用户名: 密码: 验证码:
钢铁工业综合废水处理与资源化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁工业生产过程中会产生各种工业废水,虽然企业在各工序生产过程中建立了废水回用或污水达标排放处理设施,但为满足生产要求,降低浓缩倍数,回用循环水处理过程中必须定期排污,这些未经处理的回用循环过程中的排污水和少量工序事故水、经处理后达标排放污水与少部分生活污水、雨排水等汇合到一起,形成的混合废水,称之为钢铁工业综合废水。钢铁工业循环用水量占总用水量的比例往往在95%以上,其综合废水也主要来源于浊循环水系统的排污水(敞开式净循环水系统的排污水一般作为浊循环水系统的补充水)和冷轧、硅钢等经单独处理后达标排放的特种工业废水以及少部分生活污水、雨排水等。其中,冷轧含油/乳化液、平整液废水和热轧含油循环废水是两种重要而难处理的工业污水,也是造成综合废水处理难度大和影响回用的主要原因;目前,大流量的综合废水有效处理方法报道甚少,处理后的综合废水由于电导率的偏高等因素影响了回用范围;综合废水处理产生的综合污泥必须用汽车送去填埋、既增加运输和处置费用、又会造成二次环境污染,其有效利用研究目前尚无报道;而热轧和冷轧含油废水常规方法存在运行费用高、药剂消耗量大、出水不稳定等缺点,特别是前者用传统的石英砂、无烟煤深度除油除浊,易出现跑料、板结、寿命短等现象。有鉴于此,论文课题在充分的文献调研基础上,选择具有代表性的钢铁工业综合废水及其处理产生的综合污泥和前者主要来源组成的热轧、冷轧含油废水作为研究对象,进行先进水处理技术和污泥资源化技术研究,对于减少水污染和固体废弃物污染,实现钢铁工业清洁生产,具有重要实际意义,同时对于发展工业污染控制的技术和方法,具有一定的理论和学术价值。本论文共分七张,即:第一章绪论,第二章钢铁工业综合废水处理技术工艺设计与优化研究;第三章新型电吸附技术深度处理钢铁工业再生水技术研究;第四章钢铁工业综合废水处理污泥资源化利用研究;第五章亲油性改性滤料深度处理钢铁工业热轧高线含油废水的研究与应用;第六章含油/乳化液、平整液废水处理的技术研究;第七章总结与展望。本论文得到的主要研究成果如下:
     1.提出并确定了利用国外高密度沉淀技术和V型滤池过滤技术处理大流量的钢铁工业综合废水的技术工艺路线,实践证明是可行的,具有应用推广前景;对该技术工艺的核心即化学药剂处理单元进行了优化研究,结果表明:在武钢A综合废水处理厂水质条件下,在前混凝处理工艺中,Ca(OH)2加入量是去除硬度的关键因子,pH和电导率可以反映硬度去除的效果,pH值控制在9.6左右可取得硬度去除的最佳效果,随着石灰投加量增加,CODCr去除效果更好,与之相匹配的聚合硫酸铁(PFS)和聚丙烯酰胺(PAM)最优投加量分别为40ppm和0.3ppm,但是,总铁含量与PFS投加量正相关,因此,PFS投加量不宜偏高;污泥循环对强化系统去除浊度、CODCr和进一步降低电导率是非常有效的,并可以改善系统结垢的性能,污泥回流比控制在5%-20%为最佳;Ca(OH)2、PFS、PAM和回流污泥的投加次序对浊度、CODCr、硬度的去除和电导率的降低有影响:Ca(OH)2先于PFS投加、PAM同时分别向回流污泥和絮凝反应池投加是较佳的投加方式;在后混凝处理工艺中,混凝剂采用PAC替代PFS,可降低总铁,PAC投加量3 ppm为佳;出水pH调节用的H2SO4投加量约12ppm为佳;在出水消毒工艺中,采用紫外消毒、二氧化氯消毒或紫外与次氯酸钠联合消毒取代次氯酸钠消毒,这样对降低Cl-和电导率均有明显效果。出水水质分析结果显示:优化后出水水质指标均优于优化前出水水质指标,且出水水质较为稳定;优化后出水水质指标都能达到武钢直接循环冷却水系统补充水水质要求,同时,为离子交换软化/脱盐系统等特殊生产用水的深度预处理创造了条件。
     2.开展了将新型电吸附技术应用于处理后的综合废水(以下称为工业再生水)深度净化脱盐处理的研究,使之达到特殊用途标准。中试试验结果表明,当原水电导率在700μS/cm左右,工作流量从500L/h逐步增大至1000L/h时,电吸附技术处理的出水水质稳定,完全能够满足武钢离子交换软化/脱盐系统等特殊生产用水的水质要求,对电导率、Cl-、Ca2+的平均去除率分别达到70%、75%和68%左右,对COD也有较好的去除效果。同时,产水率可达到75.3%,明显优于传统技术。电吸附技术对前期预处理要求较低,整套处理系统的产水和再生不需要添加任何酸、碱和盐溶液等化学药剂,不会引入污染。因为无需使用膜或者高压泵,电吸附技术比电渗析和反渗透等传统方法运行成本更低、操作更为简便、更为节能,具有广阔的推广应用前景。
     3.对综合废水处理过程中产生的综合污泥进行了资源化利用研究,主要是利用综合污泥制备改性综合污泥质多孔陶瓷滤料,首先,针对成孔剂添加工艺,研究了不同的成孔剂、不同的成孔剂添加量、骨料颗粒级配对Pa、Wa、D的影响以及成孔剂颗粒、烧成温度对Pa、D的影响,研究结果表明,煤粉为最佳成孔剂,成孔剂和骨料的颗粒级配对滤料的显气孔率影响不大,煤粉添加量在一定范围内与综合污泥质多孔陶瓷滤料的Pa、D成线性正相关关系,可通过控制煤粉添加量实现对Pa、D的调控;烧成温度控制在1130℃~1160℃范围内为佳,此范围内研制滤料的理化性能良好,气孔率较大;陶瓷滤料显气孔率与抗压碎强度之间的关系可用二次曲线拟合,可通过调控煤粉添加量来平衡多孔陶瓷滤料的P与抗压碎强度之间的矛盾,从而使滤料显气孔率高且抗压碎强度也大,得到适合需要的多孔陶瓷滤料。在此基础上,对综合污泥质多孔陶瓷滤料进行了亲油改性研究,通过对照试验和多参数的测试结果分析,确定武钢综合污泥质陶瓷滤料亲油性涂层表面最优改性条件为:改性剂为202含氢硅油,固化时间为25min.,固化温度为200℃,涂层次数为1次,体积浓度为10%。
     4.研究了用改性综合污泥质多孔陶瓷滤料对热轧高线含油废水进行深度处理,探讨了影响处理效果的因素,优化了相关操作工艺参数,并用FTIR、SEM、XRD等测试手段对相关性能进行了表征。同时,研究了油等污染物去除的机理,并与传统石英砂滤料进行了对照实验研究,实验结果显示,相对传统的石英砂滤料,改性滤料具有出水水质好,除浊率高,周期长,水头损失小的优点;设计的串级连续流的压力过滤工艺,采用“反粒度过滤”的运行方式,每段滤层仍保持均质滤料结构,使得截污量在整个滤层中分布趋于均匀,并有效避免了混层的发生,确定了最佳运行参数;经过连续反洗再生实验和性能测试,证明改性滤料能够在长期运行过程中保持稳定的除油、除浊、耐磨和耐腐蚀的性能;现场中试和生产性动态试验研究结果进一步证明:采用以武钢综合污泥质改性滤料为核心的过滤工艺,除油和悬浮物效果明显,在进水水质条件波动较大的情况下,处理后的出水悬浮物始终保持在30mg/L以下,油在4mg/L以下,满足武钢热轧高线生产的需要,避免了传统石英砂易板结、跑料、使用寿命短等弊端,为钢铁工业综合污泥资源化利用提供了典范。
     5.对冷轧含油/乳化液、平整液废水这一综合废水主要来源,进行了处理研究,采用气能絮凝(GEF)、超滤(UF)、电化学催化氧化(ECO)、膜生物反应器(MBR)组合工艺,通过不同组合、调试研究、逐步完善,最终确定了以电催化氧化为主体的新型组合工艺处理冷轧含油/乳化液、平整液废水。研究结果表明:采用‘'GEF+ECO+MBR"和"UF+ECO+MBR"两种新型组合工艺,均能有效处理冷轧乳化液废水,最终出水CODCr≤30mg/L,满足《钢铁工业水污染物排放标准》(征求意见稿)要求,但前者出水水质更稳定一些,"GEF+ECO +MBR"新型组合工艺处理冷轧乳化液、平整液废水为最佳工艺。该工艺达到了生产回用水水质要求,为冷轧乳化液废水深度处理和资源化提供了新的工艺路线[11。
A variety of industrial wastewater has been produced in iron-steel enterprises during production process. Effective treatment facilities for reuse or discharging meeting the national standard have been established in every production of enterprises. However regular discharging is needed in the process of reuse water circulation in order to meet the requirement of production and reduce the enrichment multiples. The comprehensive wastewater is composed of the untreated wastewater during reuse circulation process, a few process accident water, treated wastewater meeting the discharging standard and a little sewage, rain storm water. Recycling water consumption in the proportion of total water consumption often exceeds 95%. The comprehensive wastewater mainly comes from turbid circulating water system (the discharged wastewater from open-style indirectly-touched circulating water system is often used as the supplementary water of the directly-touched circulating system) and special industrial wastewater from the process of cold rolling and coking which have been treated separately and met with the discharge standard. In addition, they also come from a small number of domestic wastewater, rain drainage and so on. Among them, cold rolling oil/emulsion, wastewater from cold-rolled strip temper mill and hot-rolling oily wastewater are two kinds of important and hard-to-degraded industrial wastewater, which are the main composition sources of comprehensive wastewater and the main reason making the comprehensive