用户名: 密码: 验证码:
猪场废水厌氧氨氧化反硝化甲烷化复合工艺特征分析及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规模化猪场废水是一种高含氮的有机废水,经过厌氧消化处理后的出水氨氮不但没有减少,反而增加。厌氧氨氧化耦合反硝化甲烷化是一种新型的去碳脱氮工艺。本研究探讨将厌氧氨氧化菌、产甲烷菌和反硝化菌培养富集在UASBB反应器中的可行性,从运行性能、影响因素、微生物学、动力模型等多方面研究厌氧氨氧化反硝化甲烷化机理和工艺,并应用于猪场实际废水的去碳脱氮,旨在为进一步开发高氨氮的有机废水处理工艺及其应用提供理论依据。主要研究内容及结论如下:
     1.研究了UASBB耦合厌氧氨氧化反硝化甲烷化工艺的实现。通过接种厌氧污泥和反硝化污泥,UASBB反应器经过48d的快速启动后,有机容积负荷达到0.76kg COD/(m3 d)),去除率稳定在95%以上。加入含有NH4Cl和NaNO2的实验用水,稳定运行90 d左右,逐步实现同步厌氧氨氧化反硝化甲烷化,COD的去除率达80%-90%,总氮去除率为50-60%,氨氮的去除率为8-24%。当有机物进水浓度降低到100 mg/L时,氨氮去除率由负值提高到41.2%;污泥样品经分子生物学检测,厌氧氨氧化菌与目前已鉴定出的淡水自养厌氧氨氧化菌Candidatus Brocadia同源性达94%,反硝化菌与目前已鉴定出的假单胞菌Pseudomonas sp.同源性达100%。
     2.探讨了猪场废水中Cu2+、Zn2+对污泥活性的影响。Cu2+、Zn2+单独作用于污泥时,重金属离子对污泥的厌氧氨氧化活性、反硝化活性和甲烷化活性有抑制性,Zn2+对污泥的反硝化活性、甲烷化活性的抑制大于Cu2+,对污泥的厌氧氨氧化活性的抑制小于Cu2+。Cu2+、Zn2+同时作用于污泥时,对污泥的反硝化活性、甲烷化活性产生拮抗作用,对污泥厌氧氨氧化活性产生协同作用。
     3.揭示了厌氧氨氧化反硝化甲烷化反应动力学参数。根据Haldane模型和厌氧氨氧化活性试验数据,通过Matlab软件拟合,得到:氨氮半饱和常数(Ks,nh)为34.03 mg/L,氨氮抑制常数(KI,nh)为1274 mg/L;亚硝酸盐氮半饱和常数(Ks,NO2-)为42.31 mg/L,亚硝酸盐氮抑制常数(Kl,NO2-)159.03 mg/L,最大基质反应速率(qmax)为1.55 mg/(g h)。由Monod方程和甲烷化活性试验数据,通过线性拟合,得到甲烷化的最大比降解速率Vmax为122 mg/(g·h),Ks为124mg//L,甲烷产率系数(y)为0.29 mL/mg,其与理论值0.35 mL/mg相比,大约为理论值的82.8%,进一步验证了厌氧颗粒污泥中产甲烷菌的甲烷化能力受到了反硝化菌和厌氧氨氧化菌的影响;根据COD浓度和相应的反硝化速率,用直线进行拟合,得到有机物半饱和常数Ks,COD为3.03 mg/L;根据亚硝酸氮浓度和相应的反硝化速率,得到最大反硝化反应速率qmax为25.25 mg/(g·h),亚硝酸氮半饱和常数Ks,NO2-为1.1 mg/L。
     4.研究了UASBB-生物接触氧化池组合的可行性及工艺参数。UASBB与生物接触氧化池组合实现了厌氧氨氧化、甲烷化和短程硝化反硝化的集成,确定了最佳外回流比为300%,系统平均氨氮去除率为81.3%,COD去除率为95.2%,总氮去除率为77.6%。
     5.利用UASBB-生物接触氧化池工艺处理实际猪场废水。厌氧氨氧化反硝化甲烷化复合工艺处理猪场实际废水共运行60d,其中进二级沼液、一级沼液各15 d,进原水30 d, COD负荷最高达到3 kg/(m3·d),复合工艺对二级沼液、一级沼液、原水的COD平均去除率达到94.4%、94%、97%;TN负荷最高达到0.51kg/(m3·d),复合工艺对二级沼液、一级沼液、原水的的TN平均去除效果达到83.8%、82.5%、84.2%;氨氮负荷最高达到0.3kg/m3d,复合工艺对二级沼液、一级沼液、原水的NH4+-N平均去除率达到91%、91.9%、88.2%;工艺出水水质优于《畜禽养殖业污染物排放标准》(GB 18596-2001)要求,以处理猪场原水为例,厌氧氨氧化反硝化甲烷化化同传统的活性污泥比较,节约0.52kg O2/(m3 d),节约0.838kgCOD/(m3 d),回收40.51L CH4/(m3 d),工艺取得了良好的环境和社会效益。
Wasterwater from large-scale pig farm is a kind of organic wastewater containing high ammonia nitrogen. Although after the treatment of anaerobic digestion, the effluent ammonia concentration is stil higher than the influent ammonia concentration. Simultaneous anaerobic ammonium oxidation, methanogenesis and denitrification is a new type of nitrogen and carbon removal process. So this study investigated the feasibility of anammox bacteria, methanogenic bacteria and denitrifying bacteria were all enriched in a UASBB reactor. The mechanisms and technology of simultaneous anaerobic ammonium oxidation, methanogenesis and denitrification were studied from multi-angles such as the operating performance, influence factors, microbiology and dynamic model. Then the research results were applied to remove nitrogen and carbon in real wastewater from piggery. The aim of our study is to provide a theoretical basis for the further development of treatment process of organic wasterwater with high ammonia nitrogen. And the main contents and conclusions are as follows:
