用户名: 密码: 验证码:
整体式医疗垃圾热解焚烧炉实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济和人民生活水平的提高,医疗卫生事业迅速发展,越来越多的医疗垃圾引发了一系列环境、社会和生态问题。焚烧法因其在无害化与减容化上具有突出的优势,已成为公认的处理医疗垃圾的有效方法。热解焚烧技术是焚烧法中的热点技术,本文以热解焚烧技术为基础,进行整体式热解焚烧炉设计与实验研究。
     本文选取具有代表性的输液管、医用橡胶手套、竹签棒代表医疗垃圾中的塑料、橡胶及生物质三类组分,采用热重分析仪进行热解特性研究,运用化学反应动力学模型计算了热解表观动力学参数。研究表明:典型医疗垃圾颗粒粒径与样品用量的选取对热重的实验结果有一定影响,但当粒径为63~500μm,样品用量为10~25mg时,影响不明显。不同升温速率实验研究发现:升温速率越高,样品挥发份析出越容易,挥发份析出越强烈,总体热解反应过程越集中,各阶段分解量减小。混合热解实验结果表明:低温阶段可以认为各组份间不发生相互反应或相互反应程度较小,中高温阶段混合物内部相互反应影响趋于明显。
     为进一步了解医疗垃圾热解产物的生成特性,在管式炉实验台架上进行了典型医疗垃圾组份热解气体产物生成实验研究。采用红外气体分析仪测量析出组份随时间变化的规律。热解气的成分复杂,主要有甲烷、一氧化碳、酸类、醛类物质。本文选取产气中浓度高于100ppm的甲烷、一氧化碳等气体进行研究。结果表明:热解温度越高,气体产物的析出峰值越高。医用橡胶手套热解主要气态产物为甲烷,输液管热解主要气态产物为甲烷和氯化氢,竹签主要热解气态产物为甲烷与一氧化碳。在此基础上,进行了典型医疗垃圾混合组份HCl排放特性实验。结果表明:含有氯的混合组份热解过程中,掺混作用对氯化氢的转化具有抑制作用,均使氯转化为氯化氢的速率不同程度的下降,随着掺混比例增加抑制作用增强,这也表明含氯有机物发生氯化氢脱除反应前可能与其他物质结合形成含氯有机物。结合扫描电镜、比表面积及孔径分析仪对典型医疗垃圾样品的热解焦特性进行了研究。结果表明:热解温度越高,焦孔隙越发达,比表面积越大,有利于热解焦燃尽,降低燃烧污染物。
     在确保医疗垃圾无害化处理前提下,结合医疗垃圾热值较高的特性,开发了一燃室与二燃室同轴结构的新型热解焚烧炉并进行系统的热力分析与热态实验。热力分析的结果表明:当总过量空气系数不变,减少一燃室的过量空气系数,一燃室出口温度降低,二燃室温度增加。在此基础上,进行整体式热解焚烧炉批次给料与连续给料热态实验。批次投料实验结果表明:一燃室预热温度与给料量均对炉内温度变化有影响。连续给料实验结果表明:热解焚烧工况的温度稳定性要高于直接燃烧工况,可实现直接燃烧类似的稳定火焰及良好的燃烧效果,有效控制焚烧炉出口的一氧化碳浓度,同时有效降低总烟气产生量。建议新型连续热解焚烧炉总过量空气系数为1.3,一燃室过量空气系数为0.5。
     以整体式医疗垃圾热解焚烧炉为核心的焚烧系统为对象,进行实际医疗垃圾热解焚烧处理过程中的清洁排放控制研究。对烟道处烟气中颗粒物、二氧化硫、一氧化碳和氮氧化物的排放进行检测与分析,结果表明:整体式医疗垃圾热解焚烧系统能够控制二次中污染物生成,从机理角度对该型焚烧系统抑制二次污染物进行解释。结合气相色谱仪和扫描电镜仪对焚烧炉飞灰与炉渣进行了研究。结果表明:炉渣与飞灰中重金属含量较高,属于危险废物,必须固化处理后方可填埋。在全面总结垃圾焚烧炉内二噁英形成机理:高温气相生成、前驱物生成和从头合成的基础上,将本文研究对象与不同焚烧炉结构相同尾气净化装置的医疗垃圾热解焚烧系统的二噁英检测结果进行对比分析。结果表明:同轴结构的焚烧炉有效降低了焚烧炉的散热损失,利用了热解产物二次燃烧释放的热量维持炉内温度稳定,对二噁英的生成产生良好的抑制作用。
With the development of economy, the medical and health services developed rapidly in China. The huge amounts of medical waste result in a series of environmental, social and ecological problems. The incineration technology has many advantages such as volume reduction, quantity reduction and harmless treatment. It has become an effective method of medical waste treatment. The comprehensive research on pyrolysis incineration technology is very important. In order to obtain an important reference in the design and operation of medical waste pyrolysis incinerator, this thesis focuses on the basic research and applied research of integral incinerator technology.