wastewater difficult to be degraded. There is no report about the effective treatment method of high-flow comprehensive wastewater up to now. The scope of reuse of treated comprehensive wastewater is limited by certain factor such as relatively high conductivity. The comprehensive sludge must be sent to landfill by cars, which can increase the transportation and treatment costs, and cause potential environmental pollution. At present there is no report about the effective use of research on its effective utilization. However the regular treatment methods of hot-rolling and cold-rolling oily wastewater have some shortcomings such as high cost of running and chemicals consumption, unstable effluent quality. Especially there exist filter media losing, easy to compaction and short life using traditional quartz sand, anthracite to remove oil and turbidity. In view of these problems, based on full literature investigation, representative iron-steel industrial comprehensive wastewater and comprehensive sewage sludge during its treatment processes and hot and cold rolling oily wastewater as the former's main source are selected as the object in this thesis. Research on technologies of advanced water treatment and sludge resourcelization are conducted. It is of great significance of reducing water and solid wastes pollution and realizing clean production in the iron-steel industry. Meanwhile, it has certain theoretical and academic value to developing the techniques and methods for industrial pollution control. The thesis is divided into seven chapters:The first chapter is introduction, the second is concerned about process design and optimal application of iron-steel industrial comprehensive wastewater treatment, the third is about technological research on electrosorption technique enhanced treatment of reused comprehensive iron-steel industrial wastewater, the fourth is about research on iron-steel industrial comprehensive wastewater treatment sludge resourcelization, the fifth is about research and application of oleophylic modified filter meida enhanced treating hot-rolling high speed wire oily wastewater in WISCO, the sixth is about the technical research and application of treatment for oil/emulsion and the wastewater from cold-rolled strip temper mill. The last chapter is conclusion and outlook. On this basis, main results in this thesis are as follows:
     1. High-density precipitation technology and V-filter processing have been proposed and determined. It has been proved to be practicable and have wide application prospects. The optimal study on the chemical salts process as the core of this technique is conducted. The research results show that under the water quality condition of A comprehensive steel industrial recycling wastewater treatment project in WISCO, in the pre-coagulation process, the amounts of Ca(OH)2 is the key factor to the hardness removal, pH and electrical conductivity can reflect the effect of hardness removal, the optimal effect of hardness removal is achieved when pH value is controlled around 9.6, with the increase of amount of lime, the higher CODcr removal efficiency can be achieved, the optimal dosage of matching PFS and PAM was 40ppm and 0.3ppm respectively. However, total iron content was positively related to the dosage of PFS, so high dosage of PFS is inadvisable; it is very effective for sludge recycling to remove the turbidity, CODCr and to reduce electrical conductivity further in the improved system, and can also improve system performance of fouling. The optimal controlled return sludge ratio is between 5%~20%. The dosing turn of Ca(OH)2, PFS, PAM and returning sludge has impact on the removal of turbidity, CODcr, hardness and reduction of electrical conductivity:it is a better way of dosing to dose Ca(OH)2 slightly before PFS, PAM is put to the return sludge and flocculation reaction tank respectively at the same time. In the post-coagulation process, using PAC as coagulant instead of PFS can reduce the total iron. The optimal dosage of PAC is 0.3ppm.The optimal H2SO4 dosage of effluent pH adjustment is about 12ppm; In the effluent disinfection process, the use of UV disinfection, chlorine dioxide disinfection or ultraviolet disinfection combined with sodium hypochlorite can replace sodium hypochlorite disinfection, that will reduce Cl- and electricity conductivity significantly. The results of optimized effluent show that the water quality indexes in the effluent are better than those in the influent and keep stable. The optimized effluent water quality indexes can meet the requirements of supplement water quality of direct recycling cooling water systems in WISCO and create favorable condition for enhanced pre-treatment of ion exchange softening/desalination system for special production water.