     1. The implementation of the process integrating anaerobic ammounium oxidation, methanogenesis and denitrification in a UASBB reactor was investigated. The results showed that with the vaccination of some anaerobic sludge and denitrification sludge,the UASBB reactor was started fastly and successfully after 48 days, the volume load reached 0.76kg COD/(m3·d), COD removal rate achieved above 95%. Then NH4Cl and NaNO2 were added in the experimental water and the synchronization process of anammox, methanogenesis and denitrification was achieved gradually. After the operation of the reator about 90 days, the removal rates of COD, TN andNH4+-N were 80~90%,50~60% and 8~24%, respectively. When the influent organic matter concentration was decreased to 100 mg/L, the removal rate of ammonia nitrogen was increased from negative value to 41.2%. The detection of sludge samples in the reactor by the method of molecular biology, indicated that the homology similarity between anammox bacteria and Candidatus Brocadia was 94%, and that between denitrifying bacteria and Pseudomonas Pseudomonas sp. was 100%.
     2. The effect of Cu2+, Zn2+ in swine wastewater on the sludge activity was also investigated. When there was only Cu2+ or Zn2+ in the sludge, the activities of anammox, denitrification and methanogenesis were all inhibited. The inhibition of Zn2+ on the activities of denitrification and methanogenesis was greater than that of Cu2+, while the inhibition of Zn2+ on the anammox acitivity was lower than Cu2+ However, when both the two heavy metal ions were in the sludge, there were antagonistic effects on the sludge activities of denitrification and methanogenesis, as well as cooperation effects on the anammox activity.
     3. Kinetic parameters of anaerobic ammonium oxidation, methanogenesis and denitrification were revealed. According to Haldane model and test data of anaerobic ammonium oxidation, the calculated results fitted through the Matlab software were as fllows:the ammonia half-saturation constant (K S,nh) is 34.03 mg/L, ammonia inhibition constant (K Lnh) is 1274 mg/L, nitrite half-saturation constant (K s.NO2-) is 42.31 mg/L, nitrite inhibition constant (K l.NO2-) is 159.03 mg/L, the maximum substrate reaction rate (qmax) is 1.55 mg/(g h). Baesd on the Monod equation and test data of methanogenic activity, the following data was obtained by linear fitting:the maximum specific degradation rate of methanation Vmax is 122mg/(g h), Ks is 124 mg/L, methane yield coefficient (y) is 0.29 mL/mg. Compared with the theoretical value of 0.35 mL/mg, it was about 82.8% of the theoretical value and further validated that methanogenic bacteria ability was affected by denitrifying bacteria and anaerobic ammonium-oxidizing bacteria. COD concentration and the corresponding denitrification rates were fitted with a straight line and the organic half-saturation constant Ks'COD achieved is 3.03 mg/L. According to the nitrite concentration and corresponding denitrification rate, the maximum denitrification rate qmax is 25.25mg/(gh) and nitrite nitrogen half-saturation constant Ks'NO2- is 1.1 mg/L were obtained.
     4. The feasibility and process conditions of UASBB combined biological contact oxidation pond were studied. An integration of anaerobic ammonium oxidation, methanation, and the integration of nitrification and denitrification was achieved in the combination of UASBB and biological contact oxidation pond. The best external reflux ratio was determined 300%, then the removal rates of average ammonia, COD and total nitrogen in the system were 81.3%,95.2% and 77.6%, respectively.
