬质合金的复合堆焊层[J].焊接学报,2002,23(3):56~58.
    [38] Tseng C F, Savage W F. The effect of arc oscillation in either the transverse or longitudinal direction has a beneficial effect on the fusion zone microstructure and tends to reduce Sensitivity to hot cracking[J]. Welding Journal, 1971, 50(12): 777~785.
    [39] Asai S. Birth and recent activities of electromagnetic processing of materials[J]. ISIJ International, 1989, 29(12): 981~992.
    [40] El-Bassyouni T A. Effect of electromagnetic forces on alluminum cast structure[J]. Metals, 1983, 33(12): 733~742.
    [41]殷咸青,李海刚,罗键.用电磁搅拌抑制LD10CS铝合金焊缝热裂纹的研究[J].西安交通大学学报,1998,32(5):91~95.
    [42]刘政军,苏允海.M7C3的形态分布对铁基复合层耐磨性能的影响[J].焊接学报,2008,29(1):65~68.
    [43]国旭明,钱百年,张艳等.外场处理细化管线钢埋弧焊缝的显微组织[J].焊接学报,2001,22(2):27~30.
    [44]罗键,王雄生,薛锦等.外加纵向磁场GTAW焊接机理-电弧模型[J] .金属学报,2001,37(2):217~220.
    [45] Just C, Badisch E, Wosik J. Influence of welding current on carbide/matrix interface properties in MMCs[J]. Journal of Materials Processing Technology, 2010, 210: 408~414.
    [46] Cheng F T, Lo K H, Man H C. NiTi cladding on stainless steel by TIG surfacing process[J]. Surfacing and Coatings Technology, 2003, 172: 308~315.
    [47]杜宝帅,李清明,王新洪等.激光熔覆原位自生TiC-VC颗粒增强Fe基金属陶瓷涂层[J].焊接学报,2007,28(4):65~68.
    [48] Man H C, Zhang S, Cheng F T. Microstructure and formation mechanism of in situ synthesized TiC-Ti surface MMC on Ti-6Al-4V by laser cladding[J]. ScriptaMaterialia, 2001, 44 (12): 2801~2807.
    [49]陈华辉,邢建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社,2006.
    [50]李荣久.陶瓷一金属复合材料(第2版) [M].北京:冶金工业出版社,2004.
    [51]王智慧,贺定勇.NbC增强Fe - Cr - C耐磨堆焊合金组织与磨粒磨损性能[J] .焊接学报,2007,28(2):55~58.
    [52] Wang X H, Han F, Qu Sh Y, et al. Microstructure of the Fe-based hardfacing layers reinforced by TiC-VC-Mo2C particles[J]. Surface and Coatings Technology, 2008, 202: 1502~1509.
    [53]王笑大.金属材料学[M] .北京:机械工业出版社,1987.
    [54] Chieh F, Ming-Che C, Chia-Ming, et al. Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe-Cr-C hardfacing alloys[J]. Science and Coatings Technology, 2006, 201: 908~912.
    [55] Chia-Ming, Chi-Ming L, Chih-Chun H, et al. Micro-Structural characteristics of Fe-40wt%Cr-xC hardfacing alloys with [1.0-4.0wt%] carbon content[J]. Journal of Alloys and Compounds, 2009, 487: 83~89.
    [56]韩芳.TiC-VC-MoC颗粒增强铁基耐磨堆焊层组织与性能研究[D]:(硕士学位论文).山东:山东大学,2007.
    [57]索进平,冯涤.WC颗粒在堆焊过程中溶解机理的研究[J] .功能材料,2003,34(2):221~223.
    [58] Berns H, Fischer A. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and B[J]. Metallography, 1987, 20(4): 401~429.
    [59] Sing A, Dahotre N B. Laser in-situ synthesis of mixed carbide coating on steel[J]. Journal of Materials Science, 2004, 39: 4553~4560.
    [60] Dong Q, Chen L Q, Zhao M J, et al. Synthesis of TiCp reinforced magnesium matrix composites by in situ reactive infiltration process[J]. Materials Letters, 2004, 58( 6): 920~926.
    [61] Wang Y S, Li F C, Zeng G T, et al. Structure and wear-resistance of Fe-VC surface composite produced in situ[J]. Materials and Design, 1999, 20(1): 19~22.
    [62]李文戈,周和平,赵延灵.静态法燃烧合成陶瓷涂层技术及其应用研究[J] .石油大学学报(自然科学版),2004,28(1):70~73.
    [63] Sen Y, Liu W J, Zhong M L, et al. Fabrication of in-situ synthesized TiC particles reinforced composite coating by powder feeding laser cladding[J]. Journal of Materials Science, 2005, 40: 2751~2754.
    [64]李文戈,周和平,陈克新.钢板表面燃烧合成金属陶瓷复合涂层[J].中国有色金属学报,2003,13(4):968~973.
    [65]王一三,张新苑,黄文.液态反应生成Fe-VC表面复合材料的组织与耐磨性能[J].复合材料学报,2002,17(1):71~75.
