用户名: 密码: 验证码:
低合金高强度钢成分—组织—性能控制与再制造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对近年发展起来的V-N微合金化铁素体-珠光体型热轧低合金高强度H型钢、Nb-V-Ti-Mo微合金化针状铁素体型低合金高强度深海管线钢和Nb-Ti-Cr-Mo微合金化贝氏体型低合金高强度耐磨钢存在的问题,分别研究了合金的成分和塑性变形机制、组织性能控制与预报、修复再制造,得到如下主要结论:
     (1)V/N质量比为3.64,强度值最高,塑性最低。碳含量为0.19 wt%且V/N比为7.14时综合性能最好。
     (2)V-N微合金化铁素体-珠光体型低合金高强度钢的高温塑性变形行为符合幂指数关系。在900-1150℃及0.001-15s-1下,塑性变形由位错芯区扩散的幂律蠕变所控制,不存在塑性失稳区域。建立的塑性变形机制图,可有效指导该钢生产工艺的制定。
     (3)V-N微合金化铁素体-珠光体型低合金高强度钢在热变形过程中,α相与V(C,N)及γ相之间分别存在(010)V(C,N)//(011)α和[110]γ//[111]。关系。铁素体易在V(C,N)上形核生成晶内铁素体;随相变温度的降低、形变量的增加、轧后等温温度的降低及保温时间的延长,晶内铁素体含量增加,在650℃时大量生成。热轧H型钢的冷却速率和等效应变由翼缘边部到翼缘与腹板交界的R处逐渐降低。铁素体晶粒尺寸在翼缘1/4和1/2处没有明显差别,均小于R处。截面不同部位珠光体含量差别不大,但珠光体片层间距由翼缘1/4到R处逐渐增大。V(C,N)以球状或块状分布在铁素体中,其含量由翼缘1/4到R处逐渐增加。大角度晶界在翼缘1/4和翼缘1/2处所占比例大致相等,R处小约15%。采用在线控制冷却技术,成功实现了热轧H型钢截面温差的降低,最高可达80%,晶粒尺寸波动降低64%,屈服强度波动值和残余应力显著降低,消除了轧后腹板冷却波浪。
     (4)数值模拟和有限元模拟相结合的Nb-V-Ti-Mo微合金化针状铁素体型低合金高强度深海管线钢的组织和性能预报结果表明,屈服强度和抗拉强度预报值与实测值最大偏差分别为8.72%和9.43%,但80%样本的偏差均在6.80%之内,可以指导深海管线钢生产工艺的优化。
     (5)等离子堆焊镍基合金涂层主要由γ(Ni, Fe)、(Fe, Cr)7C3和(Fe, Cr)2B相构成,亚结构主要为位错,具有亚共晶的组织特征,存在明显的成分偏析。30wt.%Cr3C2的加入,增加了涂层中的富(Fe, Cr)化合物的相对含量,出现了Cr3C2和Ni4B3相,具有过共晶的组织特征。0.8wt.%纳米α-Al2O3的加入,没有改变镍基合金涂层的亚共晶组织特征及γ(Ni, Fe)固溶体与富(Fe,Cr)相的相对含量,但降低了(Fe, Cr)7C3相的相对含量,增加了(Fe, Cr)2B相的相对含量,出现了四方结构的纳米y-A1203,有形成堆垛层错亚结构的趋势。Cr3C2和纳米A1203的加入,均降低成分偏析程度。等离子堆焊镍基合金涂层和添加30wt.%Cr3C2或0.8wt.%纳米Al2O3的镍基合金涂层的冲击磨损性能分别是Nb-Ti-Cr-Mo微合金化高强度NM450耐磨钢的1.3倍和2.2倍或6倍。综合经济因素,采用等离子堆焊添加0.8wt.%纳米Al2O3的镍基合金涂层来修复NM450耐磨钢进行再制造是合适的。
Considering the insufficiency in the recent developed V-N microalloyed ferrite-pearlite hot rolled high-strength low-alloy steel (HSLA) H-shape steel, Nb-V-Ti-Mo microalloyed acicular ferrite HSLA pipeline steel, and Nb-Ti-Cr-Mo microalloyed bainite HSLA abrasion resistance steel, the compositions and plastic deformation mechanisms, the prediction of the microstructure and property, the repairing and remanufactuering were investigated, respectively. The primary conclusions are shown following:
     (1) The highest strength and lowest plasticity can be obtained in the V-N microsalloyed steel with 3.64 of V/N ratio in weight percentage. The better overall properies can be received in the steel with 0.19 wt.%C and V/N ratio being 7.14 in the range of 0.06-0.19 wt. %C.
     (2) The plastic deformation behavior under high temperatures of the high strength low alloy steel with ferrite-pearlite microstructure microalloyed by V and N elements is power-law creep. The plastic deformation mechanism at temperatures of 900-1150℃and shear strain rates of 0.001-15 s"1 is power-law creep by dislocation core diffusion and the plastic instabilities cannot be obtained. Under the above deformation conditions, the plastic deformation mechanism of the observed steel can be studied by plastic deformation mechanism map built based on the strain rate constitutive equations for the Fe-C alloys. The dynamic recrystallization (DRX) microstructure can be obtained at a low strain rate and temperatures of 900-1033℃. Increasing temperature to 1033℃, the DRX microstructure can be obtained at 0.1-100 s-1.
     (3) During the hot deformation of the high strength low alloy steel with ferrite-pearlite microstructure microalloyed by V and N elements, the relationship between a and V(C,N) being(010)V(C,N)//(011)α,αandγbeing [110]γ//[111]αcan be obtained. The IGF can be easily obtained by nucleating the ferrite on the V(C, N) particles. The contents of IGF increase with decreasing the phase transformation temperature, increasing the deformation degree, decreasing the soaking temperature or increasing the soaking time, and the peak values can be obtained when the temperatures are 650℃. The cooling rate and the equivalent strain of the hot rolled H-beam steel decrease gradually from the edge of the flange to the boundary between the flange and the wave (R). The obvious difference in the grain size of the ferrite in the flange 1/4 and 1/2 cannot be found, where the grain size of the ferrite is lower than that of the R. Little difference about the contents of pearlite in the different sections of the H-beam can be obtained, though the lamellar distance of pearlite increases from flange 1/4 to R. The V(C, N) particles in the morphology of spherical or block distributes on the ferrite. The content of V(C, N) particles increases from flange 1/4 to R. The proportion of the high-angle boundary in flange 1/4 and 1/2 is almost the same, where the proportion of the high-angle boundary is higher than R by 15%. Using on-line controlled cooling technique, the decreasing of the temperature difference and the grain size fluctuating on the different cross-section of the hot rolled H-beam steel is obtained successfully. Under such condition, the highest temperature difference by 80% and the grain size fluctuating by 64% can be received. Besides, the yield strength fluctuating and the residual stress decrease significantly. And the waves on the web can be removed.
     (4) The results about the prediction of the microstructure and properties of the submarine pipe steel with acicular ferrite microstructure microalloyed by Nb, Ti and Mo elements invesitigated by numerical simulation companied by finite element simulation show that the maximum difference of the yield strength and the yield strength between the predication and the measurement values are about 8.72% and 9.43%, respectively. Nevertheless, for the 80% sample, the maxiumum difference is lower than 6.80%. Therefore, the production process of submarine pipe line steel can be improved.
     (5) The nickel-based alloy coating deposited by plasma surfacing is consisted of y (Ni, Fe)、(Fe, Cr)7C3 and (Fe, Cr)2B phases. The substructure is mainly dislocation. The hypoeutectic microstructure and the obvious component segregation can be seen in the deposited coating. Adding 30 wt.%Cr3C2 leads to increase the relative contents of (Fe, Cr)-rich phases and the occurrence of Cr3C2 and Ni4B3 phases. The hypereutectic microstructure can be obtained in the Cr3C2-strengthen nickel-based alloy coating. Adding 0.8 wt.% nanometerα-Al2O3 with rhombohedral lattice structure does not change the hypoeutectic microstructure and the relative contents between y (Ni, Fe) and (Fe, Cr)-rich phases in the nickel-based alloy coating, but decreases the relative content of (Fe, Cr)7C3 phase and increases that of (Fe, Cr)2B phase. Besides, adding 0.8 wt.% namometerα-Al2O3 with rhombohedral lattice structure leads to the occurrence of nanometerγ-Al2O3 with tetragonal lattice structure and promote the formation of the stacking fault. Adding Cr3C2 and nano-Al2O3 can decrease the component segregation in the nickel-based alloy coating. The impact abrasion resistance of the nickel-based alloy,30 wt.% Cr3C2 and 0.8 wt.% nano-Al2O3 strengthen nickel-based alloy coatings is 1.3,2.2 and 6 times to that of the Nb-Ti-Cr-Mo microalloyed NM450 high strength low alloy abrasion resistance steel, respectively. Considerating the economic fator further, it is suitable to use 0.8% nano-Al2O3-strengthen nickel-based alloy coating deposited by plasma surfacing to repair NM450 steel to reach the purpose to remanufacture.