     5. The combination process of UASBB-biological contact oxidation pond was applied in the treatment of real wastewater from piggery. In the test, the composite technology of simultaneous anaerobic ammonia oxidation, denitrification and methanogenesis was ruuning 60 days. During the operation, the secondary and first level biogas slurry had been introduced for 15 days separately while raw water had been for 30 days. The maximum COD load of system was up to 3 kg/(m3·d). The average removal rate of COD in secondary, first level slurry and raw water were 94.4%,94.0% and 97.0%, respecitively. The maximum TN load of system was up to 0.51 kg/(m3·d). The average removal rate of TN in secondary, first level slurry and raw water were 83.8%,82.5% and 84.2%, respecitively. The maximum ammonia nitrogen load of system was up to 0.3 kg/(m3·d). The average removal rate of ammonia nitrogen in secondary, first level slurry and raw water were 91.0%,91.9% and 88.2%, respecitively. The effluent water quality of the technology was better than the requirement of "Emission Standards for Livestock and Poultry Industry" (GB 18596-2001). The simultaneous process compared with conventional activated sludge could save 0.52 kg O2/(m3·d),0.838 kg COD/(m3·d) and recover 40.51L CH4/(m3·d).
引文
[1]颜智勇,吴根义,刘宁赜等UASB/SBR/化学混凝工艺处理养猪废水[J].中国给水排水,2007,23(14):66-68
    [2]Bipin K, Pathak, FuTablea Kazama, et al.. Presence and activity of anammox and denitrification process in low ammonium-fed bioreactors[J]. Bioresource Technology,2006 (Available online)
    [3]Helmer C. Simultaneous nitrification/denitrification in an aerobic biofilm system. [J] Wat.Sci.Tech,1998,337(4/5):183-187
    [4]Tsushima I, Ogasawara Y, Kindaichi T,et al. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors[J]. Water Res,2007,41 (8):1623-1634.
    [5]张克强,高怀友主编,畜禽养殖业污染处理与处置,化学工业出版社,
    [6]国家环境保护总局.2002年中国环境状况公报(EB/OL)
    [7]王幼明,王小龙.高铜的应用对畜禽的慢性中毒作用及对环境生态的影响[J].中国兽医杂志,2001,37(6):36-38.
    [8]邓良伟.规模化畜禽养殖废水处理技术现状探析[J].中国生态农业学报,2006,14(2):23-26.
    [9]Choudhary M, Bailey L D, Grant C A. Review of the use of swine manure in crop production: effects on yield and composition and on soil and water quality[J] Waste Management & Research,1996,14:581-595
    [10]江立方,顾剑新.上海市畜禽粪便综合治理的实践与启示[J].家畜生态,2002,23(1):1-4
    [11]Miner J. R. Alternatives to minimize the environmental impact of large swine production units[J]. Journal of Animal Science,1999,77:440-444
    [12]潘学峰,付泽田,Burton C.H发达国家畜禽废物处理技术与立法[J]农业工程学报,1995,11(3):108-113
    [13]Stone.K.C., Poach.M.E, Hunt, et.al. Marsh-pond-marsh constructed wetland design analysis for swine lagoon wastewater treatment[J]. Ecological Engineering,,2004,23 (2):127-133
    [14]McCaskey,T.A., S.N.Britt,B. G.Ruffin,J., et.al. Strickland.Feed value of broilerlitter for stocker cattle.Highlights of Alabama Agric.Res,1994,41(1):1-2
    [15]Dela Noue, Basseres A. Biotreatment of anaerobically digested swine manure with microalgae[J]. Biological Wastes,1989,29(1):17-31
    [16]Sklarz M Y, Gross A, Soares M I M, et.al. Mathematical model for analysis of recirculating vertical flow constructed wetlands. Water Research,2010,44(6),2010-2020
    [17]Robert L. Constructed wetlands for livestock wastewater management[J]. Ecological Engineering,2000,15:41-55
    [18]廖新悌,汪植三.人工湿地在猪场废水处理中的应用[J].农业工程学报,1995,(4):96-100
    [19]邓仕槐,肖德林,李宏娟等.畜禽废水胁迫对芦苇生理特性的影响[J].农业环境科学学报,2007,26(4):1370-1374
    [20]Sakar S, Yetilmezsoy K, Kocak E. Anaerobic digestion technology in poultry and livestock waste treatment - a literature review. [J] Waste Management & Research,2009,27 (1):3-18
    [21]Zhang B, Zhao H, Zhou S, et.al. A novel UASB-MFC-BAF integrated system for high strength molasses wastewater treatment and bioelectricity generation. [J] Bioresource Technology,2009,100 (23):5687-5693
    [22]Pinheiro D M., Ratusznei S M., Rodrigues.J.A.D., et.al. Fluidized ASBR treating synthetic wastewater: Effect of recirculation velocity[J]. Chemical Engineering & Processing: Process Intensification,2008,47 (2):184-191
    [23]杨朝晖,曾光明,高锋.固液分离-UASB-SBR工艺处理养猪场废水的试验研究[J].湖南大学学报(自然科学版),2002,29(6):95-99
    [24]Nanh Lovanh, John H Loughrina, Kimberly Cook, et.al The effect of stratification and seasonal variability on the profile of an anaerobic swine waste treatment lagoon[J]. Bioresource Technology,2009,100 (15):3706-3712
    [25]邓良伟.水解-SBR工艺处理规模化猪场粪污研究.[J]中国给水排水,2001,17(3):8-11
    [26]Wong SH. Pilot scale aerobic sequencing batch reactor for pig waste treatment[J]. Journal of the Institution of Water and Environmental Management,1989,3(1):75-81.