     Perfusion tube, medical gloves and bamboo rods were selected to stand for three major components in medical waste: plastic, rubber and biomass. The thermal decomposition characteristics were analyzed by the thermogravimetric analyzer. The kinetic parameters of pyrolysis were calculated by using chemical kinetic model. The results showed: the particle size and the amount of medical waste sample influenced the result of TGA experiment. However when the particle size was between 63μm and 500μm, the sample amount was between 10 mg and 25mg, the effect was not obvious. It was found in the different heating rates experiment, when the heating rate was high; the sample volatilized quickly, the pyrolysis reaction was concentrated, the amount of each decomposed stages decreased. Mixture pyrolysis experimental results showed: in the low temperature, the reaction of different components was unnoticable. In the high temperature, the reaction of different components was strong.
     In order to obtain the properties of medical waste pyrolysis product, the experiment of pyrolsis gas generated from typical components of medical waste was carried out in the tube furnace. The pyrolysis gas products were measured continuously by the infrared gas analyzer. The composition of pyrolysis gas was complex, including methane, carbon monoxide, acids and aldehydes etc. Methane and carbon monoxide were chosen for analysis. The results showed: When the pyrolysis temperature was high, the peak value of gas products increased. The major pyrolysis gaseous products of medical rubber glove were methane. The major pyrolysis gaseous products of perfusion tube were methane and hydrogen chloride. The major pyrolysis gaseous products of bamboo rods were methane and carbon monoxide. On this basis, the experiments of the pyrolysis gaseous products characteristics of mixed medical waste were carried out. The results showed: In the different mixture sample, the translation rate of chlorine into hydrogen chloride decreased in different degrees. Mixing inhibited the direct product of hydrogen chloride. The inhibited effect became obvious with the quantity of mixture increased. This suggested that chlorine might combine with other small molecule to form chlorinated organic material before hydrogen chloride was formatted. The solid pyrolysis residents of typical medical wastes were studied in detail by scanning electron microscopy and pore size analyzer. The results showed the higher the pyrolysis temperature was, the more porous the solid products got. As more contact surface area for gas and solid were provided, the burning condition of the resident was improved. So, the pollutants of incineration could be controlled easily.
     To ensure harmless treatment of the medical waste, a new pyrolysis incinerator with two coaxial combustion chambers was proposed to use the heat value of medical waste effectively. The thermal analysis of the integral incinerator was carried out. The result showed: when the total excess air ratio was kept constant and the primary air ratio was reduced, the temperature of the primary combustion chamber decreased, but the temperature of the secondary combustion chamber increased. On this basis, the batch and continuous feeding experiment of combustion were conducted on the pyrolysis incinerator. The results of batch feeding experiment showed: the temperature of primary combustion chamber was influenced seriously by the preheating temperature and the feeding quantity. The results of continuous feeding experiment showed: The stable flame and combustion in the pyrolysis incinerator was achieved, which were similar to the direct combustion. The temperature of the primary combustion chamber was more stable in the pyrolysis incineration than in the direct combustion condition. The carbon monoxide in the outlet of the integral incinerator was controlled effectively. The total flue gas was also reducing effectively by reducing the total excess air ratio. This suggested that total excess air ratio and primary combustion chamber were 1.3 and 0.5 respectively in the continuous running of the integral pyrolysis incinerator.
     The performance tests were carried out on the medical waste thermal treatment system based on the integral pyrolysis incinerator. Particulate matter, sulfur dioxide, carbon monoxide and nitrogen oxides in the flue gas were measured continuously in two hours at the entrance to the stack. The results showed: the integral medical waste runs stably. The gas emissions were below the China national standard emission limits. The aim of clean emissions in the new incineration was achieved. Using the gas chromatography, scanning electron microscopy, X-ray diffraction analysis techniques, the fly ash and boiler slag of the medical waste incinerator were studied in detail. The results showed: The heavy metals content in bottom slag and fly ash were high. They were still hazardous waste and need be solidified before landfilling. Under the comprehensive summary and analysis of dioxin formation mechanism in the waste incinerators including the high-temperature gas generated, precursor formation and“de novo”formation, PCDD/Fs formation in the medical waste pyrolysis incinerator was analyzed. Compared with the different structures incinerator but with the same flue gas purifying device, the dioxin test results showed: The coaxial design incinerator reduced the heat loss effectively, used the combustion heat of pyrolysis products furnace to maintain temperature stability, and inhibited the formation of dioxins.