    [66] Meng Q W, Geng L, Zhang B Y. Laser cladding of Ni-base composite coatings onto Ti6Al4V substrates with pre-placed B4C + NiCrBSi powders[J],Surface and Coatings Technology, 2006, 200: 4923~4928.
    [67]吴朝峰,马明星,吴爱平等.激光原位制备颗粒增强铁基复合涂层中碳化物相的形貌分析[J].金属学报,2009,45(9):1091~1098.
    [68] Tang J K, Jeffrey S Z, John E B. TiC coatings prepared by pulsed laser deposition and magnetron sputtering[J]. Surface and Coatings Technology, 1997, 91(7): 69~73.
    [69] Heimann R B. Thermal spraying of biomaterials[J]. Surface and Coatings Technology, 2006, 201(5): 2012~2019.
    [70] Taylor P R, Manrique M. Investigating the thermal plasma processing of advanced materials[J]. JOM, 1996, 42(6):232~239.
    [71]宋思利,王新洪,邹增大等.氩弧原位合成颗粒增强Fe基复合层[J].焊接学报,2006,27(2):39~42.
    [72]徐滨士,宋韶华.表面工程的理论与技术[M].北京:国防工业出版社,1999.
    [73]孙希泰.材料表面强化技术[M].北京:化学工业出版社,2005.
    [74]周秋沙,周锡容,杨启明.冲击磨料磨损机理研究[J] .西南石油学院学报,1996,18(3):82~88.
    [75]梁补女,张振宇,张鹏林.NiCrWRE合金粉末喷熔层和SAE52100球-盘摩擦副摩擦性能研究[J].粉末冶金技术,2008,26 (1):19~22.
    [76] Buchely M F, Gutierrez L, Leon M, et al. The effect of microstructure on abrasive wear of hardfacing alloys[J]. Wear, 2005, 259: 52~ 61.
    [77] Chi M L, Chia M C, Jie H C. Mirostructure Evolution of Hypoeutectic, Near-Eutectic, and Hypereutectic High–Carbon Cr-Based Hard-Facing Alloys[J]. Metallurgical and materials transactions, 2009, 40: 1031~1038.
    [78]程凤军,王一三,张欣苑.原位表面复合材料的组织与耐磨性能[J].稀有金属材料与工程,2007,36(3):470~473.
    [79] Qu S Y, Wang X H, Zhang M, et al. Microstructure and wear properties of Fe-TiC surface composite coating by laser cladding[J]. J Mater Sci, 2008, 43: 1546~1551.
    [80]孟凡英,郭绍义,李兴俊等.干摩擦条件下Al2O3基复合材料的摩擦磨损特性[J].机械工程材料,2008,32 (8):68~70.
    [81] Joon W P, Hui C L, Sunqhak L. Composition, microstructure, hardness, and wear properties of high-speed steel rolls[J]. Metallurgical and Materials Transactions A, 1999, 30A(2): 399~409.
    [82] Hongsug O, Sunqhak L, Jae-Young J, et al. Correlation of microstructure with the wear resistance and fracture toughness of duocast materials composed of high-chromium white cast iron and low-chromium steel[J]. Metallurgical and Materials Transactions, 2001, 32A(3): 515~524.
    [83]李建明.磨损金属学[M].北京:冶金工业出版社,1990.
    [84]曾绍连,李卫.碳化钨增强钢铁基耐磨复合材料的研究和应用[J].特种铸造及有色合金,2007,27 (6):441~444.
    [85]顾国荣,骆合力,李尚.Cr 3C2/Ni3Al复合材料的组织与耐磨性能[J].航空材料学报,2007,27(4):50~53.
    [86]张树生,王志平,董晓强.碳化钨喷焊层耐磨性的研究[J] .沈阳工业大学学报,1991,23(1):43~51.
    [87] Lee J H, OH J C, Park J W, et al. Effects of tempering temperature on wear resistance and surface roughness of a high speed steel roll[J]. ISIJ International, 2001, 41(8): 859~865.
    [88] Jeong W Y, Seong H L, Chong S, et al. The effect of boron on the wear behavior of iron-based hardfacing alloys for nuclear power plants valves[J]. Journal of Nuclear Materials, 2006, 352: 90~96.
    [89]陈俐,潘春旭,许勇静.耐磨堆焊金属组织分析[J].武汉交通科技大学学报,1998,22(3):327~329.
    [90] De A K, Murdock D C, Mataya M C. Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction[J]. Scr. Mater, 2004, 50: 1445~1449.
    [91]王新洪,邹增大,曲仕尧等.稀土在金属陶瓷/铜基合金复合堆焊材料中的变质作用[J].焊接学报,2002,23(1):50~52.
    [92]陈丽芳,刘咏.稀土元素的添加对原位生成的Ti-TiC-TiB复合材料抗磨损性能的影响[J].粉末冶金材料科学与工程,2005,10(2):100~104.
    [93] Wang X H, Zou Z D. Effect of rare earths on microstructure and properties of TiC-based cermet/Cu alloy composite wear resistant materials[J]. Journal of Rare Earths, 2003, 21(3): 375~379.
    [94] Chatterjee S, Pal T K. Wear behavior of hardfacing deposits on cast iron[J]. Wear, 2003, 255: 417~425.