    [27]何连生,朱迎波,席北斗,等.集约化猪场废水SBR法脱氮除磷的研究[J],中国环境科学,2004,24(2):224-228.
    [28]Tilehe. Novel mierobial nitrogen removal Proeesses [J]. Biotehnology Ady,2004,22(7): 5193-5201.
    [29]沈瑾,路旭,孙瑜.规模化猪场粪污水处理l固l液分离工艺及设备[J].中国沼气,1999,17(4):18-20.
    [30]杨虹,李道棠,朱章玉,等.集约化养猪场冲栏水的达标处理[J].上海交通大学学报,2000,34(4):558-560.
    [31]Sang lll Lee, Jong Ho Park, Kwang Baik Ko, et al. Effect of fermented swine wastes on biological nutrient removal in sequencing batch reactors[J]. Water Research,1997,31(7): 1807-1812.
    [32]邓良伟,郑平,陈子爱.Anarwia工艺处理猪场废水的技术经济性研究[J].浙江大学学报(农业与生命科学版),2004,30(6):628-634.
    [33]Ra C S, Lo K V, Shin J S, et al. Biological nutrient removal with an internal organic carbon source in Piggery wastewater treatment[J]. Water Research,2000,34(3):965-973.
    [34]崔理华,朱夕珍,陈智营,等.国内外规模化猪场废水处理组合工艺进展[J].农业环境保护,2000,19(3):188-191.
    [35]Fernaada L A Ferrira, Jorge de Lucas Jr, Luiz A.. Partial characterization of the pollution load of swine wastewater treated with an integrated biodigestion system[J]. Bioresource Technology,2003,90(2):101-108.
    [36]林伟华,蔡昌达CSTR-SBR工艺在畜禽废水处理中的应用[J].环境工程,2003,21(3):13-15.
    [37]Cheng Jiayang. Nitrification/denitrification in intermittent aeration process for swine wastewater treatment[J]. J.Enviorn.Eng.2001,127(8):705--711.
    [38]Yang P.Y.. Integrating an intermittent aerator in a swine wastewater treatment system for land-limited conditions[J]. Bioresource Technology,1999,69(3):191--198.
    [39]龚丽雯,龚敏红,王成云,等.微电解/接触氧化/稳定塘处理猪场废水[J].中国给水排水,2003,19(8):92--94.
    [40]彭军,吴分苗,,唐耀武.组合式稳定塘工艺处理养猪废水设计[J].工业用水与废水,2003,34(3):44--46.
    [41]Broda E. Two kinds of lithotroPhs missing in nature[J]. Z Allg Microbiolgic,1997,17: 491-493
    [42]Mulder A, van de Graaf AA, Robertson LA and Kuenen JG. Anaerobic ammonia oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol Ecol. 1995,16:177-184.
    [43]Van de Graaf AAA,de Bruijin P,Robertron LA,Jetten MSM and Kuenen JG.Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology.1997,143:2415-2421.
    [44]Strous M, van Gerven E, Kuenen JG and Jetten MSM .Key physiology of anaerobic ammonium oxidation.Applied and Environmental Microbiology.1999,65(7):3248-3250.
    [45]Jetten SMM, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobic ammonium oxidation (anammox) process[J]. Current Opinion in Biotechnology,2001,12: 283-288.
    [46]Tsushima I, Kindaichi T, Okabe S. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by real-time PCR.[J]. Water Res 2007,41(4):785-794.
    [47]Abma W R, Mulder J W, Van Loosdrect, et al. Anammox demonstration on full scale in Rotterdam.[R] In:The Proceedings of Third IWA Leading-Edge Conference and Exhibition on Water and Wastewater Treatment Technologies at Sapporo.2005.
    [48]Chamchoi N, Nitisoravut S. Anammox enrichment from different conventional sludges.[J]. ChemosPhere 2007.66(11),2225-2232.
