用户名: 密码: 验证码:
新型Q-P-T钢的高强塑性及工程实施的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在徐祖耀院士提出的淬火-分配-回火(Q-P-T)热处理思想的指导下,本文设计了成分为0.256C-1.2Si-1.48Mn-1.5Ni-0.05Nb (wt.%)的低碳Q-P-T钢及其热处理工艺。同时,采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、热模拟实验和力学性能测试等方法,研究了Q-P-T工艺中回火参数的选择对钢件力学性能和显微组织的影响,并着重探讨了Q-P-T钢在室温拉伸过程中加工硬化行为的特点;观察了Q-P-T钢在不同拉伸温度下力学性能和显微组织的演变规律,并对残余奥氏体的稳定性进行了重点分析;最后,分析了Q-P-T工艺在工业生产中应用的可能性,并在此基础上,尝试设计了12 mm和20 mm的高强度热轧中厚板的热处理工艺。本文主要研究成果如下:
     首先,设计了低碳Q-P-T钢,其化学成分为:0.256C-1.2Si-1.48Mn-1.5Ni-0.05Nb(wt.%),同时参考了Speer等人提出的CCE热力学模型,理论预测了Q-P-T工艺的初始淬火温度,并采用热模拟实验的方法设计了相应的热处理工艺:奥氏体化温度为930℃,初始淬火温度为290℃,回火温度为350~450℃,回火时间为15~3600 s。结果表明,350℃短时(30 s)回火的Q-P-T工艺处理得到的钢件具有较高的抗拉强度,其抗拉强度值接近1500 MPa,同时断后延伸率仍能保持在14%,强塑积为21000 MPa%;而经425℃短时(30 s)回火的Q-P-T工艺处理的钢件具有较好的塑性,其断后延伸率可达17%以上,同时其抗拉强度仍能达到1265 MPa,强塑积为22000 MPa%。两种Q-P-T钢的微观组织均为位错型板条马氏体和薄片状残余奥氏体,且细小的碳化物弥散分布在马氏体基体上,起到了一定的析出强化作用。其中,350℃短时回火Q-P-T钢的碳化物主要为HCP型ε过渡型碳化物,而425℃短时回火Q-P-T钢的碳化物则主要为FCC型(B1型)NbC微合金碳化物。然而,在经历425℃长时(3600 s)回火的Q-P-T工艺处理后,钢件中残余奥氏体的含量减少,生成了渗碳体(Fe3C)颗粒,钢件的力学性能也发生了下降。此外,分析了Q-P-T钢在室温拉伸过程中的加工硬化行为的特点。Q-P-T钢的加工硬化速率随应变的增加而下降,且在高应变时,加工硬化速率的下降趋势变缓,并出现较长的平台区。加工硬化指数则呈现三阶段变化,三个阶段分别为快速下降阶段,平台阶段和二次下降阶段。而残余奥氏体在拉伸过程中发生的马氏体相变及产生的TRIP效应则可能是Q-P-T钢在拉伸过程中加工硬化行为呈现上述变化的原因。
     其次,重点研究了经Q-P-T工艺(初始淬火温度为290℃,回火工艺为425℃/30 s)处理后的试样在不同拉伸温度下的力学性能和显微组织的变化规律。结果表明,在-85~25℃拉伸时,试样展现了良好的低温稳定性,整个温度区间内,具有不亚于室温的力学性能;在25~300℃拉伸时,试样呈现了优异的强塑性,且在200℃时各项力学性能值达到峰值,抗拉强度为1300 MPa,屈服强度为940 MPa,断后延伸率和强塑积则分别为22%和28600 MPa%;当拉伸温度在300℃以上时,试样的力学性能开始发生恶化。对比室温显微组织可知,-85℃时,试样中各相均未发生显著变化,这也是Q-P-T钢在-85℃拉伸时仍具有良好强塑性的一个主要原因;200℃时,残余奥氏体含量略有减少,且在马氏体板条上析出了大量的ε过渡碳化物,残余奥氏体显著的TRIP效应和ε过渡碳化物的析出强化作用共同提高了Q-P-T钢的强度和塑性;400℃时,板条马氏体发生回火软化,板条变宽,部分残余奥氏体发生分解,含量下降,渗碳体在马氏体板条上和条间形成,三者共同导致了Q-P-T钢力学性能的恶化。此外,本文还着重分析了试样中残余奥氏体在不同拉伸温度下稳定性的变化特点,并依靠实验数据结合理论分析,得到了表征其稳定性的四个特征温度值,即,低温马氏体转变温度Ms<-85℃,残余奥氏体分解温度MT = 300℃,应力状态下残余奥氏体开始向马氏体转变的温度Msσ= 0℃,残余奥氏体在应力作用下不发生马氏体相变仅发生塑性变形的温度Md = 473℃。
     最后,对Q-P-T工艺在工程中实施的可能性进行了探讨,从理论上说明了在连续冷却过程中也存在着碳分配效应,即连续冷却过程也可以稳定一定量的残余奥氏体,并结合“预冷+水淬+空冷自回火”的热处理方法为两种不同尺寸的热轧中厚板设计了相应的热处理工艺。其中,为模拟热轧中厚板的在线连续冷却过程,在实现20 mm热轧中厚板的热处理过程时采用了上海交通大学设计的穿水淬火冷却设备。显微组织表征结果显示,热轧中厚板经热处理后,其显微组织主要为马氏体、残余奥氏体和NbC,且随着钢件尺寸的增大,靠近心部的区域开始出现贝氏体。拉伸结果表明,两种中厚板的屈服强度均达到900 MPa以上,抗拉强度在1200 MPa以上,同时具有15%以上的延伸率,展现了良好的强塑性,达到设计的性能。可以说,常用的“预冷+水淬+空冷自回火”的热处理过程中在一定程度上也存在Q-P-T效应,这在设计高强热轧中厚板热处理工艺时显示了一定的潜力,而这也为Q-P-T工艺设计思想在工业生产中的推广提供了参考依据。
According to the Quenching-Partitioning-Tempering (Q-P-T) process proposed by T. Y. Hsu (Xu Zuyao), new types of low carbon high strength steels with adequate plasticity and toughness were obtained through different Q-P-T processes. Meanwhile, the effects of tempering parameters on the microstructures and mechanical properties of Q-P-T steels were investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Gleeble thermal simulator and Zwick/Sans universal testing machines, and the work-hardening behaviors during plastic deformation were also analyzed. Additionally, the characteristics of microstructurures and the retained austenite stability of Q-P-T steels under different tensile temperatures were revealed. Lastly, a possibility on the application of Q-P-T processes in engineering was explored, and two proper Q-P-T processes for 12 and 20 mm thick hot-rolled plates were designed, respectively. The main research achievements are described as follows.
