用户名: 密码: 验证码:
CLAM钢TIG焊接接头性能及其在液态锂铅中腐蚀行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CLAM钢是用于制造我国聚变反应堆第一壁和聚变反应堆包层的首选结构材料。CLAM钢的焊接技术关系到实验包层模块TBM能否最终成功制造,是CLAM钢走向实际应用的关键技术之一。因此,针对CLAM钢熔化焊行为及其接头在液态锂铅中腐蚀机理进行研究,可以为CLAM钢在聚变示范堆中的实际应用,为提高CLAM钢焊接结构在液态金属腐蚀条件下的性能提供理论基础和技术依据。
     本课题采用基体材料和自制的9.8Cr2W0.5Ta材料作为填充材料,对5mm厚的CLAM钢进行了TIG焊。对两组试样进行了焊后热处理,并对焊接接头进行了显微硬度测试、拉伸试验、夏比冲击试验,并观察和分析了焊缝显微组织及断口形貌。采用基体材料填充时,随着焊后热处理温度的增加,焊缝区的显微硬度值明显降低,焊接接头的抗拉强度也呈下降趋势,而冲击吸收功则有提升,只有当焊后热处理温度达到760℃/30min时,焊缝才在局部发生韧性断裂,且焊缝冲击吸收功仍远低于母材。焊缝显微组织主要是回火马氏体和块状δ铁素体组织。焊缝中的析出相主要为M23C6相,且M的主要成分为Cr、Fe、W和Mn。采用9.8Cr2W0.5Ta焊丝进行填充时,随着焊后热处理温度增加,焊接接头的力学性能变化规律与基体材料填充时基本一致:焊缝区的显微硬度明显降低,接头的抗拉强度呈下降趋势,且只有当焊后热处理温度达到760℃/30min时,焊缝才在局部发生韧性断裂;但焊缝显微组织中容易引起辐照脆性的块状δ铁素体数量明显较基体材料填充时少,且析出相M23C6颗粒中M的主要成分为Cr、Fe、W和V。
     采用ANSYS有限元分析软件,建立了CLAM钢TIG焊对接接头三维有限元分析模型,采用双椭球热源模型,通过数值模拟计算分析了整个焊接过程中的瞬态温度分布及熔池变化情况,并对焊接残余应力以及焊后变形情况进行了模拟。对比分析了不同焊接速度下温度分布和熔池变化的情况,分析了焊接过程热效率的取值,亦即有效焊接热输入变化对焊接热循环的影响。通过模拟可知焊速为2mm/s、η取值在0.78~0.85参考范围内时,焊接熔宽和熔深均较合理,与实际焊接情况符合较好。由模拟可知沿焊缝方向,横向残余应力在焊缝中心表现为拉应力,而在焊缝两端表现为压应力;纵向应力均为拉应力。在垂直焊缝方向,横向残余应力主要由纵向应力引起,并在焊缝中心表现为拉应力,而纵向残余应力在近缝区为拉应力,随着离开焊缝距离的增加逐渐转变为压应力。
     结合焊态下CLAM钢在480℃、0.08m/s液态金属锂铅中的腐蚀情况,对易腐蚀区的形成及其对焊缝腐蚀量的影响规律进行了分析,并建立了基本腐蚀结构模型。研究结果表明:由于焊缝中析出的M23C6碳化物颗粒偏聚于原奥氏体晶界以及马氏体板条,使该区域的Cr含量明显降低,从而形成了易腐蚀区,降低了该区域耐液态锂铅腐蚀的性能。焊态下CLAM钢在480℃、0.08m/s的工况下,腐蚀量较大,经500h、1000h腐蚀时长后,失重分别为0.491mg/cm2(平均腐蚀深度为0.55μm),0.641mg/cm2(平均腐蚀深度为0.72μm),远高于回火态下CLAM钢基体的腐蚀量,随腐蚀时长的增加,试样腐蚀速度下降明显。焊态下CLAM钢经腐蚀后,焊缝区表面元素无明显变化,内部无锂铅元素渗透,腐蚀层较为均匀。
CLAM steel is used in the manufacture of China's fusion reactor first wall and other structural. Welding techniques and processes related to the test blanket module (TBM) can be created successfully, is a key technology for the practical application of CLAM steel. Therefore, researching on the performance of CLAM steel with TIG welding and corrosion behavior of weldment in liquid lithium-lead, is benefit to practical application of CLAM steel, to improve the performance of CLAM steel structure in liquid metal corrosion.