    [49]Date Y, Isaka K, Ikuta H, et al. Microbial diversity of anammox bacteria enriched from different types of seed Sludge in an anaerobic continuous-feeding cultivation reactor.[J].Biosci.Bioeng.2009,107:281-286
    [50]Egi K,Fanger U,Alvarezz P J J,et al.Enrichment and characterization of an anammox bacterium from a rotating an ammonium rich leach[J].2001,175:198-207
    [51]Van der Star W R L, Miclea A I, VanDongen U G J M, et al.2008 The menlbrane bioreactor: a novel tool to grow anannmox bacteria as free cells.[J]. Biotechnol. Bioeng.2008.101(2): 286-294.
    [52]Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a Powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl. Mierobiol. Biotechnol.1998.50(5):589-596.
    [53]Imajo U, ToKutomi T, Furukawa K. Granulation of Anammox microorganisms in up-flow reactors[J]. Water Sci. Technol.2004.49(5-6):155-163.
    [54]lsaka K, Sumino T, Tsuneda S. High nitrogen removal Performance at moderately low temPerature utilizing anaerobic ammonium oxidation reactions.[J]. Biosci.Bioeng.2007, 103:486-490.
    [55]Van Dongen U, Jetten M S M, Van Loosdrecht M C M. The Sharon-Anammox process for treatment of ammonium rich wastewater [J]. Water Science and Technology,2001,44(1): 153-160.
    [56]Abma W R, Schultz C E, Mulder J W, et al. Full-scale granular sludge Anammox Process[J].Water Sci.Tehnol:2007a,1101.55(8-9),27-33.
    [57]Van de Graaf A A, DeBruijn P, Robertson L A, et al. AutotroPhic growth of an aerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor.[J]. Microbiology.1996, 142:2187-2196.
    [58]Jetten M S M, Strous M, Van de Pas-Schoonen KT, et al. The anaerobic oxidation of ammonium [J]. FEMS Microbiol Rev,1999,22:421-437
    [59]Dapena-Mora A, Campos J L, Mosquera-Corral A,et al.STableility of the ANAMMOX process in a gas-lift reactor and a SBR[J]. J Biotechnol,2004,110(2):159-170.
    [60]郑平,徐向阳,胡宝兰,新型生物脱氮理论与技术[M]科学出版社,2004,155
    [61]Thamdrup B and Dalsgaard T.Production of N2 Through anaerobic ammonia oxidation coupled to nitrate reduction in marine sediments.[J]Applied and Environmental Microbiology,2002,68(3):1312-1318
    [62]Konrad Egli Urs Fanger·Pedro J J, Alvarez Hansruedi Siegrist·Jan R, Van der Meer, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate[J]. Arch Microbiol,2001,175:198-207
    [63]游少鸿,李小霞,解庆林,等.厌氧氨氧化影响因素实验研究[J],工业水处理,2009,29(10):27-29
    [64]杨洋,左剑恶,沈平,等.温度、p H值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学,2006,27(4):691-695.
    [65]王勇,黄勇,袁怡,等.厌氧氨氧化影响因素分析[J],环境科技,2008,21(5):65-69.
    [66]Strous M, van Gerven E, Kuenen JG, et al. Effects of Aerobic and Microaerobic Conditions on Anaerobic Ammonium-Oxidizing (Anammox) Sludge[J]. Applied and Environmental Microbiology,1997,63(6):2446-2448.
    [67]胡勇有,梁辉强,朱静平等.有机碳源环境下的厌氧氨氧化批式实验[J],华南理工大学学报(自然科学版),2007,35(6):116-119.
    [68]叶建锋,薄国柱,低碳源条件下厌氧氨氧化影响因素的研究[J],水处理技术,2006,32(9):30-33.
    [69]蒲贵兵,甄卫东,孙可伟,厌氧氨氧化的生态因子研究进展[J]化学研究,2007,18(4) 102-107.
    [70]魏学军,邓华,淡红.厌氧氨氧化反应器的运行[J].新疆环境保护,2002,24(1):17-21.
    [71]Marc Strous, Eric Van Gerven, J. Gus Kuenen, et al.Effects of Aerobic and Microaerobic Conditions on Anaerobic Ammonium-Oxidizing (Anammox) Sludge[J]. Applied and Environmental Microbiology,1997,63, (6):2446-2448
    [72]Mike S M, Jetten Marc Strous, Katinka T, et al. The anaerobic oxidation of ammonium [J]. FEMS Microbiology Reviews,1999,22:421-437
    [73]Fux C, Boehler M, Huber P, et al. Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J]. Journal of Biotechnology,2002,99(3):295-306
    [74]张少辉,郑平,华玉妹,反硝化生物膜启动厌氧氨氧化反应器的研究[J]环境科学学报,2004,24(2):221-224.
    [75]Sinninghe Damste J S, Strous M, Rijpstra WI, et al. Linearly concatenated cyclobutane (ladderane) lipids from a dense bacterial membrane.[J]. nature.2002,419:708-712.