     Firstly, a low carbon Q-P-T steel was designed, and its composition was measured as 0.256C-1.2Si-1.48Mn-1.5Ni-0.05Nb (wt.%). Based on the“Constrained Carbon Paraequilibrium”(CCE) theory proposed by Speer et al. and the related experimental data,proper Q-P-T process parameters were determined: initial quenching temperature was set to 290℃, and partitioning / tempering temperature was ranged from 350 to 450℃with the corresponding time ranged from 15 to 3600 s. The results indicated that this Q-P-T steel exhibited the highest ultimate tensile strength (UTS) (1500 MPa), sufficient ductility (14%) and product of strength (21000 MPa%) for tempering at 350℃for 30 s; and the best ductility (17%) and PSE (22000 MPa%) with superior UTS (1265 MPa) for tempering at 425℃for 30 s. The microstructures of the Q-P-T steel consisted of dislocation-type lath martensite and flake-like retained austenite with dispersively distributed carbides in martensite matrix, but the carbides changed from HCP-typeεtransition carbides to FCC-type (B1) NbC carbides with increasing tempering temperature. Especially for tempering at 425℃for 3600 s, the properties of the steel were deteriorated due to the formation of cementite (Fe3C) from the decomposition of retained austenite. In addition, the work-hardening behaviors of the Q-P-T steel during plastic deformation were also analyzed. The results showed that work-hardening rate decreased as tensile strain increased and its downward trend slowed down to a platform at higher strain, while work-hardening exponent presented a three-stage change including a first rapid decreasing stage, a plateau stage before necking and the last slow-decrease stage. The work-hardening behaviors mentioned above were attributed to the transformation induced plasticity (TRIP) effect of retained austenite.
     Secondly, the microstructures and mechanical properties of the steel subjected to Q-P-T process (tempering at 425℃for 30 s) under different tensile temperatures were investigated in detail. When deformed at -85~25℃, samples exhibited good low-temperature properties almost the same as that deformed at room temperature. Samples deformed at 25~300℃showed excellent combinations of strength and ductility, and the mechanical properties reached the peak values at 200℃with the UTS of 1300 MPa, the yield strength (YS) of 940 MPa, the ductility of 22% and the PSE of 28600 MPa%. However, when tensile temperature increased to over 300℃, the mechanical properties tended to lower. By comparing with microstructure deformed at room temperature, it was found that the microstructure deformed at -85℃almost kept unchanged,which was the reason that Q-P-T steel exhibited good low-temperture properties. When the tensile temperature was set to 200℃, both the TRIP effect of retained austenite and the precipitation strengthening effect ofεtransition carbides contributed to the best combination of strength and ductility. However, when the tensile temperature rose to 400℃, the temper-softening of lath martensite, the decomposition of retained austenite and the formation of Fe3C occurred simultaneously, which led to the deterioration of mechanical properties. In addition, the stability of retained austenite in Q-P-T samples under different tensile temperatures was analyzed in detail, and its four characteristic temperatures were determined combining with experimental data, namely, Ms<-85℃, MT= 300℃, Msσ= 0℃and Md = 473℃.
     Lastly, the possibility of Q-P-T processes applied in engineering was explored, and a new Q-P-T process with“pre-cooling + water quenching + air cooling”method for the continuous quenching process of hot-rolled plates was developed. According to this method, two proper Q-P-T processes for 12 and 20 mm thick hot-rolled plates were designed, respectively. The results showed that the microstructures of the as-treated plates consisted of martensite, retained austenite and NbC carbides, and some bainite formed near the core of the plates as the dimension increased from 12 mm to 20 mm. These two types of hot-rolled plates exhibited good mechanical properties with YS higher than 900 MPa, UTS higher than 1200 MPa and elongation more than 15%, which reached the design objective. The exploration of the Q-P-T process with“pre-cooling + water quenching + air cooling”method provided a reference for the applications of Q-P-T processes in engineering.
引文
[1] Kunishige K. Recent progress and prospect of high strength sheet steel for automotive use. Zairyo/Journal of the Society of Materials Science, Japan. 2001, 50(1): 47-54.
    [2] Lagneborg R. Steel development: Review and prospects for the future. Scand J Metall. 1997, 26(6): 255-265.
    [3] Lyakishev NP, Nikolaev AV. Steel metallurgy: Trends, problems, and prospects for growth. Metallurgist. 2003, 47(1-2): 66-74.
    [4]干勇,田志凌,董翰等.中国材料工程大典.北京:化学工业出版社, 2006.
    [5]徐祖耀.钢的组织控制与设计(二).上海金属. 2007, 29(2): 1-8.
    [6]徐祖耀.钢的组织控制与设计(一).上海金属. 2007, 29(1): 1-9.
    [7]徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺.热处理. 2008, 23(2): 1-5.
    [8]董翰等.先进钢铁材料.北京:科学出版社, 2008.
    [9]康永林.汽车轻量化先进高强钢与节能减排.钢铁. 2008, 45(6): 1-7.
    [10]江海涛,唐荻,米振莉.汽车用先进高强度钢的开发及应用进展.钢铁研究学报. 2008, 19(8): 1-6.
    [11]顾海澄,周惠久.显微组织力学的新进展.兵器材料科学与工程. 1989, (8): 25-32.
    [12]于杰,金志浩,涂铭旌.关于多冲试验方法的评价.贵州工学院学报. 1990, 19(4): 99-106.
    [13]周惠久,黄明志,朱金华.钢在多次冲击载荷下裂纹发展过程的研究.西安交通大学学报. 1965, (3): 25-38.
    [14]赵振业,李志,刘天琦,朱杰远.探索新强韧化机制开拓超高强度钢新领域.中国工程科学. 2003, 5(9): 39-44.