引文
[1]Fernandez J, Illescas S, Guilemany JM. Effect of microalloying elements on the austenitic grain growth in a low carbon HSLA steel. Materials Letters,2007,61:2389-2392.
    [2]Lee WB, Hong SG, Paek CG. Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo. Metallurgical and Materials Transctions A,2002,33:1689-1698.
    [3]Misra RDK, Nathania H, Hartmann JE, Siciliano F. Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel. Materials Science and Engineering A,2005, 394:339-352.
    [4]侯晶,王飞,赵国英.微合金钢的研究现状及发展趋势.材料导报,2007,21:91-95.
    [5]袁泽喜,李翔,万亮.热加工对管线钢针状铁素体组织形成的影响.武汉科技大学学报,2010,33:259-263.
    [6]镇凡,刘静,贾涓,程吉浩,徐进桥,郭斌.Mo、B对低合金高强钢组织和性能的影响.武汉科技大学学报,2010,33:53-57.
    [7]刘建,宋立秋,方淑芳.钒氮微合金化对钢组织与性能的影响.材料导报,2005,19:440-442,445.
    [8]邱昱斌 林,韩安昌.热轧温度参数对Nb-Ti和Nb-V微合金钢力学性能的影响.钢铁研究学报,2007,19:48-53.
    [9]Gojic M, Kosec L, Matkovic P. Embrittlement damage of low alloy Mn-V steel. Engineering Failure Analysis,2003,10:93-102.
    [10]Hong SG, Jun HJ, Kang KB, Park CG. Evolution of precipitates in the Nb-Ti-V microalloyed HSLA steels during reheating. Scripta Materialia,2003,48:1201-1206.
    [11]Li Y, Wilson JA, Crowther DN, Mitchell PS, Craven AJ, Baker TN. The effects of vanadium, niobium, titanium and zirconium on the microstructure and mechanical properties of thin slab cast steels. ISIJ International,2004,44:1093-1102.
    [12]Milbourn D, Yu L. Metallurgical benefits of vanadium microalloying in producing high strength seismic grade rebar. Proceedings of International Seminar on Production and Application of High Strength Seismic Grade Rebar Containing Vanadium. Beijing China, 2010:32-43.
    [13]Nikolaou J, Papadimitriou GD. Microstructures and mechanical properties after heating of reinforcing 500 MPa class weldable steels produced by various processes (Tempcore, microalloyed with vanadium and work-hardened). Construction and Building Materials, 2004,18:243-254.
    [14]Park JY, Park JK, Choo WY. Effect of Ti Addition on the Potency of MnS for Ferrite Nucleation in C-Mn-V Steels. ISIJ International,2000,40:1253-1259.
    [15]Smith RM, Dunne DP. Isothermal precipitation of VCN in a v-bearing HSLA steel. Micron,1982,13:281-282.
    [16]Varughese R, Pense AW. Micro structural development in the coarse-grained, heat-affected zone in titanium-vanadium microalloyed HSLA steels. Materials Characterization,1993,30:35-43.
    [17]Wang SH, Chiang CC, Chan SLI. Effect of initial micro structure on the creep behavior of TMCP EH36 and SM490C steels. Materials Science and Engineering A,2003,344: 288-295.
    [18]Yang CF, Wang QL. Research, development, and production of V-N microalloyed high strength rebars for building in China. Journal of Iron and Steel Research, International, 2008,15:1-8.
    [19]Zajac S, Jansson B. Thermodynamics of the Fe-Nb-C-N System and the Solubility of Niobium Carbonitrides in Austenite. Metallurgical and Materials Transactions B,1998,29: 163-176.
    [20]杨才福.钒氮微合金化技术在HSLA钢中的应用.钢铁,2002,37:42-47.
    [21]傅杰.新一代低碳钢-——HSLC钢.中国有色金属学报,2004,14:82-90.
    [22]吴承建,陈国良,强文江.金属材料学.北京:冶金工业出版社,2010.
    [23]杨作宏,陈伯春.谈微合金元素Nb、V、Ti在钢中的作用.甘肃冶金,2000,(4):20-22.
    [24]雍歧龙,马鸣图.微合金钢-物理和力学冶金.北京:冶金工业出版社,1989.
    [25]Kimura T, Ohmori A, Kawabata F. Ferrite grain refinement through intra-granular ferrite transformation on VN precipitates in TMCP of HSLA steel. THERMEC'97 International Conference on Thermomechanical Processing of Steels and Other Materials. USA:Wollongong; Australia,1997:645-651.
    [26]Porter D, Laukkanen A, Nevasmaa P, Rahka K. Performance of TMCP steel with respect to mechanical properties after cold forming and post-forming heat treatment. International Journal of Pressure Vessels and Piping,2004,81:867-877.
    [27]Shin YT, Kang SW, Lee HW. Fracture characteristics of TMCP and QT steel weldments with respect to crack length. Materials Science and Engineering:A,2006,434: 365-371.
    [28]Xue X-H, Shan Y-Y, Zheng L, Lou S-N. Microstructural characteristic of low carbon microalloyed steels produced by thermo-mechanical controlled process. Materials Science and Engineering:A,2006,438-440:285-287.
    [29]Zhao YT, Yang S W, Shang CJ, Wang XM, Liu W, He XL. The mechanical properties and corrosion behaviors of ultra-low carbon microalloying steel. Materials Science and Engineering:A,2007,454-455:695-700.
    [30]李壮,吴迪.热机械控制工艺对热轧TRIP钢力学性能的影响.钢铁,2007,42:39-43.
    [31]Tanaka T. Controlled rolling of steel plate and strip. International Metals Reviews, 1981,26:185-212.
    [32]小指军夫.控制轧制·控制冷却:改善材质的轧制技术发展.北京:冶金工业出版社,2002.
    [33]Jun HJ, Kang KB, Park CG. Effects of cooling rate and isothermal holding on the precipitation behavior during confinuous casting of Nb-Ti bearing HSLA steels. Scripta Materialia,2003,49:1081-1086.
    [34]Bharath RR, Ramanathan R, Sundararajan B, Srinivasan PB. Optimization of process parameters for deposition of Stellite on X45CrSi93 steel by plasma transferred arc technique. Materials & Design,2008,29:1725-1731.
    [35]Carsi M, Penalba F, Larrea MT, Ruano OA. Influence of strain rate on the microstructure of a thermo-mechanically processed medium carbon microalloyed steel. Materials Science and Engineering A,1997,234-236:703-706.
    [36]Ooi SW, Fourlaris G. A comparative study of precipitation effects in Ti only and Ti-V Ultra Low Carbon (ULC) strip steels. Materials Characterization,2006,56:214-226.
    [37]Pandit A, Murugaiyan A, Podder AS, Haldar A, Bhattacharjee D, Chandra S, Ray RK. Strain induced precipitation of complex carbonitrides in Nb-V and Ti-V microalloyed steels. Scripta Materialia,2005,53:1309-1314.
    [38]Prasad SN, Sarma DS. Influence of thermomechanical treatment on microstructure and mechanical properties of a microalloyed (Nb+V) weather-resistant steel. Materials Science and Engineering:A,2005,399:161-172.
    [39]Mabuchi H, Hasegawa T, Ishikawa T. Metallurgical Features of Steel Plates with Ultra Fine Grains in Surface Layers and their Formation Mechanism. ISIJ International,1999,39: 477-485.
    [40]Turkdogan ET. Causes and effects of nitride and carbonitride precipitation during continuous casting. Iron Steelmaker,1989,16:61-75.