     2. Carrying out research on the novel electric adsorption technology which is applied to the comprehensive wastewater (it is called industrial regenerated water in the following content) enhanced desalination and purification treatment, make it achieve special use standard. Pilot test results show that when the raw water electricity conductivity is about 700μS/cm, the work flow is from 500L/h and gradually increases to 1000L/h, the quality of water treated with electric adsorption treatment is stable, can meet the special production water standard of WISCO's ion-exchange softening/desalination system, the average removal rate of electricity conductivity,Cl-,Ca2+ is up to about 70%、75% and 68% respectively, it also has a good removal effect of COD. At the same time, water production rate can reach 75.3%, significantly better than traditional technology. Electrosorption technology has a low requirement in the prophase preprocessing, the water's production and regeneration of the whole treatment system need no any chemical agents such as acid, alkali and saline solution and so on, will not introduce pollution. Electrosorption technology has a lower operating cost and easier operation, more energy saving than traditional methods such as electrodialysis and reverse osmosis without the use of film or high-pressure pump, it has broad application prospects.
     3. Research on resourcelization of comprehensive sludge during the comprehensive wastewater treatment mainly using comprehensive sludge to produce modified porous ceramic filter media made form comprehensive sludge is conducted. Firstly, Aiming to pore-formation addition process, effects of pore-forming agent kinds, pore-forming agent addition, graded aggregate size, graded pore-forming agent size, firing temperature on apparent porosity, volume density and crush strength of filter media are studied. The results show that coal powder is chosen as optimal pore-forming agent and the size distribution of pore-forming agent and graded aggregate have little effect on apparent porosity of filter media. The relation between coal addition with apparent porosity and volume density of filter media in certain scope is linear. So regulation to apparent porosity and volume density of filter media can be realized by coal addition, firing temperature should be controlled between 1130℃~1160℃. The physical-chemical properties of meida produced in this temperature range are sound and porosity is relatively large. The relation between the apparent porosity and crush strength of filter media accords with quadratic curve. Thus, contradiction between apparent porosity and crush strength of filter media is conciliated by controlling coal addition, which can produce porous ceramic filter media with a higher apparent porosity and crush strength. On this basis, the pro-oil modification of comprehensive sludge porous ceramic filter media is conducted through the analysis of controlled trials and multi-parameter test results, the optimal modification condition of WISCO comprehensive sludge porous ceramic filter media pro-oil surface is confirmed:modifier is 202 hydrogen silicone oil, curing time is 25 min, curing temperature is 200℃, coating one time, the volume concentration of 10%.
     4. Enhanced treatment of hot rolling speed wire oily wastewater with modified comprehensive sludge porous ceramic filter media is studied, the factors that influence the treatment result are discussed, related operation process parameters are optimized, related performance is characterized by FTIR, SEM, XRD and other relevant testing methods. Meanwhile, the removal mechanism of oil and other pollutants is studied, comparison experiments of traditional quartz sand filter was conducted, the research results turn out:compared with traditional quartz sand filter media, modified filter media have the advantage of high water quality, high turbidity removal efficiency, long filtration run, minor loss of water; the designed pressure filtration devices of cascade continuous flow using "anti-granularity filtering" operation mode. Each filter layer remains uniform media structure, making the distribution of interception amount in the entire filter layer to uniform and avoiding the occurrence of the mixing layer effectively, the optimum operating parameters were confirmed. Through the continuous reverse-wash regeneration experiment and performance testing, it is confirmed that modified filters can maintain the stable performance like oil removal, turbidity and corrosion resistance; On-site pilot scale test and productive dynamic test results further prove that using filtering technology centered on WISCO sludge quality modified filter media will have obvious effect on oil and suspended solids removal, on the condition of higher fluctuation of influent, the effluent suspended solids remain below 30mg/L, oil remains below 4mg/L, can satisfy the WISCO hot rolling speed wire production need and achieve the expected goal of the study, comparing with the traditional quartz sand,modified filter media has better performance on oil and turbidity removal, the effluent is more stable, run longer and avoid the disadvantages of traditional quartz sand such as easy to compaction and lose, short life, and so on; Meanwhile, it can provide typical examples for resourclization of the iron-steel industrial comprehensive sludge.
     5. Research on the treatment of cold rolling oily/emulsion, flat liquid wastewater, which is the main source of comprehensive wastewater is carried out. Four modules GEF (Gas Energy Flotation),UF(Ultra filtration), ECO(Electrical Chemical Oxidation), MBR(Membrane Biological Reactor) are under debugging combined study and improved gradually through different combination. Eventually it is determined that the novel combined processes with electro-catalytic oxidation as the focus technique to treat cold rolling oily/emulsion, flat liquid wastewater. The results show that two kinds of novel integrated processes--GEF+ECO+MBR and UF+ECO+MBR, can treat cold rolling emulsion wastewater effectively, the ultimate treated water's CODcr content is less than 30mg/L,can meet the requirement for "Iron and steel industrial water pollutant discharge standards" (opinion draft). The former's water quality is more stable. Therefore the integrated process "GEF+ECO+MBR" is determined to be the optimal process to treat cold rolling oily/emulsion, flat liquid wastewater, which can meet the water quality requirement of production recycled water, providing a new technology route for the enhanced treatment and resourcelization.