    [15] Pokrovskaya NG, Petrakov AF, Shal'kevich AB. Modern high-strength structural steels for workpieces of aviation engineering. Metalloved Term Obrab Met. 2002, (12): 23-26.
    [16] Pokrovskaya NG, Petrakov AF, Shal'kevich AB. Modern high-strength structural steels for aircraft engineering. Met Sci Heat Treat. 2002, 44(11-12): 520-523.
    [17] Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall Mater Trans A. 2001, 32(4): 861-877.
    [18] Conner RD, Dandliker RB, Johnson WL. Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75Cu12.5Ni10Be 22.5 metallic glass matrix composites. Acta Mater. 1998, 46(17): 6089-6102.
    [19]崔昆,胡镇华,赵菊华.高强韧性65Cr4W3MoVNb基体钢.华中工学院学报. 1980, (1): 137-151.
    [20] Qian C, Duan Z, Geng P, Zeng M. Effect of Alloying Elements on the Phase Transformation for Secondary-Hardening Martensite Steels Enriched Co and Ni. J Iron Steel Res Int. 1999, 11(6): 25-29.
    [21] Sha W, Cerezo A, Smith GDW. Phase chemistry and precipitation reactions in maraging steels: Part II. Co-free T-300 steel. Metall Mater Trans A. 1993, 24(6): 1233-1239.
    [22] Sha W, Cerezo A, Smith GDW. Phase chemistry and precipitation reactions in maraging steels: Part I. Introduction and study of Co-containing C-300 steel. Metall Mater Trans A. 1993, 24(6):1221-1232.
    [23] Llewellyn DT, Hillis DJ. Dual phase steels. Ironmaking Steelmaking. 1996, 23(6): 471-478.
    [24] Cai XL, Garratt-Reed AJ, Owen WS. The development of some dual-phase steel structures from different starting microstructures. Metall Mater Trans A. 1985, 16(4): 543-557.
    [25] Davies RG. Influence of martensite composition and content on the properties of dual phase steels. Metall Mater Trans A. 1978, 9(5): 671-679.
    [26] Bag A, Ray KK, Dwarakadasa ES. Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater Trans A. 1999, 30(5): 1193-1202.
    [27] Hüper T, Endo S, Ishikawa N, Osawa K. Effect of volume fraction of constituent phases on the stress-strain relationship of dual phase steels. ISIJ Int. 1999, 39(3): 288-294.
    [28]王传雅,王英杰,戚正风. 11CuPSiMn2NbTiRE和11CuPSiMn3NbTiRE钢的双相区奥氏体形成及冷却转变.热加工工艺. 1993, (3): 35-38.
    [29]戚正风,王岩.低碳钢临界区加热转变动力学研究.金属热处理学报. 1992, 13(4): 25-32.
    [30]王传雅,李凡.两相区加热对过冷奥氏体转变动力学及钢的淬透性的影响.金属热处理学报. 1988, 9(1): 21-33.
    [31]张梅,符仁钰,许洛萍.汽车用双相钢钢板的发展.热处理. 2001, 1(1): 5-8.
    [32] Zackay VF, Paker ER, Fahr D, Bush R. The enhancement of ductility in high-strength steels. Trans ASM. 1967, 60(2): 252-259.
    [33] Chanani GR, Zackay VF, Parker ER. Tensile properties of 0.05 to 0.20 Pct C TRIP steels. Metall Mater Trans A. 1971, 2(1): 133-139.
    [34] Hayden H, Floreen S, Goodell P. The deformation mechanisms of superplasticity. Metall Mater Trans B. 1972, 3(4): 833-842.
    [35] Olson GB, Cohen M. Thermoelastic behavior in martensitic transformations. Scr Metall. 1975, 9(11): 1247-1254.
    [36] Matsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel. Transactions of the Iron and Steel Institute of Japan. 1987, 27(7): 570-579.
    [37] Sugimoto KI, Kobayashi M, Hashimoto SI. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall Mater Trans A. 1992, 23 A(11): 3085-3091.
    [38] Tomita Y, Okabayashi K. Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite. Metall Mater Trans A. 1985, 16(1): 73-82.
    [39] Tomita Y, Okabayashi K. Improvement in lower temperature mechanical properties of 0.40 pct C-Ni-Cr-Mo ultrahigh strength steel with the second phase lower bainite. Metall Mater Trans A. 1983, 14(2): 485-492.
    [40] Tomita Y, Okabayashi K. Modified heat treatment for lower temperature improvement of the mechanical properties of two ultrahigh strength low alloy steels. Metall Mater Trans A. 1985, 16(1): 83-91.
    [41] Tomita Y. Development of fracture toughness of ultrahigh strength, medium carbon, low alloysteels for aerospace applications. Int Mater Rev. 2000, 45(1): 27-37.
    [42] Tomita Y, Okawa T. Effect of silicon additions on austempered structure and mechanical properties in ultrahigh strength low alloy steels. Zairyo/Journal of the Society of Materials Science, Japan. 1994, 43(488): 509-514.
    [43] Tomita Y, Okawa T. Effect of microstructure on mechanical properties of isothermally bainite-transformed 300M steel. Mater Sci Eng, A. 1993, 172(1-2): 145-151.
    [44]方鸿生,刘东雨,白秉哲,常开地,顾家琳,杨志刚.无碳化物贝氏体/马氏体复相钢的新进展.金属热处理. 2001, 26(10): 4-6.
    [45]许峰云,白秉哲,方鸿生.低碳Mn系水淬贝氏体钢的组织和力学性能.材料热处理学报. 2010, 31(9): 83-88.
    [46]方鸿生,冯春,郑燕康,杨志刚,白秉哲.新型Mn系空冷贝氏体钢的创制与发展.热处理. 2008, 23(3): 2-19.
    [47] Gr?ssel O, Frommeyer G, Derder C, Hofmann H. Phase transformations and mechanical properties of Fe-Mn-Si-Al TRIP-steels. Journal De Physique IV : JP. 1998, 7(5): C5-383-C385-388.
    [48]米振莉,唐荻,严玲,郭锦.高强度高塑性TWIP钢的开发研究.钢铁. 2005, 40(1): 58-60.