     In this study, Tungsten Insert Gas (TIG) welding on China Low Activation Martensitic (CLAM) steel (5mm thick) under identical conditions was performed, a) using the original CLAM composition filler metal and b) using the modified composition (9.8Cr2W0.5Ta). Microhardness test, tensile test, Charpy impact test and microstructure measurements were carried out on TIG welded joints after post weld heat-treatment. Using the original CLAM composition filler, the microhardness and ultimate tensile stress of weld metal decreased when the temperature of PWHT increased. Absorbed energy increased with PWHT temperature rising, until PWHT was done at 760℃/30min, the specimen ductile fractured in local area. The microstructure of the weld metal was found to be tempered martensite with a little of delta ferrite. M23C6 particles are the predominant type of carbides, the composition of M is Cr, Fe, W and Mn. Using the modified composition (9.8Cr2W0.5Ta), the mechanical properties of welded joints is consistent with that by using the original CLAM composition filler:the microhardness and ultimate tensile stress of weld metal decreased when the temperature of PWHT increased. Absorbed energy increased with PWHT temperature rising, until PWHT was done at 760℃/30min, the specimen ductile fractured in local area. However, compared with the matrix material filled, the number ofδferrite is less than that by using original CLAM composition filler. The compostion of M is Cr, Fe, W and V.
     Three-dimensional finite element numerical model of CLAM steel TIG welded butt joint was established using finite element analysis software-ANSYS, double ellipsoid heat source model is chosen for thermal simulation. Transient temperature distribution and weld pool changes in welding process were analysized by numerical simulation, welding residual stress and deformation after welding were also simulated. The temperature distribution under different welding speed and referenced value of the welding process thermal efficiency were caculated, It shows that 2mm/s of welding speed andηreferenced value in the range of 0.78 to 0.85 were reasonable to obtain fine weld width and penetration depth, were good agreement with the actual welding conditions. It also shows that transverse residual stress is tensile stress at the center of joint, is compressive stress at both ends of joint. Along the vertical direction, transverse residual stress is tensile stress at the center of joint and mainly caused by the longitudinal stress. The longitudinal residual stress is tensile stress near joint, with increasing distance from the weld, gradually transformed into compressive stress.
     Under 480℃,0.08m/s liquid lithium lead corrosion, the easily corrosive areas of CLAM steel joints existenced, its influence on corrosion was analysized, and established a basic structural model. The results show that:as the M23C6 carbides segregated in the original austenite grain boundaries and martensite lath, Cr content significantly reduced in this place, and formed easily corrosive area, reduced the resistance corrosion performance in liquid lithium lead. Under such conditions, CLAM steel joints were seriously corroded, after 500h and1000h corroded, weight loss was respectively 0.491mg/cm2 (average corrosion depth is 0.55μm) and 0.641mg/cm2 (average corrosion depth is 0.72μm), much higher than tempered CLAM steel corrosion. With time increased, the corrosion rate of the sample decreased significantly. By corrosion, the elements in the surface of weld zone did not significant changed, no lithium-lead penetrated is inside, corrosion layer became more uniform.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报.2008,42(3):345-359
    [2]毛剑珊.核聚变—未来的新能源[J].现代物理知识.2007,19(1):20-23
    [3]方延平,戴革林等.核聚变—消除人类能源危机的济世良方[J].物理与工程,2005,15(2):33-35.
    [4]刘成安.核爆氘-氘聚变能电站—聚变能和平利用的一种可能的途径[J].原子核物理评论,2007,24(4):328-332.
    [5]邱励俭.核聚变研究50年[J].核科学与工程,2001,21(1):29-38.