引文
[1]邵芳,王强,赵有才.国内医疗废物处置与管理探讨.重庆环境科学,2001,10:53-56
    [2]王华,卿山.医疗废物焚烧技术基础.冶金工业出版社,2007
    [3]吴舜泽,孙宁,周丰,等.中国医疗废物管理处置现状与对策.环境保护,2005,1:36-38
    [4] Huabo Duan,Qifei Huang,Qi Wang,etc.Hazardous waste generation and management in China: A review.Journal of Hazardous Materials,2008,158(2-3):221-227
    [5]国家环保总局.全国危险废物和医疗废物处置设施建设规划.2003
    [6] A. Coker,A. Sangodoyin,M. Sridhar,etc.Medical waste management in Ibadan,Nigeria: Obstacles and prospects.Waste Management,2009,29(2):804-811
    [7] J. I. Blenkharn.Medical wastes management in the south of Brazil.Waste Management,2006,26(3):315-317
    [8]赵锐,刘丹,李启彬.医疗废物产量预测研究.成都医学院学报,2010,1(3):115-119
    [9]徐谦.北京市医院废物产生与利用、处置现状及对策分析.环境保护科学,2000,26(5):20-23
    [10]何俊宝,刘政纲,戴行浩.天津市区医疗垃圾产出现状及处理对策.环境卫生工程,1996(4):6-13
    [11]余春华,谭晓东.对武汉市医疗垃圾处理的调查分析.中国医院管理,2002,22(6):19-22
    [12]高原,潘四红,渠艳等.郑州市医疗垃圾的现状及处理对策.环境卫生工程,2003,12(2):77-79
    [13]江月华,刘小真,胡春华等.南昌市医疗垃圾的潜在危害与控制措施.现代预防医学,2008,35(12):2216-2219
    [14]熊移民,曹宁泌.广铁集团医疗垃圾及其处理现状调研.铁道劳动安全卫生与环保,1998,25(4):236-239
    [15] World Health Organization,Regional Office for Europe.Management of Waste from Hospitals and Other Health Care Establishments.EURO Reports and Studies 97,Copenhagen,Denmark,1983
    [16] Environmental Protection Agency.EPA Guide for Infectious Waste Management. Washington D.C,USA,1986
    [17] M. Miyazaki,H. Une.Infectious waste management in Japan: A revised regulation and a management process in medical institutions.Waste Management,2005(25):616-621
    [18] Environmental Protection Agency . Hospital Waste Combustion Study: Data Gatuering Phase,Final Report,1988:1-7
    [19] C. E. Silva,A. E. Hoppe,M. M. Ravanello,et al.Medical wastes management in the south of Brazil.Waste Management,2005,25(6):600-605
    [20] K. E. Solberg.Trade in medical waste causes deaths in India.The Lancet,2009,373 (9669):1067
    [21] R. Oweis,M. A. Widyan,O. A. Limoon.Medical waste management in Jordan: A study at the King Hussein Medical Center.Waste Management,2005,25(6):622-625
    [22]国家环保总局.2002年全国城市环境管理与综合整治年度报告.2002
    [23]国家环保总局.危险废物和医疗废物处置设施建设手册.2004
    [24]王琪,黄启飞,段华波等.我国危险废物特性鉴别技术体系研究.环境科学研究,2006 19(5):165-179
    [25]国家环保总局.2006年全国城市环境管理与综合整治年度报告.2006
    [26] X.G. Jiang,C.G. An,C.Y. Li,etc.Fusibility of medical glass in hospital waste incineration: Effect of glass components.Thermochimica Acta,2009,491( 1-2):39-43
    [27] Rong Xie,Wei-jie Li,Jie Li,etc. Emissions investigation for a novel medical waste incinerator.Journal of Hazardous Materials,2009,166(1):365-371
    [28] T. Tiller,A. Linscott.Evaluation of a Steam Autoclave for Sterilizing Medical Waste at a University Health Center.American.Journal of Infection Control,2004,32(3):219-225
    [29] Y. C. Weng,N. B. Chang.The development of sanitary landfills in Taiwan: status and cost structure analysis.Resources,Conservation and Recycling,2001,33(3):181-201
    [30] B. K. Lee,M. J. Ellenbecker,M. E Rafael.Alternatives for the treatment and disposal of healthcare wastes in developing countries.Waste Management,2004,24:143-151
    [31] J. P. Chu,I. J. Hwang,C. C. Tzeng,etc.Characterization of vitrified slag from mixed medical waste surrogates treated by a thermal plasma system.Journal of Hazardous Materials,1998,58(3):179~194
    [32] J. Emmanuel . Non-incineration medical waste treatment technologies . PhD thesis.2001
    [33] L. Yiannis,A. Ajay,C. Joel.PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads.Chemosphere,2001,42(5-7):775-783
    [34] T. L. Tudor,C. L. Noonan,L. E. T.Jenkin.Healthcare waste management: a case study from the National Health Service in Cornwall.Waste Management,2005,25(6):606-615
    [35] J. M. Cook,C. S. Simons.Development and operation of a waste management system in Alberta,Canada.Waste Management & Research,1989,7(3):219-227
