用户名: 密码: 验证码:
超声速边界层及激波与边界层相互作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声速边界层及激波与边界层相互作用的研究不仅在航空航天和武器装备研制中具有重要的工程意义,同时也是可压缩湍流机理研究的重要内容。超声速边界层及激波/边界层相互作用流动速度高,三维特性和非定常特性明显,流动结构复杂,这些特点对实验研究提出了严峻的挑战。本文采用实验研究的方法,从时空结构、动力学行为和密度场特性等方面对Ma = 3.0平板边界层及激波与湍流边界层相互作用进行了深入研究。
     本文首先介绍了用于实验研究的风洞设备和相关测量技术,其中包括基于纳米粒子的平面激光散射(Nanoparticle-based Planar Laser Scattering, NPLS)技术、超声速PIV(Particle Image Velocimetry)技术以及超声速流动密度场测量技术,介绍了相关技术的基本原理和组成,分析了相关技术的性能参数和测量误差。超声速边界层拟序结构十分复杂,本文采用NPLS技术研究了超声速边界层在转捩过程和进入充分发展湍流阶段的拟序结构,分别从流向和不同高度展向平面研究了拟序结构的空间特征和时间演化特性。边界层拟序结构在层流阶段、转捩阶段和湍流阶段变化明显,在转捩进入湍流的初期和充分发展湍流阶段,边界层拟序结构同样存在一定差别。此外,超声速边界层流动具有运动快、变化慢的运动特点。借助经典的发卡涡模型从流动图像中清晰地识别出独立发卡涡和发卡涡包结构,同时发现超声速边界层H-型转捩的直接证据。利用高分辨率的NPLS图像,为提取更多边界层特性提供了便利。本文利用NPLS图像研究了湍流边界层的间歇特性,其与低速不可压边界层基本一致。通过对边界层转捩过程流动结构的分形分析发现,在层流阶段分析维数基本为1;在转捩过程中分析维数逐渐增加;进入湍流阶段,分析维数基本保持在1.5左右。
     超声速边界层运动速度高、速度梯度大,增加了速度场测量的难度。借助超声速PIV技术,本文研究了边界层在转捩过程的流向速度分布,在层流阶段平均速度剖面与Blasius剖面吻合,随着转捩的发展,速度剖面逐渐变得饱满。在湍流阶段,速度剖面与Spalding剖面比较吻合。通过平均速度剖面计算了边界层厚度沿流动方向的分布,在层流阶段边界层厚度沿流动方向增长较快;但是在转捩过程和转捩进入湍流的初期,边界层厚度增长十分缓慢;在边界层进入湍流后的一定发展阶段,边界层厚度再次出现快速增长。同时还研究了充分发展湍流边界层的速度场结构,分析了超声速湍流边界层的平均和脉动属性;采用不同的速度分解方法从流向瞬态速度场中识别出发卡涡包结构;从较低高度展向瞬态速度中发现低速和高速条带结构,但从较高平面展向瞬态速度场中没有发现类似结构存在。
     密度场测量是超声速流动测量中的难点问题,本文采用超声速流动密度场测量技术研究了Ma = 3.0充分发展湍流边界层的密度场分布,实验结果与理论估算和已有的实验结果相吻合。借助高分辨率密度场测量结果分析了密度脉动的频谱特性,发现密度脉动中低频分量与高频分量所占比重基本一致。
     超声速流动中多个流场参数之间存在一定的相关性,为研究这种相关性,需要实现对多个流场参数的同时测量。借助NPLS技术的原理,本文提出了一种超声速流动速度场、密度场同时测量技术,介绍了这种技术的基本原理,并将该技术成功地应用于超声速湍流边界层的实验研究。研究发现质量流量脉动和密度脉动之间具有较好的一致性,而速度脉动与密度脉动之间的相关性不大。借助同时测量数据实现了超声速边界层雷诺应力的测量,在Ma = 3.0的流动条件下,密度脉动对雷诺应力的影响可以忽略不计,但密度变化的影响较大。
     激波与湍流边界层相互作用具有很强的空间三维特性和时间非定常特性,采用NPLS技术,本文研究激波与湍流边界层相互作用的空间结构。发现来流边界层拟序结构对激波与边界层相互作用具有一定的影响,但激波/边界层相互作用的时间尺度却远远大于湍流边界层的时间尺度。研究了不同强度入射激波与湍流边界层的相互作用,发现随着入射激波的增强,流动的非定常性明显增强。采用超声速PIV技术研究了激波/边界层相互作用的动力学行为。研究发现:随着入射激波的增强,在流向平均速度场中发现回流流动。从展向瞬态速度场中发现来流边界层的速度脉动对激波/边界层相互作用的流动结构具有明显的作用,同时发现分离区内明显的三维旋涡结构。
The studies of supersonic boundary layers and shock wave / boundary layer interactions are crucial in the design of high-speed aerospace vehicles and weapons systems, which are also important for understanding the mechanism of compressible turbulence. The high speed, three-dimensional and highly unsteady natures of such flows present special challenges for experimental studies. In this thesis, the spatiotemporal structures, dynamic behaviors and density distributions of a flat-plate boundary layer and an incident shock wave / turbulent boundary layer interactions at Mach 3 were studied experimentally.