    [49]李大赵,卫英慧,刘春月,侯利锋,刘东风,崖天燮, et al.汽车用TWIP钢的基础研究现状.钢铁研究学报. 2009, 21(2): 1-5.
    [50]黄宝旭,王晓东,戎咏华,王利. TWIP钢研究的现状与展望.热处理. 2005, 20(4): 4-11.
    [51] Gr?ssel O, Krüger L, Frommeyer G, Meyer LW. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. Int J Plast. 2000, 16(10): 1391-1409.
    [52] Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 2003, 43(3): 438-446.
    [53] Caballero FG, Bhadeshia HKDH. Very strong bainite. Curr Opin Solid State Mater Sci. 2004, 8(3-4): 251-257.
    [54] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Very strong low temperature bainite. Mater Sci Technol. 2002, 18(3): 279-284.
    [55] Matas S, Hehemann RF. Retained Austenite and the Tempering of Martensite. Nature. 1960, 187(4738): 685-686.
    [56] Narasimha Rao BV, Thomas G. Transmission electron microscopy characterization of dislocated lath martensite. In: Proc. Int. Conf. Martensitic Transformations, 1979, Boston, United States, 24-29.
    [57] Krauss G. Steels: heat treatment and processing principles, 2nd ed. ASM, 1990, Materials Park, OH.
    [58] Speer JG, Rizzo Assun??o FC, Matlock DK, Edmonds DV. The "quenching and partitioning" process: Background and recent progress. Materials Research. 2005, 8(4): 417-423.
    [59] Speer JG, Matlock DK, DeCooman BC, Schroth JG. Comments on "On the definitions of paraequilibrium and orthoequilibrium" by M. Hillert and J. Agren, Scripta Materialia, 50, 697-9 (2004). Scr Mater. 2005, 52(1): 83-85.
    [60] Speer JG, Matlock DK, De Cooman BC, Schroth JG. Carbon partitioning into austenite aftermartensite transformation. Acta Mater. 2003, 51(9): 2611-2622.
    [61] Speer JG, Hackenberg RE, Decooman BC, Matlock DK. Influence of interface migration during annealing of martensite/austenite mixtures. Philos Mag Lett. 2007, 87(6): 379-382.
    [62] Speer JG, Edmonds DV, Rizzo FC, Matlock DK. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Curr Opin Solid State Mater Sci. 2004, 8(3-4): 219-237.
    [63] Edmonds DV, He K, Miller MK, Rizzo FC, Clarke A, Matlock DK, et al. Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment. In: 5th Int. Conf. on Processing and Manufacturing of Advanced Materials, 2006, Vancouver, Canada, 4819-4825.
    [64] Edmonds DV, He K, Rizzo FC, De Cooman BC, Matlock DK, Speer JG. Quenching and partitioning martensite-A novel steel heat treatment. Mater Sci Eng, A. 2006, 438-440(SPEC. ISS.): 25-34.
    [65] Allten AG, Payson P. The effect of silicon on the tempering of martensite. Trans ASM. 1953, 45: 498-532.
    [66] Owen WS. The effect of silicon on the kinetics of tempering. Trans ASM. 1954, 46: 812-829.
    [67] Wang XD, Xu WZ, Guo ZH, Wang L, Rong YH. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process. Mater Sci Eng, A. 2010, 527(15): 3373-3378.
    [68] Hansen SS, Sande JBV, Cohen M. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science Metall Mater Trans A. 1980, 11(3): 387-402.
    [69] Park SH, Yue S, Jonas JJ. Continuous-cooling-precipitation kinetics of Nb(CN) in high-strength low-alloy steels. Metall Mater Trans A. 1992, 23(6): 1641-1651.
    [70]王有铭,李曼云,韦光.钢材的控制轧制和控制冷却.北京:冶金工业出版社, 2008.
    [71] Hsu TY. Design of structure, composition and heat treatment process for high strength steel. In: Proc. 6th Pacific Rim Int. Conf. on Advanced Materials and Processing, Mater. Sci. Forum, 2007, Cheju Isl, South Krea, 2283-2286.
    [72]徐祖耀.钢热处理的新工艺.热处理. 2007, 22(1): 1-11.
    [73] Rong YH, Wang XD, Zhong N, Wang L, Hsu TY. The investigation of ultra-high strength steel by quenching-partitioning- tempering (Q-P-T) process. In: 3rd Int. Conf. on Processing Materials for Properties 2008, 2009, Bangkok, Tailand, 666-669.
    [74] Wang XD, Zhong N, Rong YH, Hsu TY. Development of New Ultra-High Strength Nb-Containing Q-P-T Steel. TMS Annual Meeting & Exhibition 2009.
    [75] Wang XD, Zhong N, Rong YH, Hsu TY, Wang L. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process. J Mater Res. 2009, 24(1): 260-267.
    [76] Zhong N, Wang XD, Wang L, Rong YH. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process. Mater Sci Eng, A. 2009, 506(1-2): 111-116.
    [77] Zhang K, Xu W, Guo Z, Rong Y, Wang M, Dong H. Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content. Jinshu Xuebao/Acta Metallurgica Sinica. 2011, 47(4): 489-496.
    [78] Barnard SJ, Smith GDW, Sarikaya M, Thomas G. Carbon atom distribution in a dual phase steel: An atom probe study. Scr Metall. 1981, 15(4): 387-392.
    [79] Barnard SJ, Smith GDW, Garratt-Reed AJ, Vander Sande J. ATOM PROBE STUDIES: 1) THE ROLE OF SILICON IN TEMPERING OF STEEL AND 2) LOW TEMPERATURE CHROMIUM DIFFUSIVITY IN BAINITE. Metallurgical Soc of AIME, 1982, Pittsburgh, PA, USA, 881-885.
    [80] Sarikaye M, Thomas G, Steeds JW, Barnard SJ, Smith GDW. SOLUTE ELEMENT PARTITIONING AND AUSTENITE STABILIZATION IN STEELS. Metallurgical Soc of AIME, 1982, Pittsburgh, PA, USA, 1421-1425.
    [81] Barnard SJ, Smith GDW, Garratt-Reed AJ, Vander Sande J. INFLUENCE OF SILICON ON THE TEMPERING OF STEEL. Metals Society, 1982, Liverpool, Engl, 33-37.