    [36] M. Muhlich,M. Scherrer,F. D. Daschner.Comparison of infectious waste management in European hospitals.Joural of Hospital Infect,2003,55:260-268
    [37]张敖定.城市医疗垃圾集中焚烧处置介绍.中国环保产业,2004,A02:48-50
    [38]赵春.医疗垃圾焚烧处理技术探讨.北方环境,2001,3:45-48
    [39]胡盛杰,付跃安.医疗垃圾的危害与处理.中国卫生事业管理,2001,17(7):437-438
    [40]沈逍江.医疗废物回转窑热解焚烧处置研究.[博士学位论文],浙江大学,2005
    [41]祝红梅.医疗废物中典型组份的热解焚烧特性及回转式流化冷渣三段焚烧系统的数值模拟.[博士学位论文],浙江大学,2009
    [42]冉景煜.固态医疗垃圾循环流化床气固流动与燃烧特性数值分析及实验,[博士学位论文],重庆大学,2003
    [43]邓娜.医疗废物热解特性及动力学模型研究,[博士学位论文],天津大学,2005
    [44]卿山,工华,吴祯芬等.医疗废物在热分析仪中的燃烧特性研究.武汉理工大学学报,2005,27(12):34-37
    [45]国家环保总局.危险废物和医疗废物处置设施建设项目复核大纲.2004
    [46]白广彬,王玉如,白庆中等.模拟医疗废物在管式电阻炉上的热解特性研究.环境工程学报,2007,1(12):129-132
    [47]王玉如,白广彬,白庆中.模拟医疗垃圾在TG-DTA-FTIR上的热失重特性研究.环境科学,2007,28(7):1637-1643
    [48]祝红梅,严建华,蒋旭光等.模拟医疗垃圾组份的平衡分析.化学工程,2006,34(11):59-63
    [49]李剑.典型医疗废物组份的热解及气化特性研究,[硕士学位论文],浙江大学,2004
    [50]孙振鹏,李晓东,沈逍江等.医疗垃圾典型组份热解和气化的实验研究.电站系统工程,2005,21(5):13-18
    [51] S.G. Sahu,P. Sarkar,N. Chakraborty.Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars.Fuel Processing Technology,2010,91(3):369-378
    [52] S. Y. Yorulmaz,A. T. Atimtay.Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis.Fuel Processing Technology,2009,90(7-8):939-946
    [53] A. Marcilla,M. Beltran.Thermogravimetric kinetic study of poly(vinyl chloride)pyrolysis.Polymer Degration and Stability,1995,48(2):219-229
    [54] W. Leszek,S. Wincenty,H. Magdalena.Thermogravimetric investigations of carbonaceous materials-Syndiotactic polystyrene systems.Thermochimica Acta,2006,448(1):7-11
    [55] J. A. Conesa,A. Marcilla.Kinetic study of the thermogravimetric behavior of different rubbers.Journal of Analytical and Applied Pyrolysis,2004,37(1):95-110
    [56] B. Saha , A. K. Ghoshal . Model-free kinetics analysis of waste PE sample.Thermochimica Acta,2006,451(1-2):27-33
    [57] K. Raveendran,A. K. Ganesh,C. Khilar.Influence of mineral matter on biomass pyrolysis characteristics.Fuel,1995,74(12):1812-1822.
    [58] O. Beaumont,Y. Schwob.Infuence of physical and chemical parameters on wood pyrolysis.Industrial and Engineering Chemistry Research.1984,23:637-641
    [59] M. Roy,A. L. Rollin,H. P. Schreiber.Value recovery from polymer wastes by pyrolysis.Polym.Eng.Sci,1978,18(9):721-727
    [60] S. Yannick,M. Ludivine,B. Jaroslav,et al.Coupled DTA-TGA-FT-IR investigation of pyrolytic decomposition of EVA,PVC and cellulose.Journal of Analytical and Applied Pyrolysis,2007,78(1):46-57
    [61] C. H. Wu,C. Y. Chang,J. L. Hou,et al.On the thermal treatment of plastic mixtures of MSW.Waste Management,1993,13(3):221-235
    [62] H B. Vuthaluru.Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis.Bioresource Technology,2004,92(2):187-195
    [63] T. Bhaskar , J. Kaneko , M. Akinori , et al . Pyrolysis studies of PP/PE/PS/PVC/HIPS-Br plastics mixed with PET and dehalogenation (Br,Cl) of the liquid products.Journal of Analytical and Applied Pyrolysis,2004,72(1):27-33
    [64] B. Dodson,I. C. McNeill.Degradation of Polymer mixtures blends of poly (vinyl chloride) with polystyrene.Journal of Polymer Science,2003,14(2):353-364
    [65] R. Zevenhoven,E.P. Axelsen,M. Hupa.Pyrolysis of waste-derived fuel mixturescontaining PVC.Fuel,2002,81(4):507-510
    [66] Y. Matsuzawa,M. Ayabe,J. Nishino.Acceleration of cellulose co-pyrolysis with polymer.Polymer Degradation and Stability,2001,71(3):435-444
    [67] J. K. Koo,S. W. Kim,H. Y. Seo.Characterization of aromatic hydrocarbon formation from pyrolysis of polyethylene polystyrene mixtures.Resources,Conservation and Recycling,1991,5(4):365-382
    [68] W. C. McCaffrey , M. J. Brues , D.G. Cooper , et al . Thermolysis of polyethylene/polystyrene mixtures.Journal of Applied Polymer Science,1996,60(12):2133-2140