     The supersonic wind tunnel and measurement techniques used for the experimental studies in this thesis are described. The basic principles and setups of the relevant measurement techniques such as Nanoparticle-based Planar Laser Scattering (NPLS), supersonic Particle Image Velocimetry (PIV) and NPLS-based Density Technique (NPLS-DT) are present. And the performance parameters and measurement errors of these techniques are also discussed here.
     The coherent structures of a Mach 3 transitional and fully developed turbulent boundary layer in the streamwise-wall-normal plane and streamwise-spanwise planes at different heights were visualized using NPLS technique. The spatial structures and temporal evolutions of the supersonic flat-plate boundary layer were investigated. Large discrepancies of the coherent structures between the different stages of laminar- turbulent transition were identified, as well as between the initial stage and the fully developed stage of a turbulent boundary layer. Besides, the coherent structures reveal a characteristic of rapid translation and slow distortion. Individual hairpin vortex and hairpin packets were identified from NPLS images on the basis of the hairpin model.Λ-shaped vortices were found in a staggered pattern in the streamwise-spanwise plane, which indicated the H-type transition in the present supersonic boundary layer. Based on the digital image processing, the intermittency of the supersonic turbulent boundary layer was determined from the NPLS images with a high spatial resolution, which showed a similar behavior to that found in low-speed incompressible boundary layers. The fractal dimension of the supersonic boundary layer was also calculated, which is nearly one in the laminar stage and is increased from 1 to 1.5 in the process of laminar-turbulent transition. In the turbulent stage, the fractal dimension is kept constant at 1.5.
     The velocity measurement of supersonic boundary layers is difficult, due to the presence of high speed and strong velocity gradients. With the aid of supersonic PIV, the streamwise velocity distributions of a transitional boundary layer were acquired. The mean streamwise velocity profile is consistent with the Blasius profile in the laminar stage, and then it is becoming fuller. In the turbulent stage, the mean velocity profile is close to the Spalding profile. The growth rate of the boundary layer thickness, calculated from mean velocity profile, is relatively large in the laminar stage, and then become smaller in the stage of the laminar-turbulent transition. After a certain time when developed into turbulent boundary, the thickness increases quickly again. The mean and turbulent properties of a supersonic turbulent boundary layer were also investigated. Using different velocity decompositions, the hairpin packets were identified from the instantaneous streamwise velocity fields. Low- and high-speed streaks are observed in the instantaneous spanwise velocity fields in the near wall region, similar structures are not found in the outer layer of the boundary layer.
     The measurement of density field in supersonic flows is also very difficult. In this thesis, the density measurement of a flat-plat turbulent boundary layer at Mach 3 was achieved using the NPLS-DT technique. The experimental results were in good agreement with previous data. Due to the high spatial resolution of the density data, the frequency spectral of density fluctuations was analyzed. And the low-frequency fluctuations are on the same order of magnitude as the high-frequency fluctuations.
     For a thorough investigation of compressible turbulent flows, experimental methods for the simultaneous measurements of two or more parameters are urgently needed, which can help us to understand the correlations between different flow parameters. In this thesis, a new technique for the simultaneous measurements of instantaneous whole-field density and velocity fields of supersonic flows has been developed based on the NPLS technique. The basic principle of this technique is descried in detail. And this technique has been applied to a flat-plate turbulent boundary layer at Mach 3. A good agreement between the fluctuations of mass flux and density was found. However, no similar behavior was observed between the fluctuations of velocity and density. Based on this new technique, the Reynolds stress distributions of the supersonic turbulent boundary layer were obtained. The effect of density fluctuations on the behavior of Reynolds stresses can be neglected in a supersonic turbulent boundary layer at Mach 3, but the effect of density variations across the boundary layer is relatively large.