    [82]李洪岩. 2000MPa级低合金超高强度复相钢的研究.学位论文,上海交通大学, 2010.
    [83] Kim SJ, Kim HS, De Cooman BC. Dilatometric study of the Quench and Partitioning (Q&P) process. In: AIST Steel Properties and Applications Conference Proceedings 2007, 73-83.
    [84] Hollomon JH, Jaffe LD, Buffum DC. Stabilization, tempering, and relaxation in the Austenite-Martensite transformation. J Appl Phys. 1947, 18(8): 780-781.
    [85] Cohen M. Retained Austenite. Trans ASM. 1949, 41: 35-94.
    [86] Kinsman KR, Shyne JG. Thermal stabilization of austenite in iron-nickel-carbon alloys. Acta Metall. 1967, 15(9): 1527-1543.
    [87] Clark RA, Thomas G. Design of strong tough Fe/Mo/C martensitic steels and the effects of cobalt. Metall Mater Trans A. 1975, 6(5): 969-979.
    [88] Rao BVN, Thomas G. Structure-property relations and the design of Fe-4Cr-C base structural steels for high strength and toughness. Metall Mater Trans A. 1980, 11(3): 441-457.
    [89]康沫狂,朱明,陈大明,华文君.硅合金钢淬火组织中残留奥氏体的力学稳定性与力学性能.金属热处理. 2005, (1): 14-19.
    [90] Lee YK, Shin HC, Jang YC, Kim SH, Choi CS. Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe-3%Si-0.45%C-X steel. Scr Mater. 2002, 47(12): 805-809.
    [91]康沫狂,朱明.淬火合金钢中的奥氏体稳定化.金属学报. 2005, 41(7): 673-679.
    [92] Streicher AM, Speer JG, Matlock DK, De Cooman BC. Quenching and partitioning response of a Si-added TRIP sheet steel. In: Int. Conf. on Advanced High Strength Sheet Steels for Automotive Applications, 2004, Colorado, United States, 51-62.
    [93] Matlock DK, Brautigam VE, Speer JG. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel. In: 4th Int. Conf. on Processing and Manufacturing of Advanced Materials, 2003, Madrid, Spain, 1089-1094.
    [94] De Cooman BC, Speer JG. Quench and partitioning steel: A new AHSS concept for automotive anti-intrusion applications. Steel Res Int. 2006, 77(9-10): 634-640.
    [95] Hong SC, Ahn JC, Nam SY, Kim SJ, Yang HC, Speer JC, et al. Mechanical properties of high-Si plate steel produced by the quenching and partitioning process. Met Mater Int. 2007, 13(6): 439-445.
    [96] Rizzo F, Martins AR, Speer JG, Matlock D, Clarke A, De Cooman B. Quenching and partitioning of Ni-added high strength steels. In: 5th Int. Conf. on Processing and Manufacturing of Advanced Materials, Trans Tech Publications Ltd, 2006, Vancouver, CANADA, 4476-4481.
    [97] de Moor E, Lacroix S, Clarke AJ, Penning J, Speer JG. Effect of retained austenite stabilized via quench and partitioning on the strain hardening of martensitic steels. Metall Mater Trans A. 2008, 39(11): 2586-2595.
    [98] Li HY, Lu XW, Li WJ, Jin XJ. Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process. Metall Mater Trans A. 2010, 41A: 1-17.
    [99] Santofimia MJ, Nguyen-Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J. New low carbon Q&P steels containing film-like intercritical ferrite. Mater Sci Eng, A. 2010, 527(23): 6429-6439.
    [100] Edmonds DV, Speer JG. Martensitic steels with carbide free microstructures containing retained austenite. Mater Sci Technol. 2010, 26(4): 386-391.
    [101] Wang CY, Xie XQ, Liu S, Shi J, Dong H. Present status of quenching and partitioning process. Journal of Iron and Steel Research. 2009, 21(9): 6-11.
    [102]钟宁.高强度Q&P钢和Q-P-T钢的研究.学位论文,上海交通大学, 2009.
    [103]许为宗.超高强度增强塑性淬火-碳分配钢的组织设计.学位论文,上海交通大学, 2010.
    [104] Hultgren A. Isothermal transformation of austenite. Trans ASM. 1947, 39: 915-1005.
    [105] Hillert M, ?gren J. On the definitions of paraequilibrium and orthoequilibrium. Scr Mater. 2004, 50(5): 697-699.
    [106] Hillert M, Agren J. Reply to comments on "On the definition of paraequilibrium and orthoequilibrium". Scr Mater. 2005, 52(1): 87-88.
    [107] Koistinen DP, Marburger RE. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall. 1959, 7(1): 59-60.
    [108]宋冬利.大型塑料模具钢模块淬火工艺的研究与应用.学位论文,上海交通大学, 2006.
    [109]韩利战. X12CrMoWVNbN1011钢超超临界转子热处理工艺的研究.学位论文,上海交通大学, 2009.
    [110] Bhadeshia HKDH. Driving force for martensitic transformation in steels. Met Sci. 1981, 15(4): 175-177.
    [111] Gerdemann FLH, Speer JG, Matlock DK. Microstructure and hardness of 9260 steel heat-treated by the quenching and partitioning process. In: MS&T2004 Conference Proceedings, Association for Iron and Steel Technology, 2004, New Orleans, 439-449.
    [112] Clarke A, Speer JG, Matlock DK. Microstructure and carbon partitioning in a 0.19%C-1.59%Mn-1.63%Si TRIP sheet steel subjected to quenching and partitioning (Q&P). In: Proceedings of an International Conference on Solid-Solid Phase Transformations in Inorganic Materials, 2005, Phoenix, AZ, 99-108.
    [113] Rizzo FC, Edmonds DV, He K, Speer JG, Matlock DK, Clarke A. Carbon enrichment of austenite and carbide precipitation during the quenching and partitioning (Q&P) process. In: Int. Conf. on Solid-Solid Phase Transformations in Inorganic Materials, 2005, Phoenix, AZ, 535-544.
    [114] Hillert M, H?glund L, ?gren J. Escape of carbon from ferrite plates in austenite. Acta Metall. 1993, 41(7): 1951-1957.