    [41]Yang XN, Cheng GG, Wang ML, Li YL, Wang YG, Zhao P. Precipitation and growth of titanium nitride during solidification of clean steel. Journal of University of Science and Technology Beijing,2003,10:24-26.
    [42]Ohmori A, Oi K, Kawabata F, Amano K. Effect of VN precipitates on formation of grain boundary and intragranular ferrite in a high N-V bearing steel ISIJ International,1998, 84:35-41.
    [43]Stasko R, Adrian H, Adrian A. Effect of nitrogen and vanadium on austenite grain growth kinetics of a low alloy steel. Materials Characterization,2006,56:340-347.
    [44]龚维幂杨,张永权.钒氮钢中的晶粒细化研究.钢铁研究学报,2006,18:49-53.
    [45]孙邦明,季怀忠,杨才福,张永权.V-N微合金化钢筋中钒的析出行为.钢铁,2001,36:44-47.
    [46]Zajac S. Strengthening mechanism in vanadium microalloyed steel intended for long products. ISIJ International,1998,38:1130-1139.
    [47]Zajac S, Lagneborg R, Siwechi T. The role of nitrogen in microalloyed steels. Microalloying' 95. Pittsburgh, PA, ISS,1995:321-340.
    [48]刘建王,宋立秋,方淑芳.钒氮微合金化高强度钢的研究及应用.上海金属,2006,28:56-60.
    [49]潘国平 杨,闻玉胜.钒氮元素在钢中的特性及对工艺影响的探讨.安徽冶金,2004,(2):7-11.
    [50]季怀忠.氮在非调质钢中的作用.钢铁,2000,35:66-71.
    [51]Lagneborg R, Siwecki T, Zajac S, Hutchinson B. The Role of Vanadium in Microalloyed Steels. Scandinavian Journal of Metallurgy,1999,28:186-241.
    [52]Li Y, Baker TN. Vanadium microallyed steel for thin slab casting and direct rolling. Materials Science Forum,2005,500-501:237-243.
    [53]Beladi H, Kelly GL, Shokouhi A, Hodgson PD. The evolution of ultrafine ferrite formation through dynamic strain-induced transformation. Materials Science and Engineering A,2004,371:343-352.
    [54]Gurovich BA, Kuleshova EA, Shtrombakh YI. Intergranular and intragranular phosphorus segregation in Russian pressure vessel steels due to neutron irradiation. Journal of Nuclear Materials,2000,279:259-272.
    [55]Maugis P, Goune M. Kinetics of vanadium carbonitride precipitation in steel:A computer model. Acta Materialia,2005,53:3359-3367.
    [56]Nagasaka T, Takahashi H, Muroga T. Recovery and recrystallization behavior of vanadium at various controlled nitrogen and oxygen levels. Journal of Nuclear Materials, 2000,283-287:816-821.
    [57]Sumita M, Hanawa T, Teoh SH. Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials--review. Materials Science and Engineering:C,2004,24:753-760.
    [58]Enomoto M. The mechanisms of ferrite nucleation at intragranular inclusions in steel. International Conference on Thermomechanical Processing of Steels and Other Materials. Wollongong; Australia,1997:427-431.
    [59]Enomoto M. Nucleation of phase transformation at intragranular inclusions in steel. Metals and Materials,1998,4:115-123.
    [60]Ishikawa F, Takahashi F, Ochi T. Intragranular ferrite nucleation in medium-carbon vanadium steels. Materials Science and Engineering A,1994,462:76-85.
    [61]Pan T, Yang ZG, Zhang C, Bai BZ, Fang HS. Kinetics and mechanisms of intragranular ferrite nucleation on non-metallic inclusions in low carbon steels. Materials Science and Engineering:A,2006,438-440:1128-1132.
    [62]Wang JP, Yang ZG, Bai BZ, Fang HS. Grain refinement and microstructural evolution of grain boundary allotriomorphic ferrite/granular bainite steel after prior austenite deformation. Materials Science and Engineering A,2004,369:112-118.
    [63]Wu K, He X. Nucleation and three-dimensional morphology of intragranular ferrite in a vanadium microalloyed steel. Journal of University of Science and Technology Beijing, 2005,12:326-328.
    [64]Wu KM. Intragranular ferrite formed in association with inclusions in a vanadium microallyed steel. Acta Metallurgica Sinica,2004,17:785-789.
    [65]Zhang S, Nobuyuki H, Masato E, Toshimi T. Ferrite nucleation at ceramic/austenite interfaces. ISIJ International,1996,36:1301-1309.
    [66]雍岐龙,陈明听,裴和中,潘俐.微合金碳氮化物在铁素体中的沉淀强化机制的理论分析.科学通报,1989,34:707-709.
    [67]雍岐龙,陈明昕,裴和中,潘俐,周晓玲,杨天武,钟卫,郝建英.微合金碳氮化物在铁素体中沉淀析出的PTT曲线的理论计算.钢铁研究学报,2006,18:30-32.
    [68]Brownrigg A, Prior GK. Hardenability reduction in VN microalloyed eutectoid steels. Scripta Materialia,2002,46:357-361.
    [69]Hosmani SS, Schacherl RE, Mittemeijer EJ. Nitrogen uptake by an Fe-V alloy: Quantitative analysis of excess nitrogen. Acta Materialia,2006,54:2783-2792.
    [70]Kimura T, Kawabata F, Amano K, Ohmori A. Heavy gauge H-shapes with excellent seismic-resistance for building structures produced by the third generation TMCP. International Symposium on Steel for Fabricated Structures. Cincinnati, OH; USA,1999: 165-171.
    [71]Lagneborg R钒在微合金钢中的作用.北京:冶金工业出版社,2000.
    [72]Zhang WZ, Li YW, Zhou QT, Qi XD, Widera GEO. Optimization of the structure of an H-beam with either a flat or a corrugated web:Part 3. Development and research on H-beams with wholly corrugated webs. Journal of Materials Processing Technology,2000, 101:119-123.
    [73]Zhang WZ, Li YW, Zhou QT, Qi XD, Widera GEO. Calculation of temperature and determination of deformation resistance in H-beam rolling (2) Total change of temperature and deforamtion resistance. Journal of Materials Processing Technology,1999,94:128-132.
    [74]Zhang WZ, Li YW, Zhou QT, Qi XD, Widera GEO. Hot rolling technique and profile design of tooth-shape rolls:Part 1. Development and research on H-beams with wholly corrugated webs. Journal of Materials Processing Technology,2000,101:110-114.
    [75]Zhang WZ, Zhu CQ. Determation of forward slip in H-beam rolling. Journal of Materials Processing Technology,1995,54:114-119.
    [76]Zhang WZ, Zhu CQ. On the use of the upper-bound method for load determination in H-beam rolling. Journal of Materials Processing Technology,1996,56:820-833.
    [77]柴昶,俞国音.H型钢在建筑工程中的应用.冶金工业部建筑研究院院刊,1995,(4):12-24.
    [78]丛晓燕.VN元素在微合金化钢中的作用和开发前景.安徽冶金,2004,32:3-5.
    [79]丁洁张,陈蕴博.控锻控冷对非调质钢38MnVS5的组织影响.材料热处理学报,2006,27:35-38.
    [80]顾建国.海洋石油平台用H型钢的开发研究.钢铁,2001,36:29-33.
    [81]惠卫军,董瀚,王毛球,陈思联,翁宇庆.淬火温度对Cr-Mo-V系低合金高强度钢力学性能的影响.金属热处理,2002,27:14-16.
    [82]霍向东毛,郑晓伟,林振源,王志远.CSP生产的钒氮微合金钢的组织细化和析出物研究.钢铁,2009,44:64-67.
    [83]刘胜新刘,钟云龙,王辅忠.33Mn2V非调质油井管钢的相变特性及其应用.钢铁,2003,38:38-42.
    [84]卢向阳刘,贾斌,董军.VN合金在非调质钢中的应用.钢铁钒钛,2000,21:29-33.
    [85]王安东刘,刘胜新,杨才福V-Ti-N微合金非调质无缝油井管钢中碳氮化物的热力学计算.北京科技大学学报,2006,28:823-829,895.
    [86]王辅忠刘,刘胜新,钟云龙.油井管钢33Mn2V静态再结晶的模拟研究.钢铁,2003,38:43-48.
    [87]钟云龙刘,刘胜新,张艳.新型油井管钢33Mn2V的动态再结晶规律研究.钢铁,2003,38:42-45.