    [76]阎青EGSB与BAF耦合的废水处理新工艺及其影响因素[M].重庆大学硕士论文,2008.
    [77]杜丽平,闻建平,张涛,吕箐,反硝化处理硝氮废水的动力学研究[J].化工环保,2003,23(1):1-4
    [78]陈莉莉,左剑恶,楼俞,等.同时产甲烷反硝化在UASB反应器中的实现[J],中国沼气,2006,24(2):3-7.
    [79]单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003,23(6):42-46.
    [80]MCCARTY P L, SMITH D P.·Anaerobic Wastewater Treatment [J]. En-vironmental Sci TeChnol,1986,20 (12):1200-1206.
    [81]HARPER S R, POHLAND F G. Recent developments in hy-drogen management during anaerobic biological wastewatertreatment [J]. Biotech Bioeng,1986,28:585-602.
    [82]张国政.产甲烷菌的一般特征探讨[J].中国沼气,1990,8(2):5-8.
    [83]张无敌,宋洪川,尹芳,等.沼气发酵与综合利用[M].昆明:云南科技出版社,2004:96-103.
    [84]Kluber H D, Conrad R. Effects of nitrate, nitrite, NO and N2O on Methanogenesis and other redox p rocesses an anoxic rice field soil[J]. FEMSMicrobiology Ecology,1998,25: 301-318.
    [85]StamsA J M, Oude Elferink S JW H, Westermann P. MeTableolic interactions between methanogenic consortia and anaerobic respiring bacteria [J]. Advances in Biochemical Engineering Biotechnology,2003,81:32-39
    [86]Sorensen J.Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment [J].Appl Environ Microbiol 1978,35(2):301-305
    [87]Jorgensen K S,Tiedje J M.Survival of denitrifiers in nitrate free,anaerobic environments[J]. Applied and Environmental Microbiology,1993,59(10):3297-3305.
    [88]Francis A J, Slater J M, Dodge C J. Denitrification in deep subsurface sediments[J]. Geo microbiol J 1989,7(1-2):103-116.
    [89]王建龙.生物脱氮新工艺及其技术原理[J].中国给水排水,2000,16(2):25-28.
    [90]周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11-18.
    [91]Lin Y F, Chen K C. Denitrification and methanogenesis in a co-immobilized mixed culture system[J]. W ater Res,1995,29(1):35-43.
    [92]Eiroa M, Kennes C, Veiga M C. Formaldehyde and urea removalin a denitrifying granular sludge blanket reactor [J]. Wat. Res.,2004,38(16):3495-3502.
    [93]谢珊,李小明,曾光明,等.好氧颗粒污泥的性质及其在脱氮除磷中的应用[J].环境污染治理技术与设备.2003,4(7):70-73.
    [94]操家顺,周文理,张玉涛,等.厌氧氨氧化、反硝化与甲烷化耦合研究[J].南京理工大学学报(自然科学版),2009,(04):538-542
    [95][95] 张代钧,阎青,祖波EGSB-BAF集成系统实现厌氧氨氧化、甲烷化和短程硝化反硝化[J].环境科学研究,2009,(04):467-472.
    [96]Zhang Daijun.The integration of methanogensis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor[J]. J Environ Sci,2003, 15(3):423-432.
    [97]Wang Jianlong, KANG Jing. The characteristics of anaerobic ammonium oxidation (ANAMMOX) by granular sludge from an EGSB reactor [J]. Process Biochemistry,2005, 40(5):1973-1978.
    [98]Siegrist H, Reithaar S, Koch G, et al. Nitrification Loss in Nitrifying Rotating contactor Treating Ammonium-Rich Wastewater Without Organic Carbon [J]. Wat.Sci. Tech,1998, 38(8-9):241-248.
    [99]袁志丹,左剑恶,甘海南,等.同时产甲烷反硝化与硝化串联工艺处理淀粉废水[J].环境科学学报,2008,28(7):1272-1278.
    [100]Bernet N, Delgenes J C, Akunna, et al. Combined Anaerobic-aerobic SBR for the Treatment of Piggery Wastewater [J]. Wat. Res.,2000,34(2):611-619.
    [101]Im J H, Woo H J, Choi M W, et al. Simultaneous Organic and Nitrogen Removal from Municipal Landfill Leachate Using an Anaerobic-Aerobic System[J]. Wat. Res.,2001, 35(10):2403-2410.
    [102]Mosquera Corral A, Sanchez M, Campos J L, et al. Simultaneous Methanogenesis and Denitrification of Pretreated Effluents from a Fish Canning Industry[J]. Wat. Res.,2001, 35(2):411-418
    [103]Zhang Daijun, Lu Peili, Long Tengrui, et al. The Integration of Methanogensis with Simultaneous Nitrification and Denitrification in a Membrane Bioreactor[J]. Process Biochem,2005,40:541-547.