    [115] Borgenstam A, H?glund L, ?gren J, Engstr?m A. DICTRA, a tool for simulation of diffusional transformations in alloys. Journal of Phase Equilibria. 2000, 21(3): 269-280.
    [116]徐祖耀,李学敏.低碳马氏体形成时碳的扩散.金属学报. 1983, 19(2): 83-88.
    [117] Zhong N, Wang XD, Rong YH, Wang L. Interface migration between martensite and austenite during quenching and partitioning (Q&P) process. J Mater Sci Technol. 2006, 22(6): 751-754.
    [118] Thomas GA, Speer JG, Matlock DK. Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production. Iron and Steel Technology. 2008, 5(10): 209-217.
    [1]徐祖耀.钢热处理的新工艺.热处理. 2007, 22(1): 1-11.
    [2]徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺.热处理. 2008, 23(2): 1-5.
    [3]林慧国,傅代直.钢的奥氏体化转变曲线-原理、测试与应用.北京:机械工业出版社, 1988.
    [4]国家标准局. GB 5056-85,钢的临界点测定方法(膨胀法), 1990,国家标准出版社,北京.
    [5]国家标准局. GB 5057-85,钢的连续冷却过程转变曲线图的测定方法(膨胀法), 1990,国家标准出版社,北京.
    [6]戎咏华.分析电子显微学导论.北京:高等教育出版社, 2006.
    [7]谈育煦,王静宜.钢的电子显微金相学.济南:山东科学技术出版社, 1993.
    [8] Durnin J, Ridal KA. Determination of retained austenite in steel by X-ray diffraction. Journal of the Iron and Steel Institute. 1968, 206(1): 60-67.
    [9]范雄.金属X射线学.北京:机械工业出版社, 1989.
    [10] Van Dijk NH, Butt AM, Zhao L, Sietsma J, Offerman SE, Wright JP, et al. Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling. Acta Mater. 2005, 53(20): 5439-5447.
    [11] Santofimia MJ, Zhao L, Sietsma J. Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization. Metall Mater Trans A. 2009, 40(1): 46-57.
    [12]国家标准局. GBT228-2002,金属材料室温拉伸试验方法, 2002,国家标准出版社,北京.
    [1] Speer JG, Rizzo Assun??o FC, Matlock DK, Edmonds DV. The "quenching and partitioning" process: Background and recent progress. Materials Research. 2005, 8(4): 417-423.
    [2] Speer JG, Matlock DK, DeCooman BC, Schroth JG. Comments on "On the definitions of paraequilibrium and orthoequilibrium" by M. Hillert and J. Agren, Scripta Materialia, 50, 697-9 (2004). Scr Mater. 2005, 52(1): 83-85.
    [3] Speer JG, Matlock DK, De Cooman BC, Schroth JG. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003, 51(9): 2611-2622.
    [4] Speer JG, Hackenberg RE, Decooman BC, Matlock DK. Influence of interface migration during annealing of martensite/austenite mixtures. Philos Mag Lett. 2007, 87(6): 379-382.
    [5] Speer JG, Edmonds DV, Rizzo FC, Matlock DK. Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation. Curr Opin Solid State Mater Sci. 2004, 8(3-4): 219-237.
    [6]徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(Q-P-T)工艺.热处理. 2008, 23(2): 1-5.
    [7]徐祖耀.钢热处理的新工艺.热处理. 2007, 22(1): 1-11.
    [8] Hsu TY. Design of structure, composition and heat treatment process for high strength steel. In: Proc. 6th Pacific Rim Int. Conf. on Advanced Materials and Processing, Mater. Sci. Forum, 2007, Cheju Isl, South Krea, 2283-2286.
    [9] Zhong N, Wang XD, Rong YH, Wang L. Interface migration between martensite and austenite during quenching and partitioning (Q&P) process. J Mater Sci Technol. 2006, 22(6): 751-754.
    [10] Zhong N, Wang XD, Wang L, Rong YH. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process. Mater Sci Eng, A. 2009, 506(1-2): 111-116.
    [11]国家标准局. GB 5057-85,钢的连续冷却转变曲线图的测定方法(膨胀法), 1990,国家标准出版社,北京.
    [12]国家标准局. GB 5056-85,钢的临界点测定方法(膨胀法), 1990,国家标准出版社,北京.
    [13]齐靖远,黎永钧,周惠久.淬火态低碳板条马氏体中的残余奥氏体、孪晶亚结构与自回火碳化物.金属热处理学报. 1984, 5(1): 42-51.
    [14] Cai XL, Garratt-Reed AJ, Owen WS. The development of some dual-phase steel structures from different starting microstructures. Metall Mater Trans A. 1985, 16(4): 543-557.
    [15] Lyakishev NP, Nikolaev AV. Steel metallurgy: Trends, problems, and prospects for growth. Metallurgist. 2003, 47(1-2): 66-74.
    [16] Chanani GR, Zackay VF, Parker ER. Tensile properties of 0.05 to 0.20 Pct C TRIP steels. Metall Mater Trans A. 1971, 2(1): 133-139.
    [17] Hayden H, Floreen S, Goodell P. The deformation mechanisms of superplasticity. Metall Mater Trans B. 1972, 3(4): 833-842.
    [18] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Very strong low temperature bainite. Mater Sci Technol. 2002, 18(3): 279-284.
    [19] Caballero FG, Bhadeshia HKDH. Very strong bainite. Curr Opin Solid State Mater Sci. 2004,8(3-4): 251-257.
    [20] Liu C, Zhao Z, Northwood DO, Liu Y. A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels. J Mater Process Technol. 2001, 113(1-3): 556-562.
    [21] Wang XD, Zhong N, Rong YH, Hsu TY. Development of New Ultra-High Strength Nb-Containing Q-P-T Steel. TMS Annual Meeting & Exhibition 2009.
    [22] Wang XD, Zhong N, Rong YH, Hsu TY, Wang L. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process. J Mater Res. 2009, 24(1): 260-267.
    [23] Zhang K, Xu W, Guo Z, Rong Y, Wang M, Dong H. Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content. Jinshu Xuebao/Acta Metallurgica Sinica. 2011, 47(4): 489-496.
    [24]许为宗.超高强度增强塑性淬火-碳分配钢的组织设计.学位论文,上海交通大学, 2010.