    [69] M. Day,J. D. Cooney,J. L. Fox.Use of thermogravimetry to analyze a mixed plastic waste stream.Journal of thermal analysis,2001,42(2-3):397-424
    [70] T. Faravelli,B. Giulia,C. Mauro,et al.Kinetic modeling of the thermal degradation of polyethylene and polystyrene mixtures.Journal of Analytical and Applied Pyrolysis,2003,70(2):761-777
    [71] C. Maurizio,B. Fabio,D. C. Aurelio,et al.Thermal degradation behaviour of isotactic polypropylene blended with lignin.Polymer Degradation and Stability,2006,91(3):494-498
    [72] I. C. McNeill,M.H. Mohammed.Thermal analysis and degradation mechanisms of blends of low density polyethylene,poly(ethyl acrylate) and ethylene ethyl acrylate copolymer with calcium carbonate.Polymer Degradation and Stability,1995,49(2):257-263
    [73] E. C. Elisabeth,C. Thaumaturgob.Surface phenomena and polymer miscibility of PVC/EVA blends.Composites Science and Technology,1997,57:1159-1165
    [74] W. S. Sanner,C. Ortuglio,J.G. Walters,et al.Conversion of municipal and industrial refuse into useful materials by pyrolysis.U S Bur Mines,1970,(8):14-17
    [75] Y. Miyagoshi,T. Tatefuku,M. Nishino,et al.Advantageous effects of low air ratio combustion in an advanced stoker-type waste incinerator.Waste Management inJapan,2004:155-164
    [76] H. Naramoto,S. Ohmori,K. Ogawa,et al.Development of high-efficient waste power generation technologies Development of the waste pyrolysis and combustion with ash melting process technologies.Waste Management and the Environment,2002:53-60
    [77] K. K. Rink,F. S. Larsen,J. A. Kozinski,et al.Thermal treatment of hazardous wastes: a comparison of fluidized bed and rotary kiln incineration.Energy and Fuels,1993,7(6):803-813
    [78] C. C. Lee,G. L. Huffman.Medical waste Management/Incineration.Journal of Hazardous Material,1996,48:1-30
    [79]孙娟,王家库,王承智.逆燃式医废焚烧炉烟气实测及灰渣分析.环境保护科学,2009,02:55-59
    [80] K. Arita , S. Nakamura . New technologies harmonized with Global environment.NKK technical review,2003,88:116-124
    [81] R. Kikuchi,H. Sato,Y. Matsukura,et al.Semi-pilot scale test for production of hydrogen-rich fuel gas from different wastes by means of a gasification and smelting process with oxygen multi-blowing.Fuel Processing Technology,2005,86(12-13):1279-1296
    [82]王承智,祁国恕,孙娟.LFX-20型逆燃式医疗废物焚烧炉二恶英实测分析.中国安全科学学报,2008,18(7):149-155
    [83]孟宝峰,崔钧,王宇.医疗废物热解焚烧处理技术探讨.中国环保产业,2006,8:34-37
    [84]陈静.医疗垃圾的热解研究.[硕士学位论文],天津大学,2005
    [85]徐定宇,张英,张文芝.塑料橡胶配方技术手册.化学工业出版社,2002.5
    [86]何立中,纪奎江.橡胶加工基础.化学工业出版社.1985.12
    [87]陈冠益.生物质热解实验与机理研究.[博士学位论文],浙江大学,1998.7
    [88] P. McKendry . Energy production from biomass (part 1) overview ofbiomass.Bioresource Technology 2002,83(1):37-46
    [89]杜卫平.竹浆纤维的基本形态结构分析.上海纺织科技,2006,6(34):7-11
    [90]陈允魁.红外吸收光谱法及其应用.上海交通人学出版社,1993
    [91] GB/T 6040- 2002红外光谱分析方法通则,2002
    [92] N. L. Owen,D.W.Thomas.Infrared studies of hard and soft woods.Applied spectroscopy,1989,43(3):451-455
    [93]孙勇,张金平,杨刚等.二氧化氯氧化云杉木质素的光谱研究.光谱学与光谱分析,2007,27:1551-1554
    [94]王正熙..聚合物红外光谱分析与鉴定.四川人学出版社,1989
    [95]薛奇.高分子结构研究中的光谱方法.北京:高等教育出版社,1995
    [96]蔡正千.热分析.北京:高等教育出版社,1993
    [97]李余增.热分析.北京:清华大学出版社,1987
    [98] H. P. Yang,R.Yan, T.Chin,et al.Thermogravimetric Analysis-Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis.Energy Fuels,2004,18(6):1814-1821
    [99]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985
    [100] G. Maschio,C. Koufopanos,A. Lucchesi.Pyrolysis,a promising route for biomass utilization.Bioresource Technology,1992,3(42):219-231
    [101] Haiping Yang,Rong Yan,Hanping Chen,et al.Characteristics of hemicellulose,cellulose and lignin pyrolysis.Fuel,2007,86 (12-13):1781-1788
    [102] R. K. Sharma,J. B. Wooten,V. L. Baliga,et al.Characterization of chars from pyrolysis of lignin.Fuel,2004,83(11-12):1469-1482