    [88]Zhang WZ, Zhou QT. Calculation of temperature and determination of deformation resistance in H-beam rolling (1) Temperature variation in a stand. Journal of Materials Processing Technology,1999,94:123-127.
    [89]高海建奚,孙飞飞.热轧H型钢的轧制及其工程应用.建筑钢结构进展,2002,4:33-40.
    [90]龚维幂杨,张永权.钒氮钢中铁素体等温形核规律的试验研究.钢铁,2005,40:63-67.
    [91]吴开明.低碳微合金钢中品内和晶界铁素体长大动力学.金属学报,2006,42:572-576.
    [92]徐曼孙,刘清友,董翰.低碳含钒钢组织变化及V(C,N)析出规律.钢铁钒钛,2005,26:25-30.
    [93]王春明,吴杏芳,刘玠,徐宁安.深海针状铁素体管线钢析出相.北京科技大学学报,2006,28:253-258.
    [94]Ollilainen V, Kasprzak W, Holappa L. The effect of silicon, vanadium and nitrogen on the microstructure and hardness of air cooled medium carbon low alloy steels. Journal of Materials Processing Technology,2003,134:405-412.
    [95]潘涛杨,毛新平,张永权,刘清友.V-N微合金化CSP带钢中的析出物研究.钢铁钒钛,2007,28:21-26.
    [96]Russwiurm D, Wille P. High strength weldable reinforcing bars. Microalloying'95. Pittsburgh, PA, ISS,1995:377.
    [97]Lejcek P, Hofmann S, Janovec J. Prediction of enthalpy and entropy of solute segregation at individual grain boundaries of [alpha]-iron and ferrite steels. Materials Science and Engineering:A,2007,462:76-85.
    [98]Medina SF, Omez M, Rancel L. Grain refinement by intragranular nucleation of ferrite in a high nitrogen content vanadium microalloyed steel. Scripta Materialia,2008,58: 1110-1113.
    [99]Miyamoto G, Shinyoshi T, Yamaguchi J, Furuhara T, Maki T, Uemori R. Crystallography of intragranular ferrite formed on (MnS+V(C,N)) complex precipitate in austenite. Scripta Materialia,2003,48:371-377.
    [100]Sobral MDC, Mei PR, Kestenbach HJ. Effect of carbonitride particles formed in austenite on the strength of microalloyed steels. Materials Science and Engineering A,2004, 367:317-321.
    [101]完卫国王,吴结才.钒氮微合金化技术的研究与应用综述.江西冶金,2004,24:26-30,39.
    [102]徐旭东刘,吴迪.改善H型钢断面性能均匀性的研究.塑性工程学报,2003,10:82-85.
    [103]徐旭东王,刘相华,吴迪.H型钢控制冷却的有限元模拟.钢铁研究学报,2005,17:30-33.
    [104]卜力勇,刘才,赵文才.H型钢轧制过程三维弹性大变形有限元模拟.钢铁研究学报,1999,11:22-25.
    [105]钱健清,吴结才.控轧技术在H型钢生产中的应用.钢铁,2003,38:21-24.
    [106]卫星.中国油气管道建设快速发展将推动高端管线钢生产发展.上海金属,2010,32:10.
    [107]张伟卫,熊庆人,吉玲康.国内管线钢生产应用现状及发展前景.焊管,2011,34:5-10.
    [108]庄传晶,冯耀荣,霍春勇.国内X80级管线钢的发展及今后的研究方向.焊管,2005,28:10-11.
    [109]姜敏,支玉明,刘卫东.我国管线钢的研发现状和发展趋势.上海金属,2009,31:42-46.
    [110]Hillenbrand H-G, Graf M. Development and Production of High Strength Pipeline Steels. Niobioum 2001. Orlando, USA,2001:1-28.
    [111]Bob E, Robert JE, Lorne C. Fracture control for the Alliance pipeline.2000 International Pipeline Conference. Calgary, Alberta, Canada:ASME,2000.
    [112]Gilroy A, Afaganis A, Carlson L, Mitchell J. Development and Confirmation of a High Touhness Design for the Alliance Pipeline.2000 International Pipeline Conference. Calgary, Alberta, Canada:ASME,2000.
    [113]钟勇,王忠军,单以银.热变形对超纯净管线钢组织的影响.材料研究学报,2003,17:304-309.
    [114]吴健鹏,王志明,姚海涛.控制轧制技术的新进展-低碳贝氏体钢.宽厚板,2000,6:5-11.
    [115]王迎娜,梁志芳,李午申.深海管线管焊接工艺与CTOD之问回归方程的建立.压力容器,2007,24:55-57.
    [116]单以银,赵明纯,曲锦波.管线钢中针状铁素体的形成及其综合性能.钢管线钢新世纪技术与发展论坛.上海,2001.
    [117]曲锦波,单以银,赵明纯.热变形和加速冷却对低碳微合金钢组织的影响.钢铁研究学报,2001,13:43-47.
    [118]Rees GI, Bhadeshia HKDH. Thermodynamics of acicular ferrite nucleation. Materials Science and Technology,1994,10:353-358.
    [119]单以银,肖福仁,赵明纯.变形对低碳微合金钢连续冷却转变的影响.铌在钢中的应用微合金化技术国际研讨会论文集.北京,2001.
    [120]赵明纯,单以银,曲锦波.控制热加工下管线钢中针状铁素体的形成.金属学报,2001,37:820-824.
    [121]赵明纯,单以银,曲锦波.针状铁素体的强韧性行为和抗H2S性能的研究.北京,2001.
    [122]陶鹏,张驰,杨志刚.高钢级管线钢的组织和力学性能.焊管,2008,31:19-20.
    [123]赵明纯,单以银,李玉海.显微组织对管线钢抗硫化物应力腐蚀开裂的影响.金属学报,2001,37:1087-1092.
    [124]王茂堂,王丽,冯斌.西气东输管线用钢、钢管“技术条件”编制中的几个问题及回顾.焊管,2003,26:1-6,10.
    [125]Beynon HJ, Sellars CM. Modeling microstructure and its effects during multipass hot Rolling. ISIJ International,1992,32:359-367.
    [126]Korczak P. Modeling of steel microstructure evolution during thermo-mechanical rolling of plate for conveying pipes. Journal of Materials Processing Technology,2004, 153-154:432-435.
    [127]Sellars CM. Modelling microstructural development during hot rolling Materials Science and Technology,1990,6:1072-1081.
    [128]Wang KF, Chandrasekar S, Yang HTY. Experimental and computational study of the quenching of carbon steel. Journal of Manufacturing Science and Engineering,1997,119: 257-265.
    [129]Yoshie A, Fujioka M, Watanabe Y, Nishioka K, Morikawa H. Modeling of microstructural evolution and mechanical properties of steel plates produced by thermo-mechanical control process. ISIJ International,1992,32:395-404.
    [130]干勇,刘正东,王国栋.组织性能预报系统在宝钢2050热轧生产线的在线应用.钢铁,2006,1:12-21.
    [131]李静.基于组织性能预报的中厚板定制化生产管理.轧钢,2007,4:12-27.
    [132]刘正东,刘澣,干勇.热连轧过程中组织性能预报系统的应用.钢铁,2003,3:68-71.
    [133]鲁茨,迈耶.带钢轧制过程中材料性能的优化.北京:冶金工业出版社,1996.
    [134]余万华,张永军,韩静.高线控冷段在线性能预报系统控制方法.中国冶金,2008,1:25-30.
    [135]赵辉.低碳钢轧后显微组织变化的计算机模拟与性能预报.北京:北京科技大学,1998.
    [136]Choquef P, Fabregue P, J JG. Modeling of forces, structure and final properties during the hot rolling procession the hot strip mill. Mathematical Modeling of Hot Rolling of Steel Montreal, Canada,1990:34-43.
    [137]Andrade HI, Akben MG, Jonas JJ. Efect of molybdenum,niobium and vanadiumon statical cover yand recrystallization and on solute strengthening in microalloyed steels. Metallurgical Transactions A,1983,14:1967-1977.
    [138]Sellers CM, Whiternan JA. Recrystallization and Grain Growth Hot Rolling. Materials Science and Technology,1979,3:187-194.
    [139]Sellars CM. Computer modeling of hot-working processes. Materials Science and T technology,1985,4:325-333.