引文
[1]张运华,甘复兴,吴声浩等.以电化学催化氧化为主体的新型组合工艺处理冷轧高浓度乳化液废水工业中试研究.全国冶金节水与废水利用技术研讨会文集,2009.9:5-8
    [2]张运华.冶金工业综合废水回用技术研究与应用效果.第四届中国金属学会青年学术年会论文集,2008,10:01
    [3]ZHANG Yunhua, GAN Fuxing, LI Meng.et al. New Integrated Processes for Treating Cold-Rolling Mill Emulsion Wastewater. Journal of Iron and Steel Research, International,2010,17(6):32-35
    [4]ZHANG Yunhua, GAN Fuxing, LI Meng, et al. Oily Wastewater Treatment by Porous Ceramics Mediums with Surface Lipophilic Modification. Journal of WUHAN University of Technology-Mater. Sci.Ed.,2010,25(5):807-810
    [5]金亚飚.城市生活污水作为钢铁工业水源的可行性探讨.全国冶金节水与废水利用技术研讨会文集,2009.9:8-11
    [6]ZHANG Yunhua, GAN Fuxing. Ravamping and Effect Analysis of Circulating Water Treatment for Converter Dust Removal in WISCO. The 13th Mainland-Taiwan Environmental Protection Conference,Apr.23-25,2010:068
    [7]金亚飚.浅谈钢铁企业工业污水处理现状和存在的问题.中国水处理技术研讨会暨第28届年会论文集,2008,11:19-21
    [8]王芴曹等.钢铁工业给水排水设计手册.钢铁工业出版社,2002
    [9]巴宾科夫.论水的混凝.郭连奇,译.北京:中国建筑工业出版社,1980
    [10]湛含辉,张晓琪,罗定提.混凝机理的研究现状及其定义.2003-17(5)
    [11]佟玉衡.实用废水处理技术.北京:化学工业出版社,1999
    [12]高廷耀,顾国维.水污染控制工程[M].高等教育出版社,1999,206-216
    [13]陆柱.水处理技术.上海:华东理工大学出版社,2000
    [14]王琳娜,吴若静.投加混凝剂活性污泥法优选混凝剂试验研究,2008-33(4),109-113
    [15]Luan Zhaokun. Chemical species distrioution and transtormationin polyaluminum chemical solutions. J.Environmental Science(China),1990,2(2):25-39
    [16]伴繁雄,唐泽孝男等.铁系水处理剂.工业用水(日)(第一报),昭和:1953:53-61
    [17]梁为民.凝聚与絮凝.北京:钢铁工业出版社,1987
    [18]Rebhun et.al. Reuse of wastewater for industry cooling system. Water Pollution Control Federal,60(2):237-241
    [19]高秀山.火电厂循环冷却水处理.北京:国电力出版社,2002,3
    [20]Arthur J. Freedman et.al. Successful operation of a large film-fill electric utility cooling tower system using treated municipal waste water as makeup source.IWC-96-6:269-81
    [21]吴树森,章燕毫.界面化学一原理与应用.上海:华东化工学院出版社,1989
    [22]宋丰明.石灰混凝法去除尾水中碱度及有机物试验研究.硕士学位论文,2006,11.
    [23]沈光范.中水道技术.北京:中国环境科学出版社,1991,5
    [24]吴志勇.用石灰-混凝处理法将中水作为电厂循环水的试验研究究,,2007-28(5):65-71
    [25]D.J.Goldsten.Water Reuse. Ann Arbor Science Publishers Inc.1988
    [26]惠兆华.美国火电厂的污水回用及处理技术.电力环境保护,1990,6(4):54-62
    [27]刘国庆.回流污泥石灰混凝法处理印染废水.上海环境科学,1995,21(5):282-285
    [28]杨崇豪,王季震.活性泥渣对城市污水回用石灰混凝处理的影响研究.华北水利水电学院学报,1999,20(1):50-52
    [29]崔玉川.给水厂处理设施设计计算[M].北京:化学工业出版社,2003
    [30]常青,水处理絮凝学.北京;化学工业出版社,2003
    [31]杨守志,何方箴,固液分离.北京;钢铁工业出版社,2003
    [32]巴宾科夫,论水的混凝.北京:中国建筑工业出版社,1982
    [33]郑铭等,环保设备:原理·设计·应用.北京:化学工业出版社,2001
    [34]丁启圣,王维一等,新型实用过滤技术.北京:钢铁工业出版社,2000
    [35]罗固源,水污染物化控制原理与技术.北京:化学工业出版社,2003
    [36]傅文德,许保玖,高浊度给水工程.北京:中国建筑工业出版社,1994
    [37]崔玉川.城市污水处理厂设计计算[M].北京:化学工业出版社,2003
    [38]许保玖.给水处理理论[M].北京:中国建筑工业出版社,2000
    [39]罗固源.水污染物化控制原理与技术.北京:化学工业出版社,2003.155-156
    [40]严瑞暄,水处理剂应用手册。北京;化学工业出版社,2003
    [41]陆柱等,水处理药剂.北京,化学工业出版社,2002
    [42]姚重华,混凝剂与絮凝剂.北京:中国环境科学出版社,1991
    [43]刘长让,樊耀亭,刘相中,聚合硫酸铁的制备与应用.无机盐工业,1991(5):18-20
    [44]栾兆坤,汤鸿霄,我国无机高分子絮凝剂产业发展现状与规划.工业水处理,2000,2(11):1-6
    [45]李润生,水处理新药剂碱式氯化铝,北京;中国建筑工业出版社,1981
    [46]余祖信,陈璇,李霞.聚氯化铝及其在工业废水处理中的应用与展望,上海环境科学,2003,22(5):353-357
    [47]杜竹兰.聚合硫酸铁用作石灰软化水处理混凝剂的研究,2003-32(6):239-241
    [48]Peter E.Odendaal.Recent davances in water ruse research in South Africa.Water Science &technology,1991,(23):2061-2071
    [49]马耀光,马柏林.废水的农业资源化利用.北京:化学工业出版社,2002.9
    [50]关卫省,朱唯等.复合混凝剂XG977用于含油废水处理研究[J].工业水处 理,2000,20(1):17-19
    [51]D.J.Goldsten. Water Reuse. Ann Arbor Science Publishers Inc.1988
    [52]常青,水处理絮凝学.北京;化学工业出版社,2003
    [53]严瑞暄,水处理剂应用手册(第二版).北京;化学工业出版社,2003
    [54]陆柱,水处理药剂.北京;化学工业出版社,2002
    [55]李善仁,李风亭,无机和有机复合高分子絮凝剂的现状和发展方向.煤矿环境保护,2002,16(2):15-19
    [56]张子杰.废水处理理论与设计[M].北京:中国建筑工业出版社,2003
    [57]A.Rushton, A.S.Ward, R.G,Holdich. Solid-Liquid Filtration and Separation Technology, Second. WILEY-VCH,2000
    [58]Ying T Y,Yang KL,Yiacoumi S, et al. Electrosorption of Ions from Aqueous Solutions by Nanostructured Carbon Aerogel [J].Journal of Colloid and Interface Science,2002,250, 1827
    [59]Sun Xiaowei, Zhu Guofu. Principle and Markeup of Electrosorb Technology in Water Treatment. Industrial Water & Wastewater,2002,33(4),18-19