    [103] A. Marongiu,T. Faravelli,G. Bozzano,et al.Thermal degradation of poly(vinyl chloride) .Journal of Analytical and Applied Pyrolysis,2003,70(2):519-553
    [104] S. Kim.Pyrolysis kinetics of waste PVC pipe.Waste Management,2001,7 (21):609-616
    [105] I. C. McNeill,S. Ahmed,L. Memetea,et al.Thermal degradation behaviour of some alternating copolymers.Polymer Degradation and Stability,1996,52 (2):171-181
    [106]于娟,章明川,沈轶,等.生物质热解特性的热重分析.上海交通大学学报,2002,36(10):1475-1478
    [107] P. Grammelis,P. Basinas,A. Malliopoulou,et al.Pyrolysis kinetics and combustion characteristics of waste recovered fuels.Fuel,2009,88:195-205
    [108] F. Paradela,F. Pinto,A. M. Ramos,et al.Study of the slow batch pyrolysis of mixtures of plastics,tyres and forestry biomass wastes.Journal of Analytical and Applied Pyrolysis,2009,85:392-398
    [109] H. Bockhorn,A. Hornung,U. Hornung.Stepwise pyrolysis for raw material recovery from plastic waste.Journal of Analytical and Applied Pyrolysis,1998,46(1):1-13
    [110] J. Zheng,Y.Q. Jin,Y. Chi,et al.Pyrolysis characteristics of organic components of municipal solid waste at high heating rates.Waste Management,2009,29:1089-1094
    [111] I. C. McNeill,J. G. Gorman,S. Basan.Thermal degradation of blends of PVC with poly(tetramethylene sebacate).Polymer Degradation and Stability,1991,33(2):263-276
    [112] W. C. McCaffrey,M. R. Kamal,D. G. Cooper.Thermolysis of polyethylene.Polymer Degradation and Stability,1995,47(1):133-139
    [113] I. C. McNeill,S. Basan. Thermal degradation of blends of PVC with bisphenol A polycarbonate.Polymer Degradation and Stability,1993,39(2):145-149
    [114] M. Day,J. D. Cooney,C. T. Barrette,et al.Pyrolysis of mixed plastics used in the electronics industry.Journal of Analytical and Applied Pyrolysis,1999,52(2):199-224
    [115] M. Day,Z. Shen,J. D. Cooney.Pyrolysis of auto shredder residue: experiments with a laboratory screw kiln reactor.Journal of Analytical and Applied Pyrolysis,1999,51(1-2):181-200
    [116] F. Pardela,F. Pinto,A.M. Ramos,et al.Study of slow batch pyrolysis of mixtures of plastics, tyres and forestry biomass wastes.Journal of Analytical and Applied Pyrolysis,2009,85(1-2):392-398
    [117] J. Pavlinec , M. Lazar , K. Csomorova . Thermal degradation of multilayer methacrylate-acrylate particle-bead polymer powders and melts . Polymer Degradation and Stability,1997,55(1):65-71
    [118] I. C. McNeill.Thermal degradation mechanisms of some addition polymers and copolymers.Journal of Analytical and Applied Pyrolysis,1997,40:21-41
    [119]杨海平,陈汉平,晏蓉,等.油棕废弃物及生物质三组份的热解动力学研究.太阳能学报,2007,28(6):626-631
    [120]王世杰.水泥预分解窑系统内生料分解、煤粉燃烧与NOX控制研究.[博士学位论文],华中科技大学,2006
    [121]胡荣祖,史启祯编.热分析动力学.北京:科学出版社,2001
    [122]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985
    [123] S. L. Zhang,Z. X. Xin,Z. X. Zhang,et al.Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder.Waste Management,2009,39(5):1480-1485
    [124] R. Miranda,J. Yang,C. Roy,et al.Vacuum pyrolysis of PVC. I. Kinetic study.Polymer Degradation and Stability,1999,64(1):127-144
    [125] E. Aylon,R. Murillo,A. Fernandez-Colino,et al.Emissions from the combustion of gas-phase products at tyre pyrolysis.Journal of Analytical and Applied Pyrolysis,2007,79(2):210-214
    [126]孙路石.废弃印刷线路板的热解机理及产物回收利用的试验研究.[博士学位论文],华中科技大学,2004
    [127] S. L. William,J. Michael,J. Antal.Effects of pressure on biomass pyrolysis. I. Cellulose pyrolysis products.Thermochimica Acta,1983,68(1):155-164
    [128] A. Chaala,H. Darmstadt,C. Roy.Vacuum pyrolysis of electric cable wastes.Journal of Analytical and Applied Pyrolysis,1997,39(1):79-96
    [129] T. F. Wall,Gui-su Liu,Hong-wei Wu.The effects of pressure on coal reactions during pulverised coal combustion and gasification.Progress in Energy and CombustionScience,2002,28(5):405-433