    [140]张强.钢材性能定量预报研究现状与发展方向.钢铁,2005,31:32-36.
    [141]Tamura I. Some Fundamental Steps in Thermomechanical Processing. ISIJ International Conference. Tokyo, Japan:The Iron and Steel Institute of Japan,1986: 763-788.
    [142]Laasraoui A, Jonas JJ. Prediction of steel flow stress at high temperature and strain rates. Metallurgical Transactions,1991,22:1545-1558.
    [143]Roucoule C, Yue S, Jonas JJ. Efect of alloying element on metadynamica; crystallization in HSLA steel. Metallurgical and Materials Transactions A,1995,26: 181-190.
    [144]干勇.薄板坯连铸连轧(TSCR)热轧过程组织性能预报技术的开发.钢铁,2003,38:10-15.
    [145]张国滨,曹会改,魏明军.热轧窄带钢组织性能的计算机模拟与预报.2003,25:23-29.
    [146]胡于华.基于人工神经网络的CSP热轧板带力学性能预报.南方金属,2007,1:13-18.
    [147]赵辉,鹿守理.热轧微观组织的计算机模拟机性能预报.轧钢,1997:56-59,59.
    [148]Marques F, Silva WMd, Pardal JM, Tavares SSM, Scandian C. Influence of heat treatments on the micro-abrasion wear resistance of a superduplex stainless steel Wear,2011, 271:1288-1294.
    [149]Rendon J, Olsson M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods Wear,2009,267:2055-2061.
    [150]Suchanek J, Kuklik V. Influence of heat and thermochemical treatment on abrasion resistance of structural and tool steels. Wear,2009,267:2100-2108.
    [151]Zhang Y, Sun Y, Guan S, Deng X, Yan X. Effect of titanium and tungsten on the structure and properties of heat-abrasion resistant steel. Materials Science and Engineering A, 2008,478:214-220.
    [152]程巨强,徐振华,康沫狂.HB400级高强度准贝氏体耐磨钢板的组织与性能.钢铁,2004,39:30-33.
    [153]邓想涛,王昭东,袁国,王国栋.HB450低合金超高强耐磨钢组织与性能.东北大学学报,2010,31:942-946.
    [154]刘军刚,袁林,王玮,刘宁.耐磨钢生产研究现状与分析.山东冶金,2011,33:7-9.
    [155]刘勇,汤咏舫.低合金高强度耐磨钢力学性能的改善.钢铁研究学报,1999,11:75-77.
    [156]罗丽军.国外高强度耐磨钢生产概述.宽厚板,2008,14:46-48.
    [157]仝健民.耐磨钢研究进展.水利电力机械,2003,25:29-32.
    [158]王生朝,蔡素莉.HB400耐磨钢的生产工艺研究.湖南工业大学学报,2009,24:1-4.
    [159]杨瑞林,李玉成.新型低合金高强韧性耐磨钢的研究.钢铁,1999,34:41-45.
    [160]师昌绪,徐滨士.表面工程与再制造工程的进展.中国表面工程,2001,50:8-14.
    [161]傅立明.等离子堆焊.北京:农业出版社,1989.
    [162]曾晓雁,吴懿平.表面工程学.北京:机械工业出版社,2003.
    [163]詹祖保,吴子键.等离子喷焊及应用.材料保护,1991,4:37-39.
    [164]Branagan DJ, Marshall MC, Meacham BE. High toughness high hardness iron based PTAW weld materials. Materials Science and Engineering A,2006,428:116-123.
    [165]Darabara M, Bourithis L, Diplas S, Papadimitriou GD. A TiB2 metal matrix composite coating enriched with nitrogen:Microstructure and wear properties. Applied Surface Science, 2008,254:4144-4149.
    [166]Darabara M, Papadimitriou GD, Bourithis L. Production of Fe-B-TiB2 metal matrix composites on steel surface. Surface and Coatings Technology,2006,201:3518-3523.
    [167]Darabara M, Papadimitriou GD, Bourithis L. Tribological evaluation of Fe-B-TiB2 metal matrix composites. Surface and Coatings Technology,2007,202:246-253.
    [168]D'Oliveira ASCM, Paredes RSC, Santos RLC. Pulsed current plasma transferred arc hardfacing. Journal of Materials Processing Technology,2006,171:167-174.
    [169]D'Oliveira ASCM, Tigrinho JJ, Takeyama RR. Coatings enrichment by carbide dissolution. Surface and Coatings Technology,2008,202:4660-4665.
    [170]D'Oliveira ASCM, Vilar R, Feder CG. High temperature behaviour of plasma transferred arc and laser Co-based alloy coatings. Applied Surface Science,2002,201: 154-160.
    [171]Lee CM, Choi SI, Choi SS, Hong SH. Synthesis of boron nitride nanotubes by arc-jet plasma. Current Applied Physics,2006,6:166-170.
    [172]Wang XB. The metallurgical behavior of B4C in the iron-based surfacing alloy during PTA powder surfacing. Applied Surface Science,2005,252:2021-2028.
    [173]Wang XB, Wang XF, Shi ZQ. The composite Fe-Ti-B-C Coatings by PTA powder surfacing process. Surface and Coatings Technology,2005,192:257-262.
    [174]杜则裕,宋钧,熊慰军.等离子弧喷焊工艺研究.焊接技术,1996,(3):2-4.
    [175]方世京.热喷涂焊技术.长沙:湖南钢铁研究所,1982.
    [176]刘政军,季杰,张树生.铁基高温等离子弧喷焊合金及其耐磨性机理的研究.焊接,1996,(2):7-10.
    [177]Nefedov BB, Lyalyakin VP. Development of plasma welding and surfacing abroad. Welding International,1998,12:736-741.
    [178]陈克选,张明华.等离子喷焊过程的微机控制.喷涂技术,2004:161-165.
    [179]朱润生.自熔性合金粉末的研究.粉末冶金工业,2000,10:7-14.
    [180]高荣发,马小雄.等离子弧喷焊.北京:机械工业出版社,1979.
    [181]Liu YF, Mu JS, Xu XY, Yang SZ. Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process. Materials Science and Engineering:A,2007,458:366-370.
    [182]程旭东,周尚万,刘和运.等离子喷焊铜基自熔性合金的研制.材料保护,2004,37:16-20.
    [183]Huang Z, Hou Q, Wang P. Microstructure and properties of Cr3C2-modified nickel-based alloy coating deposited by plasma transferred arc process. Surface and Coatings Technology,2008,202:2993-2999.
    [184]Chazelas C, Coudert JF, Jarrige J, Fauchais P. Synthesis of ultra fine particles by plasma transferred arc:Influence of anode material on particle properties. Journal of the European Ceramic Society,2006,26:3499-3507.
    [185]Chazelas C, Coudert JF, Jarrige J, Fauchais P. Synthesis of nanometer alumina particles by plasma transferred arc alternative. Journal of the European Ceramic Society, 2007,27:947-950.
    [186]Wang X, Shun H, Li C, Wang X, Sun D. The performances of TiB2-contained iron-based coatings at high temperature. Surface and Coatings Technology,2006,201: 2500-2504.
    [187]侯清宇.自熔性合金粉末等离子弧喷焊层组织结构和性能研究.马鞍山:安徽工业大学,2003.
    [188]袁晓敏,斯松华,何宜柱.氧乙炔火焰和等离子弧喷焊合金涂层的组织和耐腐蚀磨损性能.中国腐蚀与防护学报,2003,23:307-311.
    [189]Kim H-j, Yoon B-H, Lee C-H. Wear performance of Fe-base alloy coating produced by plasma transferred arc welding surfacing prcess. Wear,2002,249:846-852.
    [190]刘政军.多元复合强化铁基高温耐磨等离子弧堆焊合金及耐磨机理.沈阳:沈阳工业大学,2000.
    [191]刘政军,陈宏,刘臣.等离子弧堆焊层的组织与性能的磁场控制.焊接学报,2005,26:16-22.
    [192]Balasubramanian V, Varahamoorthy R, Ramachandran CS, Babu S. Abrasive slurry wear behavior of stainless steel surface produced by plasma transferred arc hardfacing process. Surface and Coatings Technology,2008,202:3903-3912.
    [193]Guo M, Liu A, Zhao M, Hu H, Wang Z. Microstructure and wear resistance of low carbon steel surface strengthened by plasma melt injection of SiC particles. Surface and Coatings Technology,2008,202:4041-4046.