    [60]B N A, SCH FER A, WENDT H. Fundamentals of electrosorption on activated carbon for wastewater treatment of industrial effluents[J].J Appl Electrochem,1998,28:227-236
    [61]MAYNE P J, SHACKLETON R. Adsorption on packed bed electrodes[J].J Appl Electrochem,1985,15:745-754
    [62]郭鹤桐,覃奇贤.电化学教程[M].天津:天津大学出版社,2000:9
    [63]赵雪娜,倪文等.电吸附技术在含盐水除盐中的应用与研究进展.工业水处理,2008(3):5-7
    [64]Kovalenko A.Molecular description of electrosorption in a nanoporous carbon electrode [J]。Journal of Computational and Theoretical Nanoscience,2004,1(4):398-411
    [65]Yang K, Ying T, Yiacoumi S, et al.Electrosorption of Iron from Aqueous Solutions by Carbon Aerogel:An Electrical Double-Layer Model [J].Langmuir,2001,17(6):1961-1969
    [66]Hou C,Yiacoumi S,et al.Electrosorption Capacitance of nanostructured carbon-based materials [J].Journal of Colloid and Interface Science,2006,302 (1):54-61
    [67]Cabelich C J, Tran T D, Suffet I H。Electrosorption of inorganic salts from aqueous solution using carbon aerogels [J].Environmental Science and Technology,2002,36(13):3010-3019
    [68]ZABASAJJA J,SAVINELL R F. Electrosorption of n alcohols on graphite particles[J]. AICHE Journal,1989,35 (5):755
    [69]张琳,刘洪波,张红波.双电层电容器用多孔炭材料的研究与开发[J].炭素,2003(4):3—9
    [70]Afkhami A. Adsorption and electrosorption of nitrate and nitrite on high—area carbon cloth: an approach to purification of water and wastewater samples[J]. Carbon,2003.41(6): 1320—1322
    [71]Afkhaml A, Conway B E. Investigation of removal of Cr(Ⅵ), Mo(Ⅵ), W(Ⅵ)、V(Ⅳ) and V(Ⅴ)oxy—ions from industrial wastewaters by adsoprtion and electrosoprtion at high—area carbon cloth[J]. Journal of Colloid and Interface Science,2002,251(2):248—255.
    [72]Ayrnaci E, Conway B E. Adsoprtion and electrosorption at high-area carbon-felt electrodes for wastewater purification:Systems evalnation with inorganic, S-containing anions[J]. Journal of Applied Electro-chemistry,2001,31(3):257-266
    [73]Xu Y, Zondlo J W, Finklea H O, et al. Electrosorption of uranium on carbon fibers as a means of environmental remediation[J]. Fuel Processing Technology,2000,68(3):189-208.
    [74]Sveshnikova D A, Abakarov A N. Electrosorption of strontium and calcium on activated carbon[J]. Khimiya Tekhnologiya Vody,1993(4):254
    [75]Janocha B, Bauser H, Oehr C, etal. Electrosorption on activated carbon textile[J]. Chemical Engineering and Technology,1999,22(9):750—752
    [76]Card J C, Valentin C, Storck A. The activated carbon electrode:A new experimen-tally-verified mathematical model for the potertial distribution[J]. Journal of the Electrochemical Society,1990,137(9):2736—2745
    [77]Conway B E.电化学超级电容器——科学原理及技术应用[M].北京:化学工业出版杜,2005:577
    [78]Farmer J C, Fix D V, Mack G V, et al. Capacitive deionization with carbon aerogel electrodes:carbonate, sulfate, and phosphate[C] International SAMPE Technical Conference,1995,27:294—304
    [79]Farmer C, Fxi D V, Mack G V, et al. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of the Electrochemical Society,1996,143(1): 159—169
    [80]袁永康.脱盐技术新突破[J].国外科技动态,2004(1):41
    [81]Pekala R W, Farmer J C, Alviso C T, et al. Carbon aerogels for electrochemical applications[J]. J. Non—Crystalline Solids,1998,225(1):74—80
    [82]Yang C, Choi W, Na B, et al. Capacitive deionization of NaC 1 solution with carbon aerogel—silica gel composite electrodes[J]. Desalination,2005,174(2):125—133
    [83]Yang K, Yiacoumi S, Tsouris C. Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry[J]. Journal of Electroanalytical Chemistry,2003,540(2): 159—167
    [84]Hwang S, Hyun S. Capacitance control of carbon aerogel electrodes[J]. Journal of Non—Crystalline Solids,2004,347(1-3):238—245
    [85]Iijima S. Helical microtubules of graphitic crabon[J]. Nature,1991,354:56—58
    [86]PortetC, Taberna P L, Simon P, et al. Influence of carbon nanotubes addition on carbon—crabon supercapacitor performances in orgnaic electrolyte[J]. Journal of Power Sources,2005,139(1—2):371—378