    [6]李银安.受控热核聚变[M].湖南:湖南教育出版社.1994
    [7]冯开明.可控核聚变与ITER计划[J].现代电力,2006,23(5):82-88
    [8]冯开明.可控核聚变与国际热核实验堆(TTER)计划.中国核电[J].2009,2(3):212-219
    [9]吴宜灿,汪卫华,刘松林,等.ITER中国液态锂铅实验包层模块设计研究与实验策略[J].核科学与工程.2005,25(4):347-360
    [10]刘林松,汪卫华,龙鹏程,等ITER中国液态锂铅实验包层模块结构设计与加工[J].核科学与工程.2006,26(1):92-96
    [11]李强,低活化马氏体钢和钨在HT-7托卡马克中的等离子体辐照实验研究[D].合肥工业大学硕士学位论文.2004
    [12]郝嘉琨,聚变堆材料[M].北京:化学工业出版社.2006
    [13]R. L. Klueh, D. S. Gelles, S. Jitsukawa, et al.Ferritic/martensitic steels overview of recent results[J].Jornal of Nuclear Materials.2001,307-311(1):455-465
    [14]B. van der Schaaf, D. S. Gelles, S. Jitsukawa, et al.Progress and critical issues of reduced activation ferritic/martensitic steel development[J].Journal of Nuclear Materials.2000, 283-287(1):52-59
    [15]邱励俭.聚变能及其应用[M].北京:科学出版社.2008
    [16]谌继明.聚变应用钒基合金结构材料的研究进展[A].2006全国核材料学术交流会论文集.2006
    [17]P. Bala Srinivasan, M. P. Satish Kumar, et al.Microstructural and electrochemical characterization of a thin-section dissimilar stainless steel weld joint[J].Materials Chemistry and Physics.2009,115(1):179-184
    [18]H. Mirzadeh, A. Najafizadeh et. al. ANN modeling of strain-induced martensite and its applications in metastable austenitic stainless steels[J] Journal of Alloys and Compounds.2009,476(1-2):352-355
    [19]Xuejun Jia, Y.Dai.Microstructure and mechanical properties of F82H weld metal irradiated in SINQ target-3[J].Journal of Nuclear Materials.2004,329-333:309-313
    [20]冷邦义,鲜晓斌,罗德礼等.Be/CLAM钢热等静压连接界面特性及力学性能[J].稀有金属材料与工程.2008,37(12):2157-2160
    [21]R. H. Jones, H. L. Heinisch, K. A. McCarthy.Low activation materials[J].Journal of Nuclear Materials.1999,271-272:518-525
    [22]Hegedus F, Pepponil G, et al.Trace Element Analysis of EUROFER Steel[A].DESY annual report[C].2001
    [23]黄群英,李春京,李艳芬,等.中国低活化马氏体钢CLAM研究进展[J].核科学与工程.2007,27(1):41-50
    [24]顾康家.CLAM钢TIG焊组织与性能的研究[D].江苏大学硕士学位论文,2009
    [25]Y. Yano, T. Yoshitake, S. Yamashita,et al.Tensile and transient burst properties of advanced ferritic/martensitic steel claddings after neutron irradiation[J].Journal of Nuclear Materials. 2007,367-370(1):127-131
    [26]S. Raju, B. Jeya Ganesh, Arun Kumar Rai, et al. Measurement of transformation temperatures and specific heat capacity of tungsten added reduced activation ferritic martensitic steel[J]. Journal of Nuclear Materials.2009,389(1):385-393
    [27]Yong Dai, Werner Wagner, et al. Materials researches at the Paul Scherrer Institute for developing high power spallation targets[J]. Journal of Nuclear Materials.2009,389 (2): 288-296
    [28]B. Beidokhti, A. Dolati, A. H. Koukabi, et al. Effects of alloying elements and microstructure on the susceptibility of the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J].Materials Science and Engineering.2009,507(1-2):167-173
    [29]S. Curtze, V. T. Kuokkala, M. Hokka, P. Peura, et. al. Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates[J]. Materials Science and Engineering.2009,507(1-2):124-131
    [30]M. Goodarzi, S.P.H. Marashi, M. Pouranvari, et al. Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel [J]. Journal of Materials Processing Technology.2009,209(9):4379-4384
    [31]J.Rensman, E.V.van Osch, M.G.Horsten. et al. Post-irradiation mechanical tests on F82H EB and TIG welds[J]. Journal of Nuclear Materials.2000,283-287(1):1201-1205
    [32]A.Kohyama, Y.Kohno, M.Kuroda.et al.Production of low activation steel; JLF-1, large heats-Current status and future plan[J]. Journal of Nuclear Materials.2000,258-263(2): 1319-1323
    [33]T. Sawai, K. Shiba, A. Hishinuma. Microstructure of welded and thermal-aged low activation steel F82H IEA heat[J]. Journal of Nuclear Materials.2000,283-287(1):657-661