    [194]Gurumoorthy K, Kamaraj M, Rao KP, Rao AS, Venugopal S. Microstructural aspects of plasma transferred arc surfaced Ni-based hardfacing alloy. Materials Science and Engineering:A,2007,456:11-19.
    [195]Hejwowski T. Wear resistance of graded coatings. Vacuum,2002,65:515-520.
    [196]Hou QY, He YZ, Zhang QA, Gao JS. Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process. Materials & Design,2007,28:1982-1987.
    [197]Sudha C, Shankar P, Rao RVS, Thirumurugesan R, Vijayalakshmi M, Raj B. Microchemical and microstructural studies in a PTA weld overlay of Ni-Cr-Si-B alloy on AISI 304L stainless steel. Surface and Coatings Technology,2008,202:2103-2112.
    [198]Yan M, Zhu WZ. Surface remelting of Ni-Cr-B-Si cladding with a micro-beam plasma arc. Surface and Coatings Technology,1997,92:157-163.
    [199]Zhao C, Tian F, Peng H-R, Hou J-Y. Non-transferred arc plasma cladding of Stellite Ni60 alloy on steel. Surface and Coatings Technology,2002,155:80-84.
    [200]Zhao W, Liu L. Structural characterization of Ni-based superalloy manufactured by plasma transferred arc-assisted deposition. Surface and Coatings Technology,2006,201: 1783-1787.
    [201]Leylavergne M, Chartier T, Denoirjean A, Grimaud A, Abelard P, Fauchais P. Cast iron substrates reclamation by tape casting of NiCu treated by plasma transferred arc: optimization of the tape and its plasma treatment. Thin Solid Films,2001,391:1-10.
    [202]宇文利,刘秀丽,李伟华.等离子堆焊Ni基合金粉末熔覆层性能研究.金属热处理,2006,31:4143.
    [203]曹明,吴玉萍,胡俊华.等离子熔覆TiC/Ni超厚梯度熔覆层的组织与性能.焊接学报,2008,29:13-16.
    [2041程旭东.大口径无缝钢管轧管机顶头的喷焊.焊接学报,1991,12:201-207.
    [205]王晓峰,单平,王惜宝.等离子弧堆焊TiB2-金属陶瓷涂层的组织及性能.焊接学报,2005,26:33-36.
    [206]吴萍,姜恩永,周昌炽,唐西南.激光熔覆Ni/WC复合涂层的组织和性能.中国激光,2003,30:357-360.
    [207]尹延国,朱元吉,谢挺.等离子喷焊钢结硬质合金层在模具上的应用.模具工业,1997,(11):47-49.
    [208]王振廷,陈华辉.碳化钨颗粒增强金属基复合材料涂层组织及其摩擦磨损性能.摩擦学学报,2005,25:203-206.
    [209]焦多田,蔡庆伍,武会宾,冉旭,任毅.空冷弛豫对深海级抗大变形管线钢组织性能的影响.材料热处理学报,2009,30:101-105.
    [210]中国石油天然气集团公司管材研究所.西气东输二线天然气管道工程大变形直缝埋弧焊管用热轧钢板补充技术条件.西安:中国石油天然气集团公司,2007:2-4.
    [211]Yamini SA. Effect of titanium additions to low carbon, low manganese steels on sulphide precipitation. Wollongong, USA:University of Wollongong,2008.
    [212]李玉清.叠栅图在碳化物沉淀相研究的一些应用.电子显微学报,1994,13:262-265.
    [213]陈绍楷,李晴宇,苗壮,许飞.电子背散射衍射(EBSD)及其在材料研究中的应用.稀有金属材料与工程,2006,35:500-504.
    [214]李金刚,黄海波,李凡.电子背散射衍射分析技术.云南大学学报,2005,27:410-414.
    [215]王春芳,时捷,王毛球,惠卫军,董瀚.EBSD分析技术及其在钢铁材料研究中的应用.钢铁研究学报,2007,19:6-11.
    [216]杨平.电子背散射技术、几何晶体学与材料科学.电子显微学报,2008,27:425-431.
    [217]张廷杰.电子背散射衍射(EBSD)测量材料显微结构和结晶学.稀有金属快报,2004,23:38-39.
    [218]张小立,庄传晶,吉玲康,冯耀荣,霍春勇,赵文轸.电子背散射衍射分析技术在钢铁及管线钢研究领域中的应用.理化检验:物理分册,2006,42:460-463.
    [219]戚寅寅,吴保桥.热轧H型钢与焊接H型钢残余应力初步测定分析.马钢科研,2001,(2):16-23.
    [220]崔振山刘,张华.H型钢热轧变形过程的计算机模拟.钢铁研究学报,2000,12:25-28.
    [221]谢世范,阮本龙.热轧H型钢控制冷工艺研究.轧钢,2004,32:15-17.
    [222]刘庄.热处理过程的数值模拟.北京:科学出版社,1996.
    [223]杨世铭.传热学.北京:机械工业出版社,1999.
    [224]Brandes EA, Brook GB. Smithells Metals Reference Book,7th ed. Oxford, United Kingdom:Butterworth-Heinemann,1992.
    [225]屠海令干.金属材料理化测试全书.北京:化学工业出版社,2007.
    [226]李曼云,孙本荣.钢的控制轧制和控制冷却技术手册.北京:冶金工业出版社,1990.
    [227]李强.淬火过程的计算机模拟与试验研究.秦皇岛:燕山大学,2003.
    [228]Chun X, Sun Q, Chen X. Research on transformation mechanism and microstructure evolution rule of vanadium-nitrogen microalloyed steels. Materials & Design,2007,28(9): 2523-2527.
    [229]Lagneborg R, Roberts W, Sandberg A. Influence of processing route and nitrogen content on microstructure development and precipitation hardening in V-microalloyed HSLA-steels. Thermomechanical Processing of Microalloyed Austenite. Pittsburgh:Met. Soc. AIME,1981:163-194.
    [230]吴红艳杜,薛文颖,沈开照.变形工艺对V、Ti微合金钢连续冷却相变的影响.钢铁钒钛,2006,27(1):6-11.
    [231]Janovec J, Vyrostkova A, Sevc P, Robinson JS, Svoboda M, Krestankova J, Grabke HJ. Precipitation related anomalies in kinetics of phosphorus grain boundary segregation in low alloy steels. Acta Materialia,2003,51:4025-4032.
    [232]Lagneborg R, Zajac S. A model for interphase precipitation in V-microalloyed structural steels. Metallurgical and Materials Transactions A,2001,32:39-50.
    [233]Qiu P, Nagumo M. Growth kinetics of intergranular allotriomorph ferrite in V-containing steel. Journal of the Iron and Steel Institute of Japan,1998,84:375-380.
    [234]Mabuchi H, Aihara S. Control of microalloying elements for improved performance of thick plates Materia Japan,1995,34:301-305.
    [235]Chilton JM, Roberts MJ. Microalloying effects in hot-Rolled low-Carbon steels finished at high temperatures. Metallurgical and Materials Transactions A,1980,11: 1711-1721.
    [236]Crooks MJ, Garratt-Reed AJ, Vander-Sande JB. Precipitation and Recrystallization in Some Vanadium and Vanadium-Niobium Microalloyed Steels. Metallurgical and Materials Transactions A,1981,12:1999-2013.
    [237]Leda H. Phase transformations and mechanical properties of steels containing 0.6% C, 0.7-1.4% Mn and microalloyed with V and Ti. Journal of Materials Processing Technology, 1997,64:247-254.
    [238]张良哲赵,吴迪,许云波.微合金钢等温沉淀析出动力学模型.钢铁研究学报,2006,18:41-43,58.
    [239]斯埋尼什洛·扎雅克.含钒钢的沉淀和晶粒细化.钢铁钒钛,2001,23:35-48.
    [240]张羊换,王福成.微合金化钢的动态再结晶及其显微组织的研究.热加工工艺,2000,(03).
    [241]石德珂,李涤尘.相间沉淀钢的合金设计与开发.西安交通大学学报,1994,28:32-38.
    [242]孙树文贺.低合金Cr-Mo-V钢中VC沉淀相的精细结构.金属学报,2000,36(10):1009-1014.
    [243]肖锋伍.700-1200℃温度区域内饥对钢热塑性的影响.钢铁钒钛,1998,19:1-6,19.