    [87]Chen Q, Xue K, Shen W, et al. Fabrication and electrochemical properties of carbon nanotube array electrode for supercapacitors[J]. Electrochimica Aeta,2004,49(24): 4157—4161
    [88]Wang X, Li M, Chen Y, et al. Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes[J]. Applied Physics Letters,2006,89(5): 053127.1-053127.3
    [89]尹广军,陈福明.电容去离子研究进展[J].水处理技术,2003,29(2):63-66
    [90]Ryoo M, Kim J, Seo G. Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution[J]. Journal of Colloid and Interface Science,2003,264(2): 414-419
    [91]Ryoo M, Seo G. Improvement in capacitive deionization function of activated carbon cloth by titania modification[J]. WaterResearch,2003,37(7):1527-1534
    [92]Oh H, Lee J, Alan H, et al. Nanoporous activated carbon cloth for capactive deionisation of aqueous solution[J]. Thin Solid Films,2006,515(1):220-225
    [93]陈福明,一种去除水中离子的新方法——充电富集法初探[J]。化工学报,1999,50(1):114-117
    [94]杨慧云,王岐东,李斌.活性炭纤维电极用于NaCl溶液电容性除盐[J].北京工商大学学报(自然科学版),2006,24(2):9-12
    [95]孙晓慰,朱国富.电吸附水处理技术(EST)的原理及构成[J].工业用水与废水,2002,33(4):18--20
    [96]孙晓慰,凌波.利用电吸附技术去除水中过量砷的研究[J].环境与健康杂志,2003,20(2):110-112
    [97]刘海静,张鸿涛,孙晓慰.电吸附法去除地下水中离子的试验研究[J].中国给水排水,2003,19(1]):36-38
    [98]Claudia Brunori, Carlo Cremisini, Paolo Massanisso, et al. Reuse of a treated red mud bauxite waste:Studies on environmental compatibility. Journal of Hazardous Materials B,2005, 117(1):55-63
    [99]Yongshuang Zhang, Yongxin Qu, Shuren Wu. Engineering geological properties and comprehensive utilization of the solid waste (red mud) in aluminum industry. Environmental Geology,2001,41(3-4):249-256
    [100]赵丽君,张大群等.污泥处理与处置技术的进展,中国给排水,2001:17(6):23-25
    [101]Davis.R.D.The impact of EU and UK environmental pressures on the future of sludge treatment and disposal.Water Environ.Manage,1996:10(2):65-69
    [102]Campbell H.W., et al.Conversion of sludge to oil:A novel approach to sludge management.Water Science & Technology,1989:21:1467-1475
    [103]Hudson,J.A., et al.Current technologies for sludge treatment and disposal.Water Environ.Manage,1996:10(12):436-441
    [104]Chishti,S.S.,et al.Studies on the recovery of sludge protein.Water Res.1992,26 (2):241-248
    [105]吴建锋,丁培,徐晓虹,等.富赤泥陶瓷清水砖的研制.武汉理工大学学报,2007,29(7):22-25
    [106]吴建锋,王东斌,徐晓虹,等.利用工业废渣制备艺术型清水砖的研究.武汉理工大学学报,2005,27(5):46-49
    [107]杨家宽,侯健,姚昌仁,等.烧结法赤泥道路材料工程应用实例及经济性分析.轻金属,2007,(2):18-21
    [108]刘春,尹国勋.烧结法赤泥生产混凝土的研究探讨.中国资源综合利用,2007,125(3):17-19
    [109]卜天梅,李文化,杨金妮,等.利用烧结法赤泥生产水泥的研究.水泥技术,2005,(2):67-68
    [110]梁忠友.赤泥微晶玻璃的研究.玻璃与搪瓷,1997,25(6):50-52
    [111]Vincenzo M.Sglavo, Stefano aurina, Alexia Conci, et al. Bauxite 'red mud' in the ceramic industry. Part 2:Production of clay-based ceramics. Journal of the European Ceramics Society,2000,20(3):245-252
    [112]Kalkan, Ekrem. Utilization of red mud as a stabilization material for the preparation of clay liners. Engineering Geology,2006,87 (3-4):220-229
    [113]公德华,魏朝晖,污泥资源化-制轻质陶粒的优化条件[J].环境科学与管理,2007:32(6):86-89
    [114]吴建锋.一种环保陶瓷滤料的制造方法.中国专利,200310111209.7,2004-09-25
    [115]徐晓虹,邸永江,吴建锋,等.利用固体废弃物制备多孔陶瓷滤料的研究.陶瓷学报,2003,(04),197-200
    [116]徐晓虹,邸永江,吴建锋,等.利用工业废渣研制环保陶瓷滤料.武汉理工大学学报,2004,25(5),12-15
    [117]邸永江.利用工业固体废弃物制备环保陶瓷的研究[硕士学位论文].武汉:武汉理工大 学,2004
    [118]王平升.山东铝厂赤泥制备水处理用多孔陶粒滤料.有色金属,2005,(2),142-144+149
    [119]朱乐辉,朱衷榜.水处理滤料-球形轻质滤料的研制[J].环境保护,2000,(1):35-39
    [120]李方文.赤泥质多孔陶瓷滤料表面改性及其在水处理中的应用研究[D].武汉:武汉理工大学,2008
    [121]王士龙,张虹,等。用陶粒处理含锌废水[J]。济南大学学报,2003(17):1
    [122]王萍,李国昌,刘曙光.赤泥等工业固体废物制备陶粒的研究.中国矿业,74-77
    [123]吴声彪,肖波,冯君,等.赤泥制备多孔陶粒及其除油性能的初步研究.矿产综合利用,2004,(3),46-48
    [124]Han SW, Kim DK, Hwang IG. Development of pellet-type adsorbents for removal of heavy metal ions from aqueous solutions using red mud. Journal of Industrial and Engineering Chemistry,2002,8 (2):120-125
    [125]张后鹏,刘迪梅.水厂使用环保陶瓷滤料的可行性分析.长江工程职业技术学院学报,2005,12(4):52-54
    [126]范锦忠.莱卡(陶粒)生产工艺及设备[J],硅酸盐建筑制品.1985,(3):17-22
    [127]李南生.剩余污泥用于粉煤灰陶粒的研究[J],硅酸盐建筑制品.1993,(2):10-13
    [128]陈芳烈.烧胀粉煤灰陶粒的研究[J],硅酸盐建筑制品.1986,(1):7-10
    [129]李婉华.全国人造轻骨料生产,应用现状及建议[J],硅酸盐建筑制品.1988,(2):14-18