    [25] Li HY, Lu XW, Wu XC, Min YA, Jin XJ. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon. Mater Sci Eng, A. 2010, 527(23): 6255-6259.
    [26] Li HY, Lu XW, Li WJ, Jin XJ. Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process. Metall Mater Trans A. 2010, 41A: 1-17.
    [27] Santofimia MJ, Zhao L, Sietsma J. Model for the interaction between interface migration and carbon diffusion during annealing of martensite-austenite microstructures in steels. Scr Mater. 2008, 59(2): 159-162.
    [28] Santofimia MJ, Speer JG, Clarke AJ, Zhao L, Sietsma J. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing. Acta Mater. 2009, 57(15): 4548-4557.
    [29]钟宁.高强度Q&P钢和Q-P-T钢的研究.学位论文,上海交通大学, 2009.
    [30] Ohmori Y, Tamura I. Epsilon carbide precipitation during tempering of plain carbon martensite. Metall Mater Trans A. 1992, 23(10): 2737-2751.
    [31] Tan Y. TEM STUDY OF SIX REPRESENTATIVE LOW-CARBON MARTENSITIC STEELS. Jinshu Xuebao/Acta Metallurgica Sinica. 1985, 21(3): 181-186.
    [32] Edmonds DV, He K, Miller MK, Rizzo FC, Clarke A, Matlock DK, et al. Microstructural features of 'quenching and partitioning': A new martensitic steel heat treatment. In: 5th Int. Conf. on Processing and Manufacturing of Advanced Materials, 2006, Vancouver, Canada, 4819-4825.
    [33] Barnard SJ, Smith GDW, Garratt-Reed AJ, Vander Sande J. ATOM PROBE STUDIES: 1) THE ROLE OF SILICON IN TEMPERING OF STEEL AND 2) LOW TEMPERATURE CHROMIUM DIFFUSIVITY IN BAINITE. Metallurgical Soc of AIME, 1982, Pittsburgh, PA, USA, 881-885.
    [34] Barnard SJ, Smith GDW, Garratt-Reed AJ, Vander Sande J. INFLUENCE OF SILICON ON THE TEMPERING OF STEEL. Metals Society, 1982, Liverpool, Engl, 33-37.
    [35] Barnard SJ, Smith GDW, Sarikaya M, Thomas G. Carbon atom distribution in a dual phase steel: An atom probe study. Scr Metall. 1981, 15(4): 387-392.
    [36] Rong YH, Wang XD, Zhong N, Wang L, Hsu TY. The investigation of ultra-high strength steel by quenching-partitioning- tempering (Q-P-T) process. In: 3rd Int. Conf. on Processing Materials for Properties 2008, 2009, Bangkok, Tailand, 666-669.
    [37] Edmonds DV, He K, Rizzo FC, De Cooman BC, Matlock DK, Speer JG. Quenching and partitioning martensite-A novel steel heat treatment. Mater Sci Eng, A. 2006, 438-440(SPEC. ISS.): 25-34.
    [38] Gurland J. Observations on the fracture of cementite particles in a spheroidized 1.05% c steel deformed at room temperature. Acta Metall. 1972, 20(5): 735-741.
    [39] Porter DA, Easterling KE, Smith GDW. Dynamic studies of the tensile deformation and fracture of pearlite. Acta Metall. 1978, 26(9): 1405-1422.
    [40] Leslie WC. The Physical Metallurgy of Steel. New York: McGraw-Hill Co.; 1981. p. 1.
    [41]时海芳,任鑫.材料力学性能.北京:北京大学出版社, 2010.
    [42] Shi J, Sun X, Wang M, Hui W, Dong H, Cao W. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr Mater. 2010, 63(8): 815-818.
    [43] Timokhina IB, Hodgson PD, Pereloma EV. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel. Metall Mater Trans A. 2003, 34 A(8): 1599-1609.
    [44] Timokhina IB, Hodgson PD, Pereloma EV. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A. 2004, 35 A(8): 2331-2341.
    [45] Santos DB, Barbosa R, Oliveira PPd, Pereloma EV. Mechanical Behavior and Microstructure of High Carbon Si–Mn–Cr Steel with Trip Effect. ISIJ Int. 2009, 49(10): 1592-1600.
    [1] Sugimoto K-I, Kobayashi M, Hashimoto SI. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metall Mater Trans A. 1992, 23 A(11): 3085-3091.
    [2] Jiménez JA, CarsíM, Ruano OA, Frommeyer G. Effect of testing temperature and strain rate on the transformation behaviour of retained austenite in low-alloyed multiphase steel. Mater Sci Eng, A. 2009, 508(1-2): 195-199.
    [3] Li Z, Wu D. Effects of test temperature and strain rate on the mechanical properties in an intercritically heat-treated bainite-transformed steel. Acta Metallurgica Sinica (English Letters). 2004, 17(6): 840-848.
    [4] Shi J, Sun X, Wang M, Hui W, Dong H, Cao W. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scr Mater. 2010, 63(8): 815-818.
    [5] Timokhina IB, Hodgson PD, Pereloma EV. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A. 2004, 35 A(8): 2331-2341.
    [6] Timokhina IB, Hodgson PD, Pereloma EV. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel. Metall Mater Trans A. 2003, 34 A(8): 1599-1609.
    [7] Santos DB, Barbosa R, Oliveira PPd, Pereloma EV. Mechanical Behavior and Microstructure of High Carbon Si–Mn–Cr Steel with Trip Effect. ISIJ Int. 2009, 49(10): 1592-1600.
    [8] Barb L, DeMeyer M, DeCooman BC. Determination of the MsσTemperature of Dispersed Phase TRIP-Aided Steels. In: Int. Conf. on TRIP-aided High Strength Ferrous Alloys, 2001, Aachen, WMG, 65-69.
    [9] Sakuma Y, Matsumura O, Takechi H. Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions. Metallurgical and Materials Transactions A. 1991, 22(2): 489-498.
    [10] Airod A, Petrov R, Colas R, Houbaert Y. Analysis of the trip effect by means of axisymmetric compressive tests on a Si-Mn bearing steel. ISIJ Int. 2004, 44(1): 179-186.