    [244]雍岐龙,孙珍宝.微合金碳氮化物与铁素体之间的半共格界而比界面能的理论计算.科学通报,1989,34:467-470.
    [245]蒋昌林朱,潘国平.在CSP线生产V微合金化钢的探讨.钢铁钒钛,2004,25:39-43.
    [246]肖国华肖,王福明.含钒高强度船体结构钢的连续冷却转变.北京科技大学学报,2006,28:830-834.
    [247]Yan S, Liu X, Tian W. Morphology and orientation relationship of VC precipitates in HSLA steel. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material,2006,13(5):420-423.
    [248]Janovec J, Svoboda M, Vyrostkova A, Kroupa A. Time-temperature-precipitation diagrams of carbide evolution in low alloy steels. Materials Science and Engineering A, 2005,402:288-293.
    [249]Bertolino G, Bilger N, Crepin J. Modeling microstructures and microstructural effects on macroscopic and intragranular mechanical behavior. Computational Materials Science, 2007,40:408-416.
    [250]Liu WJ, Jonas JJ. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperature. Metallurgical Transactions A,1988,19:1403-1413.
    [251]Baker RG, Nutting J. Precipitation processes in steels. London:The Iron and Steel Institute,1959.
    [252]Frommeyer G, Brux U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ International,2003, 43:438-446.
    [253]Gunduz S, Cochrane RC. Clustering effect on high temperature tensile behaviour of vanadium microalloyed steel. Journal of Materials Processing Technology,2007,186(1-3): 246-252.
    [254]Kovac F, Jurko V, Stefan B. Controlled rolling and recrystallization controlled rolling of strips of titanium+vanadium+nitrogen steels. Metalurgy,1992,31(1):1-5.
    [255]Wang K, Wang L, Cui W. Effect of V and V-N microalloying on deformation-induced ferrite transformation in low carbon steels. Journal of Materials Science and Technology, 2006,22(2):159-163.
    [256]余永宁.金属学原理.北京:冶金工业出版社,2000.
    [257]李清斌,王晓春.合金中的扩散性相变与合金热力学.沈阳:辽宁科学技术出版社,1984.
    [258]Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Materials Science and Engineering A,1998,255: 139-147.
    [259]Elwazri AM, Wanjara P, Yue S. Dynamic recrystallization of austenite in microalloyed high carbon steels. Materials Science and Engineering A,2003,339:209-215.
    [260]Lesurer DR, Whittenberger JD, Ruano OA. Creep behavior of FeC alloys at high temperatures and high strain rates. Materials Science and Engineering A,2001,317: 101-107.
    [261]Lin YC, Chen MS, Zhong J. Effect of temperature and strain rate on te compressive deformation behavior of 42CrMo steel. Journal of Materials Processing Technology,2008, 205:308-305.
    [262]McQueen HJ, Ryan ND. Constitutive analysis in hot working. Materials Science and Engineering A,2002,322:43-63.
    [263]周纪华,管克制.金属塑性变形阻力.北京:机械工业出版社,1989.
    [264]Ashby MF. A first report on deformation-mechanism maps. Acta Metallurgical,1972, 20:887-897.
    [265]Bodner SR, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials. ASME J Appl Mech,1975,42:385-389.
    [266]He X, Yu Z, Lai X. A method to predict flow stress considering dynamic recrystallization during hot deformation. Computational Materials Science,2008,44: 760-764.
    [267]Langdon TG, Mohamed FA. A new type of deformation mechanism map for high-temperature creep. Materials science and Engineering,1978,32:103-112.
    [268]Lee IG, Ghosh AK. High temperature deformation mechanism maps of NiAl. Materials Science Forum,2004,449-452:57-60.
    [269]Maruyama K, Sawada K, Koike J, Sato H, Yagi K. Examination of deformation mechanism maps in 2.25Cr-1Mo steel by creep tests at strain rates of 10-11 to 10-6 s-1. Materials Science and Engineering A,1997,224:166-172.
    [270]Misra A, Verdier M, Kung H, Embury JD, Hirth JP. Deformation mechanism maps for polycrystalline metallic multiplayers. Scripta Materialia,1999,41:973-979.
    [271]Mohamed FA, Langdon TG. Deformation mechanism maps based on grain size. Metallurgical Transactions,1974,5:2339-2345.
    [272]Mukherjee AK. An examination of the constitutive equation for elevated temperature plasticity. Materials Science and Engineering A,2002,322:1-22.
    [273]Petit J, Dequiedt JL. Constitutive realtions for copper under shock wave loading: twinning activation. Mechanics of Materials,2006,38:173-185.
    [274]Sajjadi SA, Nategh S. A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111. Materials Science and Engineering A,2001,307: 158-164.
    [275]Sargent PM, Ashby MF. The presentation of high strain-rates on deformation mechanism maps. Cambridge:Cambridge University,1983.
    [276]Shi XQ, Wang ZP, Yang QJ, Pang HLJ. Creep behavior and deformation mechanism map of Sn-Pb eutectic solder alloy. Journal of Engineering Materias and Technology,2003, 125:81-88.
    [277]Wang Y, Zhou YX, Xia YM. A constitutive description of tensile behavior for brass over a wide range of strain rates. Materials Science and Engineering A,2004,372:186-190.
    [278]张俊善.材料的高温变形与断裂.北京:科学出版社,2007.
    [279]关德林.晶体的高温塑性变形.大连:大连理工大学出版社,1989.
    [280]Frost HJ, Ashby MF. Deformation mechanism maps:the plasticity and creep of metals and ceramics. New York,1982.
    [281]Rao KP, Doraivelu SM, Rosha HM. Deformation processing of an aluminum alloy containing particles:Studies on AI-5 pct Si alloy 4043. Metallurgical and Materials Transactions A,1983,14:1671-1679.
    [282]Montheillet F, Jonas JJ, Neale KW. Modeling of dynamic material behavior:A critical evaluation of the dissipator power co-content approach. Metallurgical and Materials Transactions A,1996,27:232-235.
    [283]Ziegler H. Progress in Solid Mechanics. Amsterdam:North-Holland Publishing Company,1963.
    [284]Prasad YVRK. Recent advance in the science of mechanical processing. Indian Journal of Technology,1990,28:435-451.
    [285]Takahashi Y, Yamane T. Application of deformation mechanism maps to the study of high-temperature creep of a precipitate-free 25wt%Cr-20wt%Ni. Journal of Materials Science,1981,16:3171-3182.
    [286]Tanaka H, Yamada T, Sato E, Jimbo I. Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti. Scripta Materialia,2006,54: 121-124.
    [287]Yun J, Harmer MP, Chou YT. Deformation mechanism map for creep in YBa2Cu3O7-x. Journal of Materials Science,1995,30:4906-4911.
    [288]Ruano OA, Wadsworth J, Sherby OD. Deformation mechanisms in an austenitic stainless stel (25Cr-20Ni) at elevated temperature. Journal of Materials Science,1985,20: 3735-3744.
    [289]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.北京:冶金工业出版社,2009.
    [290]徐洪庆,李胜利,孙浩.FH40船板钢连续冷却过程中的相变研究.宽厚板,2009,15:34-35,43.
    [291]Pei ZY, Han W, Zhao G. Effect of cooling rate on microstructure and mechanical properties of K465 superalloy. Journal of Iron and Steel Research, International,2009,16: 71-74.
    [292]王国栋.新一代控制轧制和控制冷却技术与创新的热轧过程.东北大学学报,2009,30:913-922.
    [293]朱国明,康永林,陈伟.H型钢空冷过程中残余应力的有限元分析.机械工程材料,2008,32:77-80.
    [294]Esaka K, Wakita J, Takahashi M, Kawano O, Harada S. The development of the precise model predicting and controlling mechanical P\properties. Iron and Steel Research, 1986,321:92-100.
    [295]Pietrzyk M, Roucoules C, Hodgson PD. Modelling the thermomechanical and microstructural evolution during rolling of a Nb HSLA Steel ISIJ International,1995,35: 531-541.
    [296]Hodgson PD, Gibbs RK. A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels. ISIJ International,1992,32:329-338.
    [297]Zhu LJ, Wu D, Zhao XM. Recrystallization Modelling of Hot Deformed Si-Mn TRIP Steel. Journal of Iron and Steel Research, International,2007,14:61-65.