    [130]徐仁等.轻质粘土陶粒的研究[J],硅酸盐建筑制品。1987,(3):11-12
    [131]中华人民共和国国家标准[S].《粘土陶粒和陶砂》GB2839-81
    [132]中华人民共和国国家标准[S].《轻骨料试验方法》GB2842-81
    [133]范锦忠.陶粒的膨胀温度范围及控制[J],硅酸盐建筑制品。1980,(4):8-11
    [134]刘石彩.俄罗斯吸附剂制造技术研究动态-中俄吸附剂技术研讨会简介,林产化工通讯,1998,5:20-23
    [135]Vinod K.Gupta,Imran Ali,Suhas,Vipin K. Saini. Adsorption of 2,4-D and carbofuran pesticides using fertilizer and steel industry wastes, Journal of Colloid and Interface Science,2006,299:556-563
    [136]Amit Bhatnagar,A.K.Jain. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water,Journal of Colloid and Interface Science,2005,281:49-55
    [137]王金梅等.粉煤灰的改性及吸附作用的研究,工业用水与废水,2005,V36(1):44-47
    [138]Shaobin Wang, Mehdi Soudi, Li li, Z.H. Zhu. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater,Journal of Hazardous Materials, 2006,B 133:243-251
    [139]Carlo Solisio, Alessandra Lodi, Attilio Converti, et al. Removal of exhausted oils by adsorption on mixed Ca and Mg oxides. Water Research,2002,36(4):899-904
    [140]Drew Myers.表而、界面和胶体——原理及应用,北京:化学工业出版社,2005
    [141]赵振国.吸附作用应用原理,北京:化学工业出版社,2005。
    [142]P.K.Malik. Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. Journal of Hazardous Materials,2004,113(1-3):81-88。
    [143]F.A.Batziuas, D.K.Sidiras. Simulation of methylene blue adsorption by salts-treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials,2007,149(1):8-17
    [144]Y.S Ho.C.T.Huang, H.W. Huang. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochemistry.2002,37(12):1421-1430
    [145]Freundlich,H.M.F.uberdieadsorptioninlosungen(adsorptioninsolution).Zeitsehriftfur Physikalische Chemie(LeiPzig),1906,57A:384-470
    [146]Runping Han, Yuanfeng Wang, Weihong Yu, et al. Removal of methylene blue from aqueous solution by chaff in batch mode. Journal of Hazardous Materials B,2006,137(1):550-557
    [147]Lagergren, S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 1898,24 (4),1-9
    [148]Ho Y.S. Adsorption of heavy metals from waste streams by peat. Ph.D. thesis, University of Birmingham, Birmingham, UK,1995
    [149]Ho Y.S., McKay G. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash. J. Environ. Sci. Health,1999, A34:1179-1204
    [150]Ho Y.S., Comment on "Adsorption of naphthalene on zeolite from aqueoussolution" by C:.F. Chang, C.Y. Chang, K.H. Chen, W.T. Tsai,J.L. Shie, Y.H. Chen, Journal of Colloid and Interface Science 2005 (283):274-277
    [151]Weber W.J., Morris J.C., Kinetics of adsorption on carbon from solution, J. Sanitary Eng. I) Ⅳ. Am. Soc. Civ. Eng.1963,89:31-60
    [152]M. Al-Ghouti, M.A.M. Khraisheh, M.N.M. Ahmad. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite:A kinetic study. Journal of Colloid and Interface Science,2005,287(1):6-13
    [153]M.S.Gasser, GH.A.Morad, GH.A.Morad, H.F.Aly. Batch kinetics and thermodynamics of chromium ions removal from waste solutions using synthetic adsorbents. Journal of Hazards Materials,2007,142(1-2):118-129
    [154]Thomas W.J., Crittenden B. Adsorption technology and design, Reed Education and Professional Publishing, Oxford; 1998。
    [155]A.A.M.Daifulah, S.M.Yakout, S.A.Elreefy. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyroysis of rice straw. Journal of Hazards Materials,2007,147(1-2):633-643。
    [156]Abhijit Maiti, Sunando DasGupat, Jayant Kumar Basu, et al. Adsorption of arsenite using natural laterite as adsorbent. Separation and Purification Technology,2007,55(3):350-359
    [157]El-Shahawi M.S, Nassif H. A. Retention and thermodynamic characteristics of mercury (Ⅱ) complexes onto polyurethane foams. Anal.Chim.Acta,2003,481(1):29-39。
    [158]I.-Hsien Lee, Yu-Chung Kuan, Jia-Ming Chern. Prediction of ion-exchange column breakthrough curves by constant-pattern wave approach. Journal of Hazardous Materials, 2008,152(1):241-249。
    [159]D. Pokhrel, T. Viraraghavan. Arsenic removal in an iron oxide-coated fungal biomass column:Analysis of breakthrough curves. Bioresource Technology,2008,99(6):2067-2071
    [160]严煦世、范瑾初。给水工程,北京:中国建工出版社,2002,377-378.