    [34]Gaude-Fugarolas D.,Carlan Y.de.Modelling precipitate distribution in reduced-activation steels[J].Journal of Nuclear Materials.2008,374(1-2):109-115
    [35]A. Nishimura, N. Inoue, T. Muroga.Fracture toughness of low activation ferritic steel (JLF-1) weld joint at room temperature[J].Journal of Nuclear Materials.1998,256-263:1242-1247
    [36]T. Sawai, E. Wakai, T. Tomita. Swelling behavior of TIG-welded F82H IEA heat[J]. Journal of Nuclear Materials.2002,307-311(1):312-316
    [37]T. Sample, H. Kolbe.Liquid metal embrittlement (LME) susceptibility of the 8-9% Cr martensitic steels F82H-mod., OPTIFER IVb and their simulated welded structures in liquid Pb-17Li[J]. Journal of Nuclear Materials.2000,283-287 (2):1336-1340
    [38]J.Rensman,E.V.van Osch,M.G. Horsten,D.S.d Hulst. Post-irradiation mechanical tests on F82H EB and TIG welds[J].Journal of Nuclear Materials.2000,283-287(2):1201-1205
    [39]A. Alamo, A. Castaing, A. Fontes, et al. Effects of thermal aging on the mechanical behavior of F82H weldments[J]. Journal of Nuclear Materials.2000,283-287(2):1192-1195
    [40]Xuejun Jia, Y. Dai.Microstructure and mechanical properties of F82H weld metal irradiated in SINQ target-3[J].2004,329-333(1):309-313
    [41]T. Hirose, K. Shiba, M. Enoeda, et al.Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water[J]. Journal of Nuclear Materials. 2007,367-370(2):1185-1189
    [42]T. Hirose K. Shiba, T. Sawai, et al. Effects of heat treatment process for blanket fabricationon mechanical properties of F82H[J]. Journal of Nuclear Materials.2004, 329-333:324-327
    [43]E. Wakai, M. Ando, T. Sawai, et al. Effect of heat treatments on tensile properties of F82H steel irradiated by neutrons [J]. Journal of Nuclear Materials.2007,367-370(1):74-80
    [44]Hasegawa T, Tomita Y, et al.Influence of Tantalum and Nitrogen Contents, Nowmalizing Condition and TMCP Process on the Mechanical Properities of Low-activation 9Cr-2W-0.2V-Ta Steels for Fusion Application[J]. Journal of Nuclear Materials.2002, 258-263:1153-1157
    [45]Kohno Y, Kohyama A.Mechanical Property Changes of Low Activation Ferritic/martensitic Steels after Neutron Irradiation [J]. Journal of Nuclear Materials.1999,271-272:145-150
    [46]N. Inoue, T. Muroga, A. Nishimura, et al.Characterization of low-activation ferritic steel (JLF-1) weld joint by simulated heat-treatments[J]. Journal of Nuclear Materials.2000,283-287 (2):1187-1191
    [47]N. Inoue, T. Muroga, A. Nishimura, et al. Correlation between microstructure and hardness of a lowactivation ferritic steel (JLF-1) weld joint[J].Journal of Nuclear Materials. 1998,258-263:1248-1252
    [48]A Nishimura, T Nagasaka, N Inoue, et al. Low cycle fatigue properties of a low activation ferritic steel (JLF-1) at room temperature [J]. Journal of Nuclear Materials.2000, 283-287(1):677-680
    [49]A.Cardella,E.Rigal,L.Bede et al. The manufacturing technologies of the European breeding blankets[J]. Journal of Nuclear Materials.2004,329-333(1):133-140
    [50]李春京,黄群英,吴宜灿.中国低活化马氏体钢CLAM热等静压扩散焊接初步研究[J].核科学与工程.2007,27(1):55-58
    [51]雷玉成,韩明娟,朱强,巨新.中国低活化钢激光焊接接头微观组织与硬度分析[J].焊接学报.2010,31(1):5-8
    [52]乔建生,赵飞,黄依娜,万发荣. CLAM钢的钨极氩弧焊及焊接后的结构与性能[J].核科学与工程.2008,28(4):354-361
    [53]吴言高,李午申等.焊接数值模拟技术发展现状[J].焊接学报,2002,23(3):89-92
    [54]雷玉成,张玲,顾康家等. CLAM钢TIG焊有限元模拟[J].焊接技术.2009,38(3):16-19
    [55]尹莎,雷玉成,邵奇栋等.CLAM钢焊接残余应力与变形的三维数值模拟[J].焊接技术.2010,39(1):12-15
    [56]陈楚.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985:254-278
    [57]Z.Paley, H.D.Hibbert. Computation of Temperatures in actual Weld Design [J]. Welding Journal,1975,54(11):385~392.