    [298]Xu YB, Yu YM, Xiao BL, Liu ZY, Wang GD. Modelling of microstructure evolution during hot rolling of a high-Nb HSLA steel Journal of Materials Science,2010,45: 2580-2590.
    [299]吴迪,赵宪明,何纯玉.高碳钢高速线材轧制组织性能预测模型研究.钢铁,2003,38:43-46.
    [300]Yada H, Senuma T. Resistance to Hot Deformation of Steels Journal of the Japan Society for Technology of Plasticity,1986,27:33-44.
    [301]毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994.
    [302]胡晶晶.薄板坯连铸连轧工艺微观组织模拟及产品性能预报.武汉:武汉科技大学,2006.
    [303]Saito Y, Shiga C. Computer simulation of microstructural evolution in thermomechanical processing of steel plates. ISIJ International,1992,32:414-422.
    [304]Hiramatsu A, Umemoto M, Higo Y. Computer modelling of phase transformation from work-hardened austenite. ISIJ International,1992,32:306-315.
    [305]Tadeusz H. Sliding wear resistance of Fe-, Ni-and Co-based alloys for plasma deposition. Vacuum,2006,80:1326-1330.
    [306]张大伟,雷廷权,李福军,张旭昀.激光单道与多道熔覆Ni+Cr3C2复合涂层的组织及硬度.材料热处理学报,2001,22:23-27.
    [307]吴萍,姜恩永,赵慈.激光参数对Ni基熔覆层结构及耐磨性的影响.焊接学报,2003,24:44-49.
    [308]Zhang L, Liu B, Yu H, Sun D. Rapidly solidified non-equilibrium microstructure and phase transformation of plasma cladding Fe-based alloy coating. Surface and Coatings Technology,2007,201:5931-5936.
    [309]Zhang LM, Sun DB, Yu HY. Characteristics of plasma cladding Fe-based alloy coatings with rare earth metal elements. Materials Science and Engineering A,2007, 452-453:619-624.
    [310]Hou QY, Gao JS, Zhou F. Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing. Surface and Coatings Technology, 2005,194:238-243.
    [311]曾大文,夏辉,谢长生.Ni基合金激光熔覆层组织特征及凝固过程的研究.稀有金属材料与工程,2000,29:109-113.
    [312]Sampath S, Herman H. Rapid solidification and microstructure development during plasma spray deposition. Journal of Thermal Spray Technology,1996,5:1059.
    [313]戴中华,赵文轸,郝海燕.高铬自熔合金堆焊涂层磨损特性研究.材料保护,2003,36:7-9.
    [314]Pryds NH, Hattel JH, Pedersen TB, Thorborg J. An integrated numerical model of the spray forming process. Acta Materialia,2002,50:4075-4091.
    [315]Vicsek T. Formation of solidification patterns in aggregation models. Phys Rev A, 1985,32:3084.
    [316]Wang XB, Li CG, Peng XM, Shi LB, Zhang H. The powder's thermal behavior on the surface of the melting pool during PTA powder surfacing. Surface and Coatings Technology, 2006,201:2648-2654.
    [317]Yamamoto T, Takeda K, Toh T, Tanaka J. Distribution of heat flux transported by a magnetically driven arc. Thin Solid Films,2007,515:4228-4233.
    [318]Yin F, Hu S, Yu C, Li L. Computational simulation for the constricted flow of argon plasma arc. Computational Materials Science,2007,40:389-394.
    [319]Chau S, Hsu K, Lin D, Chen J, Tzeng C. Modeling and experimental validation of a 1.2 MW DC transferred well-type plasma torch. Computer Physics Communications,2007, 177:114-117.
    [320]Gaumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in direction solidification. Materials science and Engineering,1997,226:763-769.
    [321]Hou QY, Huang ZY, Shi N, Gao JS. Effects of molybdenum on the microslructure and wear resistance of nickel-based hardfacing alloys investigated using Rietveld method. Journal of Materials Processing Technology,2009,209:2767-2772.
    [322]侯清宇,高甲生. Co-Cr-W系等离子弧堆焊合金层显微结构的研究.稀有金属材料与工程,2004,33:1199-1202.
    [323]Roy M, Pauschitz A, Polak R, Franek F. Comparative evaluation of ambient temperature friction behaviour of thermal sprayed Cr3C2-25(Ni20Cr) coatings with conventional and nano-crystalline grains Tribology international,2006,39:29-38.
    [324]Reardon JD, Mignogna R, Longo FN. Plasma-and vacuum-plasma-sprayed Cr3C2 composite coatings. Thin Solid Films,1981,83:345-351.
    [325]Aoh J-N, Chen J-C. On the wear characteristics of cobalt-based hardfacing layer after thermal fatigue and oxidation. Wear,2001,250:611-620.
    [326]段慧玲,高俊峰,张书勤.Cr3C2对激光熔覆Ni合金层组织和性能的影响.石油机械,1999,27:46-48.
    [327]刘勋,范景莲,凌国良.纳米Ni-Al2O3金属陶瓷粉末热压致密化过程.中南大学学报,2004,35:21-26.
    [328]Gao Y, Xu X, Yan Z, Xin G. High hardness alumina coatings prepared by low power plasma spraying. Surface and Coatings Technology,2002,154:189-193.
    [329]Zhao L, Parco M, Lugscheider E. Wear behaviour of Al2O3 dispersion strengthened MCrAlY coating. Surface and Coatings Technology,2004,184:298-306.
    [330]周笑薇,晁明举,杨坤.Al2O3对Ni60激光熔覆层组织和耐磨性的影响.激光杂志,2006,27:81-83.
    [331]Wang H, Zuo D, Sun Y, Xu F, Zhang D. Microstructure of nanometer Al2O3 dispersion strengthened Ni-based high-temperature protective coatings by laser cladding. Transactions of Nonferrous Metals Society of China,2009,19:586-591.
    [332]Ding JE, Van R, Pintsuk G, Ster D. The processing of vacuum plasma-sprayed tungsten-copper composite coatings for high heat flux components. Fusion Engineering and Design,2003,66-68:259-263.
    [333]喇培清,王鸿鼎,刘闪光,申达,刘雪梅,鞠倩.Al元素对310S耐热钢高温压缩性能的影响.兰州理工大学学报,2010,36:9-12.
    [334]喇培清,刘闪光.Al元素对310S耐热钢组织和力学性能的影响研究.材料工程,2009,S1:36-40.
    [335]Sabiruddin K, Joardar J, Bandyopadhyay PP. Analysis of phase transformation in plasma sprayed alumina coatings using Rietveld refinement. Surface and Coatings Technology,2010,204:3248-3253.
    [336]王引真,孙永兴,宋玉强,何艳玲.等离子喷涂Al2O3涂层腐蚀失效机制.腐蚀科学与防护技术,2002,14:227-229.
    [337]Ananthapadmanabhan PV, Thiyagarajan TK, Sreekumar KP, Satpute RU, Venkatramani N, Ramachandran K. Co-spraying of alumina-titania:correlation of coating composition and properties with particle behaviour in the plasma jet. Surface and Coatings Technology,2003,168:231-240.
    [338]McPherson R. A review of microstructure and properties of plasma sprayed ceramic coatings. Surface and Coatings Technology,1989,39-40:173-181.
    [339]Heintze GN, Uematsu S. Preparation and structures of plasma-sprayed γ-and α-Al2O3 coatings. Surface and Coatings Technology,2002,50:213-222.
    [340]Gallagher PCJ. The influence of alloying, temperature, and related effects on the stacking fault energy. Metallurgical Transactions,1970,1:2429-2461.
    [341]于金江,孙晓峰,金涛,管恒荣,胡壮麟.铼纳米团对单晶变形滑移的作用行为.稀有金属,2006,30:57-61.
    [342]Otterloo JLDMV, Hosson JTMD. Microstructural features and mechanical properties of a cobalt-based laser coating. Acta Materialia,1997,45:1225-1236.
    [343]Chang LM, An MZ, Guo HF, Shi SY. Microstructure and properties of Ni-Co/nano-Al2O3 composite coatings by pulse reversal current electrodeposition. Applied Surface Science,2006,253:2132-2137.
    [344]Chaudhuri DK, Xie D, Lakshmanan AN. The influence of stacking fault energy on the wear resistance of nickel base alloys. Wear,1997,209:140-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700