    [95]孙海琴,晁明举,敬晓定等.原位合成VC颗粒增强镍基激光熔覆层研究[J].激光杂志, 2008,29(5):69~71.
    [96] Dong G L, Kyuhong L, Sunghak L. Effects of tempering on microstructure, hardness, and fracture toughness of VC/steel surface composite fabricated by high-energy electron beam irradiation[J]. Surface and Coatings Technology, 2006, 201(3-4): 1296~1301.
    [97]彭涛,倪锋,魏世忠等.高钒铁碳合金中碳化钒的生长机制及形态控制研究综述[J].铸造,2005,54(7):637~641.
    [98]熊容廷,段汉桥,严有为.原位合成颗粒增强铁基复合材料的研究进展[J].现代铸铁,2004(3):22~26.
    [99]雍歧龙,阎生贡,裴和中等.钒在钢中的物理冶金学基础数据[J].钢铁研究学报,1998,10 (5):63~66.
    [100] Billingham J, Bell P S, Lewis M H. Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaCl structure[J]. Acta Cryst, 1972, A28(6): 802~806.
    [101]石德珂.材料科学基础[M].北京:机械工业出版社,1998.
    [102]陆金生,王彪.钢和合金中常见X射线鉴定手册[M].北京:钢铁研究中心,1990.
    [103]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981.
    [104]曹忠良,王珍云.无机化学反应方程式手册[M].长沙:湖南科学技术出版社,1982.
    [105]长崎诚三,平林真编著,刘安生译.二元合金状态图集[M] .北京:冶金工业出版社,2004.
    [106]刘仲礼,李言祥,陈祥等.高硼铁基合金在不同铸型中凝固的组织与力学性能[J].金属学报,2007,43(5):477~481.
    [107]龚建勋,李丹,肖逸锋等.Fe-Cr-B-C堆焊合金的显微组织及耐磨性[J].材料热处理学报,2010,31(3):136~141.
    [108] Ji h K, kang H K, Seung D N, et al. The effect of boron on the abrasive wear behavior of austenitic Fe-based hardfacing alloys[J]. Wear, 2009, 267: 1415~1419.
    [109]王兆昌,韩福生.B与RE-Si变质处理对高Cr-Mn白口铸铁的组织和性能的影响[J].铸造,1985,37 (3):126~131.
    [110]马虎,吴玉萍,王国桐.等离子熔覆高硼Fe-Cr基涂层的组织与性能[J].焊接学报,2009,30(7):65~68.
    [111]刘均海,黄继华,刘均波等.合金粉粒埋弧堆焊TiC颗粒增强铁基复合涂层[J] .焊接学报,2010,31(12):101~104.
    [112] Yang S, Chen N, Liu W J, et al. Fabrication of nickel composite coatings reinforced with TiC particles by laser cladding[J]. Surface and Coatings Technology, 2004, 183(3): 254~260.
    [113]杜宝帅.激光熔覆原位合成陶瓷相增强Fe基熔覆层研究[D]:(博士学位论文).山东:山东大学,2008.
    [114]陈瑶.小平面相凝固理论及增强金属间化合物复合材料涂层组织与耐磨性[D]:(博士学位论文).北京:北京航空航天大学,2003.
    [115] Balluffi R W, Allen S M, Carter W C. Kinetics of Materials[M]. New Jersey: John Wiley&Sons, 2005.
    [116]殷咸青,罗键,李海刚.纵向磁场参数对LD10CS铝合金TIG焊焊缝组织的影响[J].西安交通大学学报,1999,33(7):71~74.
    [117] Mousavi M G, Herman J M, Richardson I M, et al. Grain refinement due to grain detachment in electro-magnetically stirring AA7020 welds[J]. Science and Technology of Welding and Joining, 2003, 4: 309~312.
    [118]刘政军,刘景铎,牟力军等.磁场强度对重熔层耐磨性的影响[J].焊接学报,2001,22(5):73~75.
    [119] Villafuerte J C,Kerr H W. Electromagnetic stirring and grain refinement in stainless steel GTA weld[J]. Welding Journal, 1990, 69(1): 1~13.
    [120]江淑园.磁控技术在焊接中的应用及进展[J].中国机械工程,2002,13(21):1876~1881.
    [121] Yatak M. Improvement of macrosegreation in continuosly cast bloom and billet by magnetic stirring[J]. Transi ISIJ, 1984, 24: 931~939.
    [122]严珩志,钟掘,毛大恒等.电磁场作用下铝及其合金的凝固结晶行为[J].中国有色金属学报,1996,6(3):158~159.
    [123] Kou S, Le Y. Improve weld quality by low frequency arc oscillation[J]. Welding Journal, 1985, 64(3):51~55.
    [124]胡汉起.金属凝固[M].北京:冶金工业出版社,1985.
    [125]久保田淳,久保典子,铃木真等.移动磁场にょるスラブ连铸机の铸型内溶钢流动制御[J].铁と钢,2000,86(4):69~75.
    [126]王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发[J].材料科学与工艺,2000,8(4):2~5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700