    [58]G W. Krutz, L J.segerlined. Finite Element Analysis of Welded Structures [J]. Welding Journal,1978,57 (2):23
    [59]J. Goldak, et al. A New Finite Element Model for Welding Heat Sources [J]. Metallurgical Transactions B,1984,15B(1):299-305
    [60]J. Goldak, et al. Computer Modeling of Heat Flow in Welding [J]. Metallurgical Transactions B Step.1986,17B(1):587-600
    [61]P.TekriWal, J.Mazumder. Finite Element Analysis of Three Dimensional Transient Heat Transfer in GMA Welding[J]. Welding Research Supplement,1998,16:150-156
    [62]S.W.Wen, P.HILTON,D.C.J.Farrugia. Modelling of a submerged Arc Welding Process[J]. Journal of Materials Processing Technology.2001,119:203-209
    [63]陈楚,汪建华,杨洪庆.非线性焊接热传导的有限元分析和计算[J].焊接学报,1983(3):139-148
    [64]陈楚,汪建华,杨洪庆.水下焊接冷却特性的有限元分析[J].海洋工:程,1993(4):34-38
    [65]武传松等.熔透情况下三维TIG焊接熔池流场和热场的数值分析[J].金属学报,1992,28(10):427-432
    [66]武传松等.TIG焊接熔池表面变形对流场和热场的影响[J].金属科学与工艺,1992,11(3,4):108-113
    [67]C. S. Wu. Computer simulated of three-dimensional convection in traveling MIG weld pools [J]. Engineering Computation,1992,9(5):529-537
    [68]武传松,L. Dorn.熔滴冲击力对MIG焊接熔池表面形状的影响[J].金属学报,1997,33(7):774-780
    [69]J.H. Wang.Improvement in Numerical Accuracy and Stability of 3-D TEM Analysis in Welding[J].Welding Journal,1996,75(4):129-134
    [70]J.H.Wang, H.Lu, Murakawa Hidekazu. An TEM Model of Bucking Distortion During Welding of Thin Plate [J]. Journal of Shanghai Jiaotong University,1999, E-4(2):69~72
    [71]蔡洪能,唐慕尧.TIG焊温度场的有限元分析[J].机械工程学报,1996,32(2):34-39
    [72]Yueda. Analysis of elasric-palastic stress and stain dring welding[J]. Trans.Japan Welding Soc,1971,2(2):90-94
    [73]Daehn, Glenn, S,Anderson, peter.M. Tempreture change induced plasticity in metal matrix composites[J]. Effect of reinforcement morphology, Scripta Metallurgica et materialia,1991,25(10):2279-2284
    [74]K.S.Alfredsson, B.L.Josefson. Harmonic Response of a Spot Welded Box Beam-Influence of Welding Rsidual Stresses and Deformations,IUTAM Symposium on the Mechanical Effects of Weldimg,1991,6:1-8
    [75]Bruneau, Michel, Mahin, et al. Ultimate behavior of heavy steel section welded splices and design implications[J]. Journal of Structural Engineering,1990,116(8),2214-2235
    [76]Cho Y.W., OhY.J., Yi K.W., Chung S.H., Shim J.D. Numerical analysis of molten metal shape in cold crucibles by 3D FEM[J]. Modelling and simulation in materials Science and Engineering,1996,4(1):11-22
    [77]Cho Y.WL.Karlon. Thermal stress in welding[M], in R.Hetnarski(ed).Thermal Stresses Ⅰ,North-Holland, Amsterdam,Chapter5,1986:229-389
    [78]楼志文等.瞬态温度场和热弹塑性场的有限元分析[J].西安交通大学学报,1981,15(6):1-8