    [11] Iwamoto T, Tsuta T. Computational simulation of the dependence of the austenitic grain size on the deformation behavior of TRIP steels. Int J Plast. 2000, 16(7-8): 791-804.
    [12]韦习成,李麟,符仁钰. TRIP钢显微组织与性能关系的评述.钢铁研究学报. 2001, 13(5): 71-76.
    [13] Vasilakos AN, Ohlert J, Giasla K, Haidemenopoulos GN, Bleck W. Low-alloy TRIP steels: A correlation between mechanical properties and the retained austenite stability. Steel Research. 2002, 73(6-7): 249-252.
    [14]王晓东,王利,戎咏华. TRIP钢研究的现状与发展.热处理. 2008, 23(6): 8-19.
    [15] Mukherjee M, Singh SB, Mohanty ON. Deformation-induced transformation of retained austenite in transformation induced plasticity-aided steels: A thermodynamic model. MetallMater Trans A. 2008, 39(10): 2319-2328.
    [16] Olson GB, Azrin M. Transformation behavior of TRIP steels. Metall Mater Trans A. 1978, 9(5): 713-721.
    [17] Liu C, Zhao Z, Northwood DO, Liu Y. A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels. J Mater Process Technol. 2001, 113(1-3): 556-562.
    [18] Sherif MY, Mateo CG, Sourmail T, Bhadeshia HKDH. Stability of retained austenite in TRIP-assisted steels. Mater Sci Technol. 2004, 20(3): 319-322.
    [19] Wang XD, Huang BX, Rong YH, Wang L. Microstructures and stability of retained austenite in TRIP steels. Mater Sci Eng, A. 2006, 438-440(SPEC. ISS.): 300-305.
    [20] Li HY, Lu XW, Li WJ, Jin XJ. Microstructure and Mechanical Properties of an Ultrahigh-Strength 40SiMnNiCr Steel during the One-Step Quenching and Partitioning Process. Metall Mater Trans A. 2010, 41A: 1-17.
    [21] Gr?ssel O, Krüger L, Frommeyer G, Meyer LW. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast. 2000, 16(10-11): 1391-1409.
    [1] Zhong N, Wang XD, Wang L, Rong YH. Enhancement of the mechanical properties of a Nb-microalloyed advanced high-strength steel treated by quenching-partitioning-tempering process. Mater Sci Eng, A. 2009, 506(1-2): 111-116.
    [2] Wang XD, Zhong N, Rong YH, Hsu TY, Wang L. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process. J Mater Res. 2009, 24(1): 260-267.
    [3] Nayak SS, Anumolu R, Misra RDK, Kim KH, Lee DL. Microstructure-hardness relationship in quenched and partitioned medium-carbon and high-carbon steels containing silicon. Mater Sci Eng, A. 2008, 498(1-2): 442-456.
    [4] Edmonds DV, He K, Rizzo FC, De Cooman BC, Matlock DK, Speer JG. Quenching and partitioning martensite-A novel steel heat treatment. Mater Sci Eng, A. 2006, 438-440(SPEC. ISS.): 25-34.
    [5] Thomas GA, Speer JG, Matlock DK. Quenched and Partitioned Microstructures Produced via Gleeble Simulations of Hot-Strip Mill Cooling Practices. Metall Mater Trans A. 2011: 1-8.
    [6] Thomas GA, Speer JG, Matlock DK. Considerations in the application of the "quenching and partitioning" concept to hot rolled AHSS production. Iron and Steel Technology. 2008, 5(10): 209-217.
    [7] Rizzo F, Martins AR, Speer JG, Matlock D, Clarke A, De Cooman B. Quenching and partitioning of Ni-added high strength steels. In: 5th Int. Conf. on Processing and Manufacturing of Advanced Materials, Trans Tech Publications Ltd, 2006, Vancouver, CANADA, 4476-4481.
    [8] Kelton KF, Greer AL, Thompson CV. Transient nucleation in condensed systems. The Journal of Chemical Physics. 1983, 79(12): 6261-6276.
    [9]胡赓祥,蔡珣,戎咏华.材料科学基础(第三版).上海:上海交通大学出版社, 2010.
    [10] Gladman T. The Physical Metallurgy of Microalloyed Steels. Cambridge, London, 1997.
    [11] Shewmon P. The Minerals, Metals & Materials Society, Diffusion in Solids. United States, 1989.
    [12] Rong YH, Wang XD, Zhong N, Wang L, Hsu TY. The investigation of ultra-high strength steel by quenching-partitioning- tempering (Q-P-T) process. In: 3rd Int. Conf. on Processing Materials for Properties 2008, 2009, Bangkok, Tailand, 666-669.
    [13] Zhang K, Xu W, Guo Z, Rong Y, Wang M, Dong H. Effects of novel Q-P-T and traditional Q-T processes on the microstructure and mechanical properties of martensitic steels with different carbon content. Jinshu Xuebao/Acta Metallurgica Sinica. 2011, 47(4): 489-496.
    [14] Wang XD, Zhong N, Rong YH, Hsu TY. Development of New Ultra-High Strength Nb-Containing Q-P-T Steel. TMS Annual Meeting & Exhibition 2009.
    [15] Wang XD, Xu WZ, Guo ZH, Wang L, Rong YH. Carbide characterization in a Nb-microalloyed advanced ultrahigh strength steel after quenching-partitioning-tempering process. Mater Sci Eng, A. 2010, 527(15): 3373-3378.
    [16]陈乃录.一种在线穿水冷却方法及设备. CN200910197056.X.
    [17]陈乃录,戎咏华.在线控时控温穿水淬火冷却装置. CN201010562008.9.
    [18] Li HY, Lu XW, Wu XC, Min YA, Jin XJ. Bainitic transformation during the two-step quenching and partitioning process in a medium carbon steel containing silicon. Mater Sci Eng, A. 2010, 527(23): 6255-6259.
    [19] Caballero FG, Bhadeshia HKDH. Very strong bainite. Curr Opin Solid State Mater Sci. 2004, 8(3-4): 251-257.
    [20] Jacques PJ, Furnémont Q, Lani F, Pardoen T, Delannay F. Multiscale mechanics of TRIP-assisted multiphase steels: I. Characterization and mechanical testing. Acta Mater. 2007, 55(11): 3681-3693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700