    [104]Ruiz G, Jeison D, Chamy R. Development of Denitrifying and Methanogenic Activities in USB Reactors for the Treatment of Wastewater:Effect of COD/N Ratio[J]. Process Biochem,2006,41:1338-1342.
    [105]Voets J P, Wanstaen H, Verstraete W. Removal of nitrogen from highly nitrogenous wastewater.[J] wat pollution control Fed,1975,47:394-398.
    [106]Bingswanger, Marshall. SpectorProduetion and Decomposition of Nitrous Oxide Gas during Biological Denitrification water Environmental Researeh,1998,70:1096-1098.
    [107]潘杨,李勇,黄勇.单级生物膜法脱氮机理及影响因素[J].苏州城建环保学院学报,2000,13(4):89-93
    [108]Hansen K H,A ngelidak i I,A h ring B K.A naerobic digestion of sw ine manure:inhibition by ammonia [J]. W at R es,1998,32 (1):5-12.
    [109]Balmelle B, Nguyen KM, Capdeville B, et al. Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Wat.Sci.Tech.,1992,26:1017-1025.
    [110]Villaverde S,Garcia-Encina P A,Fdz-Polanco F. Influence of pH over nitrifying biofilm activity in submerged biofilters[J]. Water Res,1997,31 (5):1180-1186.
    [111]Surmacz G J,Cichon A, Minksch K. Nitrogen removal from wastewater with high ammonia nitrogen concentration via shorter nitrification and denitrification[J]. Water Sci Technol 1997,36(10):73-78.
    [112]魏琛,罗固源.游离氨对稳定生物亚硝化的影响分析[J].重庆环境科学,2003,25(12):50-52.
    [113]Alleman J E. Elevated nitrite occurrence in biological wastewater treatment system[J].Water Sci Tech,1984,17(1):409-419.
    [114]Wu Lina, Peng Yongzhen, WangShuying, et al. Effect offree ammonia on the short-cut nitrification of the municipal landfill leachate. Environmental Science(环境科 学),2008,29(12):3428-3432
    [115]孙建平,抗生素与重金属对猪场废水厌氧消化的抑制效应及其调控对策[D],浙江大学,2009.
    [116]孙建平,郑平,胡宝兰,余燚,等.重金属对猪场废水厌氧消化蓄积抑制[J].环境科学学报;2009.
    [117]YU Y. Toxicity Assessment of Some Nitro Compounds to Acetate Enriched Methanogens[D]. M S Thesis Vanderbilt University,1991.
    [118]张希衡.废水厌氧生物处理工程[C].北京:中国环境科学出版社,1996.
    [119]Tay J H, Xu H L, Teo K C. Molecular mechanism of granulation.I:H+ translocation-dehydration theory[J]. J. Environ.Eng.2000,126:403-410.
    [120]Ye F X, Shen D S., Feng X S. Anaerobic granule development for removal of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor[J]. Process Biochemistry,2004,39 (10):1249-1256.
    [121]水和废水监测分析方法编委会.水和废水分析方法(第四版)[M].北京:中国环境科学出版.2002
    [122]石宪全,倪文,江翰.厌氧生物反应器快速启动技术研究进展[J],给水排水,2004(30):11.
    [123]机波,厌氧氨氧化甲烷化反硝化耦合的机理及动力学研究[D],重庆大学博十论文,2007.
    [124]Wilderer P A, Jones W L, Dau U. Competion in denitrifieation systems afecting reduction rate and accumulation ofnitrite[J]. Wat Res,1987,21(2):239-245.
    [125]Akunna J C, Bizeau C, Moletta R. Nitrate and nitrite reduetion with anaerobic sludge using various carbon sources:glucose, glycerol, acetic acid, lactic acid and methanol[J]. Wat Res,1993,27(8):1303-1312.
    [126]Akunna J C, Bizeau C, Moletta R. Nitrate reduction by anaerobic sludge using glueese at various nitrate concentrations:ammonifieation, denitrification and methanogenic activities[J]. Environ Technol,1994a,15:41-49.
    [127]Akunna J C, Bizeau C, Moletta R. Denitrlfieation in an aerobic digesters:possibilities and influence of wastewater COD/N-NOx ratio[J]. Environ Technol,1992(13):825-836.
    [128]陈旭良.短程硝化一厌氧氨氧化工艺处理味精废水的研究[D],浙江大学博十论文,2006.
    [129]唐林平.全程自养脱氮及厌氧氨氧化的研究[D],湖南大学博十论文,2008.
    [130]康晶.生物脱氮新工艺的研究[D],清华大学博十论文,2005.
    [131]徐亚同.pH值、温度对反硝化的影响[J].中国环境科学,1994,14(4):308-314
    [132]范振兴,干建龙.低温对因体碳源填充床反硝化的影响[J].清华大学学报(自然科学版),2008,48(3):439-442.