    [79]汪建华,戚新海,钟晓敏.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994,28(6):59-65
    [80]汪建华.管板接头三维焊接变形的数值模拟[J].焊接学报,1995,16(3):140-145
    [81]汪建华.压缩机变形的三维数值模拟[J].机械工程学报,1996,32(1):85-91
    [82]梁陈剑.远程焊接数值模拟系统的研究[D].清华大学硕士学位论文,2002
    [83]吴宜灿,汪卫华,刘松林等.ITER中国液态锂铅实验包层模块设计研究与实验策略[J].核科学与工程.2005,25(4):347-360
    [84]H. Glasbrenner, J. Konys, Z. Voss, O. Wedemeyer. Corrosion behaviour of Al based tritium permeation barriers in flowing Pb-17Li[J]. Journal of Nuclear Materials.2002,307-311: 1360-1363
    [85]Valentyn Tsisar, Masatoshi Kondo, Qi Xuc, et al. Effect of nitrogen on the corrosion behavior of RAFM JLF-1 steel in lithium[J]. Journal of Nuclear Materials.2011,417: 1205-1209
    [86]Karel Splichal, Milan Zmitko. Corrosion behaviour of EUROFER in Pb-17Li at 500℃[J]. Journal of Nuclear Materials.2004,329-333:1384-1387
    [87]Yaping Chen, Qunying Huang, Sheng Gao, et al. Corrosion analysis of CLAM steel in flowing liquid LiPb at 480℃[J]. Fusion Engineering and Design.2010,85:1909-1912
    [88]Sheng Gao, Qunying Huang, Zhiqiang Zhu. Corrosion behavior of CLAM steel in static and flowing LiPb at 480℃ and 550℃[J]. Fusion Engineering and Design.2011,86:2627-2631
    [89]乔建生,黄依娜,万发荣. CLAM钢TIG焊后的热处理工艺研究[J].核科学与工程.2009,29(3):239-246
    [90]雷玉成,顾康家,朱强,陈希章等.中国低活马氏体钢熔化焊接头硬度与微观组织[J].焊接学报.2009,20(11):9-12
    [91]徐祖耀.马氏体相变与马氏体[M].北京:科学技术出版社,1999
    [92]刘宗吕等编著.材料组织结构转变原理[M].北京:冶金工业出版社,2006
    [93]田燕.焊接区金相断口分析[M].北京:机械工业出版社,1991
    [94]J.Onoro. Weld metal microstructure analysis of 9-12%Cr steels[J]. International Journal of Pressure Vessels and Piping 83(2006)540-5455
    [95]J.Onoro. Martensite microsture of 9-12%Cr steels weld metals[J]. Materials Processing Technology.180(2006)137-142
    [96]Chunjing Li, Qunying Huang, QingshengWu, Shaojun Liu, Yucheng Lei, Takeo Muroga, Takuya Nagasaka, Jianxun Zhang, Jinglong Li. Welding techniques development of CLAM steel for Test Blanket Module[J]. Fusion Engineering and Design 84 (2009) 1184-1187
    [97]Y.Li, Q.Huang, Y.Wu, T.Nagasaka, T.Muroga. Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1[J]. Journal of Nuclear Materials. 367-370(2007)117-121
    [98]C.Li, Q. Huang, P.Zhang, FDS Team. Preliminary experimental study on Hot Isostatic Pressing diffusion bonding for CLAM/CLAM[J]. Fusion Engineering and Design. 82(2007)2627-2633
    [99]邓凡平ANSYS10.0有限元分析自学手册[M].北京:人民邮电出版社,2007:24-66
    [100]Q. Huang, C. Li, Y. Li, et al. Progress in development of China Low Activation Martensitic steel for fusion application [J]. Journal of Nuclear Materials,2007,367-370:142-146
    [101]J. Yu, Q. Huang, F. Wan. Research and development on the China low activation martensitic steel (CLAM) [J]. Journal of Nuclear Materials,2007,367-370,97-101