    [161]H.C.Thomas. Heterogeneous ion exchange in a flowing system. J.Am.Chem.Soc, 1944,66:1664-1666。
    [162]Yoon YH, Nelson JH. Application of gas adsorption kinetics.1.A theoretical model for respirator cartridge service time. Am Ind Hyg Assoc J,1984,45:509-516。
    [163]Texier AC, Andres Y, Faur-Brasquet C, et al. Fixed-bed study for lanthanide(La, Eu, YB) ions removal from aqueous solutions by immobilized Pseudomonas aeruginosa: experimental data and modelization. Chemosphere,2002,47(3):333-342。
    [164]Tran H.H, Roddick FA. Comparison of chromatography and desiccant silica gels for the adsorption of metal ions-I. adsorption and kinetics. Water Res,1999,33(13):3001-3011。
    [165]Guibal E, Lorenzelli R, Vincent T, Le Cloirec P. Application of silica gel to metal ion sorption:static and dynamic removal of uranyl ions. Environ Technol,1995,16:101-114。
    [166]Clark RM. Evaluating the cost and performance of field-scale granular activated carbon systems. Environ Sci Techno,1987,21:573-580。
    [167]P.B.Bhakat, A.K.Gupta, S.Ayoob. Feasibility analysis of As (Ⅲ) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB). Journal of Hazards Materials, 2007,139(2):286-292。
    [168]Emine Malkoc, Yasar Nuhoglu. Removal of Ni (Ⅱ) ions from aqueous solutions using waste of tea factory:Adsorption on a fixed-bed column. Journal of Hazards Materials,2006, 135(1-3):328-336。
    [169]Sanjoy Kumar Maji, Anjali Pal, Tarasankar Pal, et al. Modeling and fixed bed column adsorption of As(Ⅲ) on laterte soil. Separation and Purification Technology, 2007,56(3):284-290。
    [170]M.F.F. Sze, V.K.C. Lee, G. McKay. Simplified fixed bed column model for adsorption of organic pollutants using tapered activated carbon columns. Desalination,2008,218 (1-3):323-333。
    [171]李方文,吴建锋,徐晓虹,等.应用多孔陶瓷滤料治理环境污染.中国安全科学学报,2006,16(07):112-116。
    [172]关卫省,朱唯,朱浚黄,复合絮凝剂XG977用于含油废水处理研究[J],工业水处理,2000,20(1):17-19.。
    [173]王江,李正要,韩静涛,轧钢含油废水的处理方法,环境工程[J],2008,26(4):79-80。
    [174]刘万,胡伟,浅谈超滤法处理钢铁企业冷轧厂乳化液废水[J],工业水处理,2006,26(7):74-77。
    [175]楼福乐,路晓峰,陈仕意,沈卫东,超滤法处理含乳化油废液,环境科学[J],1998,19(4):65-68。
    [176]Shu Li, Xing Weihong, Xu Nanping,Effect of Ultrasound on the Treatment of Emulsification Wastewater by Ceramic Membranes[J], Chin. J. Chem. Eng., 2007,15(6):855-860。
    [177]易宁,胡伟,钢铁企业冷轧厂乳化液废水的几种处理方法[J],钢铁动力,2004,22(5):58-63。
    [178]B. Chakrabarty, A.K. Ghoshal, M.K.Purkait, Ultrafiltration of stable oil-in-water emulsion by polysulfone membrane[J], J. Membr. Sci.,2008,325(1):427-437。
    [179]Ge J T, Qu J H,Lei P J, Liu H J.New bipolar electrocoagulation electroflotation process for the treatment of laundry wastewater,Sep.Purif.Technol., 2004,36:33-39。
    [180]Lai C,Lin S,Electrocoagulation of chemical mechanical polishing (CMP) wastewater from semiconductor fabrication Chemical Engineering Journal,2003,95:205-221。
    [181]Chen X,Chen G,Yue P L. Novel Electrode System for Electroflotation of Wastewater. Environ.Sci,Technol.,2002,36:778-783。
    [182]Chen QChen X,Yue P L. Electrochemical behavior of stable Ti/IrOx-Sb2O5-SnO2 anodes for oxygen evolution.J.Phys.Chem.B,2002,106(17):4364-4369。
    [183]Pletcher D,Weinberg N L.The green potential of electrochemistry. Part 1:The Fundamentals. Chemical Engineering,1992,98-103。
    [184]Rajeshwar K,Ibanez J G,Swain G M.Electrochemistry and environment J.Appl Electrochem, 1994,24:1077-1091。
    [185]Comninellis C.Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment.Electrochimica Acta,1994,39(11/12):1857-1862。
    [186]Chiang L C,Chang J E,Wen T C.Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate,Water Res,1995,29:671-678。
    [187]Chiang L C,Chang J E,Wen T C.Electrochemical oxidation process for the treatment of coke plant wastewater.J.Envrion.Sci.Health,1995,A30(4):753-771。
    [188]孙石,原田吉明.高浓度有机废水的催化湿式氧化法处理试验研究[J].环境污染与防治,1999,21(1):4-6。
    [189]杨民,杜书.催化湿式氧化处理碱渣废水的研究[J].环境工程,2001,19(1):13-15。
    [190]唐文伟,顾国维.废水处理中湿式氧化技术研究进展[J].上海环境科学,1999,18(5):220-222。
    [191]Naumczyk J,Szpyrkowicz L,Grandi F Z.Electrochemical treatment of textilewastewater[J].Water Sci Technol,1996,33(7):17-24。
    [192]Comninellis C,OPulgrin C.Electrochemical wastewater treatment using highovervoltage anodes[J].J Appl Elextrochem,1991,23:108-112。
    [193]G.Kreysa.Cylindrical three-dimensional electrodes under limiting current conditions. J.Appl,Electrochem,1993,(23):707-714。
    [194]李洪仁,王敬涛,胡晓静.湿式氧化法处理工业污水的应用与展望[J].工业水处理,1999,19(3):10-12。
    [195]杜鸿章,尹承龙.焦化污水催化湿式氧化净化技术[J].工业水处理,1996,16(6):11-13。
    [196]Comninellis Ch.Electro Catalysis in the Electrochemical Coversion/Combustion of Organic Pollutants for Wastewater Treatment[J].Applied Electrochemistry,1994,39:1857-1862。
    [197]Li-Choung Chiang,Juu-En Chang,Ten-Chin.Electro-chemical Oxidation Processfor the Treatment of Coking Plant Wastewater[J].Environ.Sci.Health,1995,A30(4):753-771.。
    [198]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M].北京:化学工业出版社,2002,23-32。
    [199]RODGERS J D,JEDRAL W,BUNCE N J.Electrochemical oxidation of chlorinatedphenols[J].Environmental Science&Technology,1999,33(9):1453-1457。
    [200]Goshima,Nobutaka,Hakamata.Electrochemical Treatment of Oil Bath Water.JP0416286,1992
    [201]Tennakoon C L K.Electrochemical Treatment of Human Waste in Packed-bed Reactor[J]. Appl.Electrochem,1991,21:703。
    [202]V Ssmith,De Surce,A P Watkinson.Anodic oxidation of Phenol for wastewater treatment[J].Chemical Engineering,1981,59(1):52-59。
    [203]吴星五,高廷耀,李建国。电化学法水处理新技术——杀菌灭藻,环境科学学报,2000,20(增刊):75-79。
    [204]贾金平,杨骥,廖军,活性炭纤维(ACF)电极法处理染料废水的探讨。上海环境科 学,1997,16(4):19-22。
    [205]中哲民,于文华,贾金平等,不同形式电极与染料溶液的反应及能耗。环境污染治理技术与设备,2000,1(2):21-25。
    [206]Panizza M,Cerisola G.Removal of organic pollutants from industrial wastewater by electrogenerated Fenton's reagent.Water Res.2001,35:3987-3992。
    [207]谢洪勇.粉体力学与工程.北京:化学工业出版社,2003.102-105。
    [208]吴建锋,王东斌,徐晓虹,等.利用淤泥研制环保陶瓷滤球.佛山陶瓷,2005,98(2):54-56。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700