    [133]李晓哲,闵峰,王颖勃,等.UASB处理液晶废水COD去除率影响因素的研究[J].广东化工,2010,37(6):204-205.
    [134]刘亭亭,曹靖瑜.产甲烷菌的分离及其生长条件研究[J].黑龙江水专学报,2007,34(4):120-122
    [135]浦跃武,郭梅君,刘族安.一体化两相厌氧反应器处理猪场废水的启动研究[J].华南理工大学学报.2009,137(10):145-149
    [136]Hae S J,Naomichi N,Shiro N. Influence of redox potential on biomethanation of H2 and CO2 by Methanobacterium Thermoautotrophicum in Eh-star batch cultures[J]. Journal of Genernal Applied an Microbiology,1987,33:401-408.
    [137]Fetzer S,Conrad R. Effect of redox potential on methanogenesis by Mathanosarcina barker [J].Arch Microbiol,1993,160:108-113.
    [138]吴婉娥.废水生物处理技术[M].北京:化学工业出版社,2003,176-177.
    [139]石宪全,王凯军,倪文.颗粒污泥粒径的工程测定方法[J].环境污染与防治,2006,25(2):140-142.
    [140]刘永红,贺延龄,李耀中,等.UASB反应器中颗粒污泥的沉降性能与终端沉降速度[J].环境科学学报,2005,25(2):176-179.
    [141]董春娟,吕炳南.EGSB反应器内颗粒污泥的快速培养及特性研究[J].中国给水排水,2006,22(15):62-70.
    [142]朱兰保,盛蒂,许晖.蔬菜地十壤重金属酸消解测定方法研究初探[J].农业资源与环境科学,2007,23(3):420-423.
    [143]Harada H, Uemura S, Chen A, et al. Anaerobie treatment of a recalcitrant distillery wasterwater by a thermophilic UASB reactor [J].Bioresoure Technology,1996,55(3):215- 219.
    [144]韩丰波,呼世斌,冯贵颖,等.污泥负荷对上流式厌氧污泥床中颗粒污泥快速形成的影响[J].环境污染与防治,2008,30(1):44-49.
    [145]Wang Z W, Li Y, Liu Y. Mechanism of calcium accumulation in acetate-fed aerobic granule[J].Applied Microbiology and Biotechnology,2007,74(2):467-473.
    [146]Gee C S, Suidan M T, Pfeffer J T,et al. Modeling of nitrification under substrate inhibiting conditions [J]. Environ Eng,1990,116(1):18-31
    [147]顾夏声.废水生物处理数学模式.[M].北京:清华大学出版社;1993:56
    [148]Fux C, Siegrist H. Nitrogen removal from sludge digester liquids by nitrification/ denitrification or partial nitritation/anammox:environmental and economical considerations [J]. Water Science and Technology,2004,50(10):19-26.
    [149]Fux C, Lange K, Faessler A. Nitrogen removal from digester supernatant via nitrite-SBR or SHARON [J]. Water Science andTechnology,2003,48(8):9-18.
    [150]Sliekers A O, Derwort N, Campos Gomez J L, et al. Completelyautotrophic nitrogen removal over nitrite in one single reactor [J]. Water Research,2002,36:2475-2482.
    [151]郝晓地,仇付国,van der Star W R L等.厌氧氨氧化技术工程化的全球现状及展望[J].中国给水排水,2007,23(18):15-19.
    [152]Berne N. Activity,diversity and population size of nitrite accumulation in a nitrifying fiofilm reactor[J].Biochemical Engineering Journal,2005,24:173-183
    [153]Police A. Influence of aerationand sludge retention time on ammonium oxidation to nitrite and nitrate[J]. Water research,2002,36:2541-2546
    [154]施永生.亚硝酸型生物脱氮技术[J].给水排水2000,26(11):21-23.
    [155]叶建锋.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006
    [156]王喜全,李曼,孟彩霞.焦化废水中亚硝酸盐和固体悬浮物对CODcr值的影响研究[J]环保科技,2007,13(2):17-20
    [157]Wang J L, Yang N. Partial nitrification under limited dissolved oxygen conditions[J]. Process Biochemistry,2004,39(10):1223-1229.
    [158]Carrera J. Kinetic models for nitrification inhibition by ammonium and nitrite in a suspended and an immobilized biomass systems[J] Process biochemistry,2004,39:1159-1165
    [159]Hanaki K, Wantawin C, Ohgaki S. Nitrification at low levels of dissolved oxygen with and without organic loading in suspended-growth reactor[J]. Water Research,1990,24(3):297-302
    [160]吴永明,万金保,熊继海等.游离氨在高含氮废水生物法处理中的作用及其研究进展[J].工业水处理,2010,30(9):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700