    [102]李艳芬,黄群英,吴宜灿.CLAM钢冲击和拉伸性能测试与研究[J].原子核物理评论,2006,23(2):151-154
    [103]A.H. Yaghi, T.H. Hyde, et al. Residual stress simulation in welded sections of P91 pipes [J]. Journal of Materials Processing Technology,2005,167:480-487
    [104]龚曙光,谢桂兰.ANSYS操作命令与参数化编程[M].北京,机械工业出版社,2006,
    [105]Andreas Iundback. Modeling of Weld Path for Use in Simulations[M]. LULEAL UNBERSIT-Y OF TECHNOLOGY,2000
    [106]M.A.Wahab. The prediction of the tempreture distribution and weld pool geometry in the gas metal arc welding process[J].Journal of Materials Processing Technology,1998,77: 233-239
    [107]P.N.Sabapathy, M.A.Wahab, M.J.Painter. The prediction of burn-through during in-service welding of gas pipelincs[J]. Internatinal Journal of pressure Vessels and Piping,2000, 77:669-677
    [108]莫春立,钱百年等.焊接热源计算模式的研究进展[J].焊接学报,2001,22(3):93-96
    [109]董志波,魏艳红等.不锈钢焊接温度场的三维数值模拟[J].焊接学报,2006,25(2):9-14
    [110]胡仁喜,王庆五等. ANSYS8.2机械设计高级应用实例[M].北京:机械工业出版社,2005:375-377.
    [111]武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2008:79-143.
    [112]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社,2005:1-56
    [113]付荣柏.焊接变形的控制与矫正[M].北京:力学工业出版社,2006:22-72.
    [114]刘松林,汪卫华,龙鹏程,等.ITER中国液态锂铅实验包层模块结构设计与加工[J].核科学与工程.2006,26(1):92-96
    [115]Wu Yican. Design Concept and Testing Strategy of a Dual Functional Lithium Lead Test Blanket Module for ITER and EAST[C]. presented at the 21st IAEA Fusion Energy Conf. Chengdu, China, Oct.16-21,2006.
    [116]Hishinuma A.Current status and future R&D for reduced activation ferritic/martensitic steels[J]. Journal of Nuclear Materials.1998,258-263:193-204.
    [117]J.Konys, W.Krauss, J.Novotny, et al. Compatibility behavior of EUROFER steel in flowing Pb-17Li [J]. Journal of Nuclear Materials.2009,386-388:678-681
    [118]J.Konys, W.Krauss, Z.Voss, et al. Comparison of corrosion behavior of bare and hot-dipcoated EUROFER steel in flowing Pb-17Li[J], Journal of Nuclear Materials. 2007,367-370:1144-1149
    [119]Zhihong Zhong, Tatsuya Hinoki, Yi-Hyun Park et al. Interfacial reaction and diffusion control between SiC and F82H steel [J]. Fusion Engineering and Design,2010,85:992-997
    [120]Z.Zhu, M.Zhang, S.Gao et al. Preliminary experiments on the corrosion of CLAM steel in flowing eutectic LiPb [J]. Fusion Engineering and Design 2009,84:5-8.
    [121]高胜,章毛连,朱志强,等.中国低活化马氏体钢CLAM在液态锂铅中腐蚀的初步实验研究[J].2007,27(1):51-54
    [122]Chen Xizhang, Shen Zheng, Chen Xing, et al. Corrosion behavior of CLAM steel weldment in flowing liquid Pb-17Li at 480℃[J]. Fusion Engineering and Design,2011.86:2943-2948

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700