    [130] E. Croiset,C. Mallet,J. P. Rouan.The influence of pressure on char combustion kinetics.Symposium (International) on Combustion, 1996,26(2):3095-3102
    [131] R. Miranda,H. Pakdel,C. Roy.Vacuum pyrolysis of commingled plastics containing PVC II. Product analysis.Polymer Degradation and Stability,2001,73(1):47-67
    [132] I. C. McNeill,L. Memetea,J. C. William.The thermal degradation of the vinyl acetatemethacrylic acid copolymer and its related homopolymers: the analysis of the pyrolysis products.Polymer Degradation and Stability,1995,48:395-410
    [133] D. Elena,A. Alexander,R. Jacques.Modeling the formation of precursors of dioxims during combustion of woody fuel volatiles. Fuel,2005,84:323-334
    [134] L. Khachatryan,R. Asatryan,B. Dellinger.Development of expanded and core kinetic models for gas phase fomation of dioxins from chlorinated phenols.Chemosphere,2003,52:695-708
    [135] S. A. Groves,R. S. Lehrle.Natural rubber pyrolysis: Study of temperature and thickness dependence indicates dimmer formation mechanism.Journal of Analytical and Applied Pyrolysis,1991,19:301-309
    [136]朱南康,王春雷,张友九.天然橡胶乳液辐射硫化研究及应用.核技术,2003,26(7):530-535
    [137]曹玉春.流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究.[博士学位论文],浙江大学,2005
    [138]沈伯雄,姚强,刘德昌等.石油焦燃烧过程中比表面积和孔容积变化规律的实验研究.化工学报,2000,51(6):165-169
    [139]周毅,段钰锋.部分气化后半焦的孔隙结构.能源研究与利用,2004(04):24-28
    [140] M. M. Dubinin.Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures.Carbon,1989,27(3):457-467
    [141] K. S. W. Sing,D. H. Everett,R. A. W. Haul,et al.Reporting physisorption data forgas/solid systems,with special reference to the determination of surface area and porosity.Pure and applied chemistry,1985:603-619
    [142]严继民,张启元,高敬琮.吸附与凝聚--固体的表面与孔.北京:科学出版社,1986
    [143]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报,2001,26(5):552-556
    [144] J. H. Boer.The Shape of Capillaries.London: Butterworth,1958
    [145] I. I. Kantorovich,E. Bar-Ziv.Role of the Pore Structure in the Fragmentation of Highly Porous Char Particles.Combustion and Flame,1998,113(4):532-541
    [146]向银花,工洋,张建民,等.煤焦气化过程中比表而积和孔容积变化规律及其影响因素研究.燃料化学学报,2002,30(2):109-112
    [147]丘纪华.煤粉在热分解过程中比表而积和孔隙结构的变化.燃料化学学报,1994,22(3):316-319
    [148] H. Lorenz,E. Carrea,M. Tamura,et al.The role of char surface structure development in pulverized fuel combustion.Fuel,2000,79:1161-1172
    [149] R. H. Hurt,D. R. Dudek,J. P. Longwell,et al.The phenomenon of gasification induced carbon densification and its influence on pore structure evolution.Carbon,1988,(26):433-449
    [150] H. Lorenz.E. Carrea.M. Tamura.et al.The role of char surface structure development in pulverized fuel combustion.Fuel,2000,79(10):1161-1172
    [151] P. Pfeifer,D. Avnir.Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces.The Journal of Chemical Physics,1983,79(7):3558-3565
    [152]赵振国.吸附作用应用原理.化学工业出版社,2005
    [153] R. Dvorak,R. Stulir,P. Cagas.Efficient fully controlled up-to-date equipment for catalytic treatment of waste gases.Applied Thermal Engineering,2007,27:1150-1157
    [154] R.R.A.M. Mato,G..R. Kassenga.A study on problems of management of medical solid wastes in Dar es Salaam and their remedial measures.Resources,Conservation and Recycling,1997,21:1-16
    [155] A. F. Shaaban.Process engineering design of pathological waste incinerator with an integrated combustion gases treatment unit.Journal of Hazardous Materials,2007,145:195-202
    [156] D.E. Rogers,A.C. Brent.Small-scale medical waste incinerators-experiences and trials in South Africa.Waste Management,2006,26:1229–1236
    [157] M. C. M. Alvim-Ferraz , S.A.V. Afonso . Incineration of healthcarewastes: management of atmospheric emissions throughwaste segregation . Waste Management,2005,25:638-648.
    [158] Gordon McKay . Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review.Chemical Engineering Journal,2002,86(3):343-368
    [159]赵由才等.医疗废物管理与污染控制技术.北京:化学工业出版社,2005
    [160]郭小汾.垃圾衍生燃料洁净燃烧技术的基础研究.[博士学位论文],太原理工大学,2000
    [161] G. F. Melo,P. T. Lacava,J. A. Carvalho.A case study of air enrichment in rotary kiln incineration.International Communications in Heat and Mass Transfer,1998,25(5):681-692
    [162] J. Marjorie,F. Clarke,N.Y. Bronx.Introduction to Municipal Solid Waste Incineration.Air and Waste Management Association Annual Meeting,Baltimore,2002:23-27
    [163]岑可法,姚强,骆仲泱,等.高等燃烧学.浙江大学出版社,2002
    [164] Yangsheng Liu,Lanlan Ma.Investigation of Novel Incineration Technology for Hospital Waste.Environment Science and Technology,2006,40:6411-6417
    [165] W. Jangsawang,B. Fungtammasan,S. Kerdsuwan.Effects of operating parameterson the combustion of medical waste in a controlled air incinerator.Energy Conversion and Management,2005,46:3137-3149
    [166] A. Halasz.PCDD/F emission control by intermediate dust removal at medical waste incinerators.Waste Management & Research 1996,14:3-14
    [167] M. Kamon,T. K. Sumi,Y. Sano.MSW fly ash stabilized with coal ash for geotechnical application.Journal of Hazardous Materials,2000,76:263-283
    [168] L. L. Forestier,G. Libourel.Characterization of flue gas residues from municipal solid waste combustors.Environmental Science and Technolog,1998,32(15):2250-2256.
    [169]孙路石,陆继东,张娟.城市垃圾焚烧过程中重金属释放行为的试验研究.燃烧科学与技术,2003,9(5):16-20
    [170] M. Kamon,T. Katsumi,Y. Sano.MSW fly ash stabilized with coal ash for geotechnical application.Journal of Hazardous Materials,2000,76:263-283
    [171] F. Y. Chang,M. Y. Wey.Comparison of the characteristics of bottom and fly ashes generated from various incineration processes.Journal of Hazardous Materials,2006,138:594-603
    [172] R. Clyde,E. Dempsey,T. Oppelt.Incineration of Hazardous Waste; A Critical Review Update.Air and Waste,1994,43:25-73
    [173] K. Olie,J. W. Berghem.Chlorodibenzo-p-PCDD/Fs and chlorodibenzofurans are trace compounds of fly ash and flue gas of some municipal incinerators in the Netherlands.Chemosphere,1977,6(8):455-459
    [174] M. Wilken,B.Cornelsen,B.Z.Lahl,et al.Distribuation of PCDD/F and other organochlorine compounds in different municipal solid waste fractions. Chemosphere,1992,25:1517-1523
    [175] M. Gordon.Dioxin characterisation,formation and minimization during municipal solid waste incineration: review.Chemical Engineering Journal,2002,86:343-368
    [176] R. Weber,F. Iino,T. Imagawa,et al.Formation of PCDF,PCDD,PCB and PCNin de novo synthesis from PAH: Mechanistic aspects and correlation to fluidized bed incinerators.Chemophere,2001,44:1429-1438.
    [177] H. Huang,A. Buekens.On the mechanism of dioxin formation in combustion processes.Chemosphere,1995,31(9):4099-4117.
    [178] V. Pekarek,R. Grabic,S. Marklund,et al.Effects of oxygen on formation of PCB and PCDD/F on extracted fly ash in the presence of carbon and cupric salt.Chemosphere,2001,43:777-782
    [179] R. Addink,K.Olie,Role of oxygen in formation of polychlorinated dibenzo-p-dioxins dibenzofurans from carbon on fly ash.Environmental Science and Technology,1992,29:1586-1595
    [180] K.Tuppuainen,I.Halonen,P.ruokojarvi,et al.Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review.Chemosphere,1998,36(7):1493-1511
    [181]王华.城市生活垃圾焚烧技术—二噁英零排放化.北京:冶金工业出版社,2001
    [182] T. Hatanaka,A. Kitajima,M. Takeuchi.Role of copper chloride in the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during incineration.Chemosphere,2004,57 (1):73-79
    [183] H. Ismo,T. Kari,R. Juhani.Formation of aromatic chlorinated compounds catalyzed by copper and iron.Chemosphere,1997,34(12):2649-2662
    [184] R. Weber,K. Nagai,J. Nishino,et al.Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF.Chemosphere,2002,46(9):1247-1253
    [185] W. A. Rubey,B. Dellinger,D. L. Hall,et al.High temperature gas-phase fomation of polychlorinated dibenzofurans.Chemosphere,1985,14(10):1483-1494
    [186] H. R. Buser . Formation of polychlorinated dibenfurans (PCDFs) and dibenzo-p-dioxins (PCDFs) from the pyrolysis of chlorobenzenes.Chemosphere,1979,6:415-424.
    [187] R. Addink,D.M.Akkerman,P. Slot,et al.Mechanism of formation of polychlorinated dibenzo-p-dioxins and debenzofurans in the catalyzed combustion of carbon.Environmental Science and Technology,1994,28(3):312-321
    [188] M. B. Chang,T. F. Huang.The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash.Chemosphere,2000,40:159-164
    [189] A. M. Cunliffe,P. T. Williams.Influence of temperature on PCDD/PCDF desorption from waste incineration flyash under nitrogen.Chemosphere,2007,66(6):1146-1152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700