     The organized structures of an incident shock wave / turbulent boundary layer interaction (SWTBIL) at Mach 3 were also visualized using NPLS technique in the streamwise- wall-normal and streamwise-spanwise planes, respectively. The large-scale coherent structures within the incoming boundary layer affect the spatial organization of the reflected shock wave. However, the time scale of the large-scale unsteadiness observed in SWTBLI is much larger than the characteristic time scale of the incoming boundary layer. The unsteadiness of SWTBLI becomes more important as the shock strength increases. The velocity distributions of SWTBLI were also investigated using supersonic PIV. As the incident shock wave strength increases, the reversed-flow can be observed in the mean streamwise velocity field. And a relationship between the streamwise velocity fluctuations within the incoming boundary layer and reflected shock wave positions are found in the instantaneous spanwise velocity fields. In the separated zone, the tornado-shaped vortices can also be identified associated with the instantaneous streamwise and spanwise velocity fields.
引文
[1] Prandtl L.über Flüssigkeitsbewegung bei sehr kleiner Reibung [C]. In: Proceedings of Third International Mathematical Congress. Heidelberg, 1904, p. 484~491.
    [2] Meier G E A and Sreenivasan K R (eds.). IUTAM Symposium on One Hundred Years of Boundary Layer Research [C]. DLRG?ttingen, Germany, 2004.
    [3] Gad-el-Hak, Pollard A and Bonnet J-P (eds.). Flow control: Fundamentals and Practices [M]. Berlin: Springer, 1998.
    [4] Gad-el-Hak M and Tsai H M (eds.). Transition and turbulence control [M]. World Scientific, 2006.
    [5] Smits A J and Dussauge J P. Turbulent Shear Layers in Supersonic Flow 2nd editon [M]. Springer, New York, 2006.
    [6]傅德薰,马延文,李新亮等.可压缩湍流直接数值模拟[M].科学出版社,2010.
    [7] Kline S J, Reynolds W C, Schraub F A, et al. The structure of turbulent boundary layer [J]. J Fluid Mech. 1967, 37: 741~773.
    [8] Stanislas M, Perret L and Foucaut J M. Vortical structures in the turbulent boundary layer: a possible route to a universal representation [J]. J. Fluid Mech. 2008, 602: 327~382.
    [9] Sabot I and Comte-Bellot G. Intermittency of coherent structures in the core region of fully developed turbulent pipe flow [J]. J Fluid Mech. 1976, 74: 767~796.
    [10] Koch B and Pfeifer H J. Detection of Large Scale Coherent Structures in free jets by laser anemometry and crossed beam schlieren techniques [R]. Report 210/77 of the German-French Research Institute (ISL), St. Louis, France, 1977.
    [11] Praturi A K and Brodkey R S. A stereoscopic visual study of coherent structures in turbulent shear flow [J]. J. Fluid Mech. 1978, 89: 251~272.
    [12] Zaman KBMQ and Hussain AKMF. Taylor hypothesis and large scale coherent structures [J]. J Fluid Mech. 1981, 112: 379~396.
    [13] Hussain AK. Coherent structures-reality and myth [J]. Phys Fluids. 1983, 26: 303~356.
    [14] Hussain A. Coherent structures and turbulence [J]. J Fluid Mech. 1986, 173: 303~356.
    [15] Sirovich L. Turbulence and the dynamics of coherent structures [J]. Q Appl Math. 1987, 45: 561~590.
    [16] Fiedler H. Coherent structures in turbulent flows [C]. Prog Aerosp Sci. 1988, 25: 231~269.
    [17] Utami T, Blackwelder R E and Ueno T. Flow visualization and image processing of three-dimensional features of coherent structures in an open-channel flow. In: Kline S J and Afgan N H (eds). Near Wall Turbulence [M]. Hemisphere, 1990.
    [18] Wark C E and Nagib H M. Experimental investigation of coherent structures in turbulent boundary layers [J]. J. Fluid Mech. 1991, 230: 183~208.
    [19] Jeong J, Hussain F, Schoppa W, et al. Coherent structures near the wall in a turbulent channel flow [J]. J. Fluid Mech. 1997, 332: 185~214.
    [20] Schoppa W and Hussain F. Coherent structure generation in near-wall turbulence [J]. J Fluid Mech. 2002, 453: 57~108.
    [21] Camussi R. Coherent structure identification from wavelet analysis of particle image velocimetry data [J]. Exps. Fluids. 2002, 32: 76~86.
    [22] Ringuette M J, Wu M and Martin M P. Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3 [J]. J. Fluid Mech. 2008, 594: 59~69.
    [23] Cantwell B J. Organized motion in turbulent flow [J]. Annu. Rev. Fluid Mech. 1981, 13: 457~515.
    [24] Antonia R A, Browne L W B, Rajagopalan S el al. On the organized motion of the turbulent plane jet [J]. J Fluid Mech. 1983, 134: 49~66.
    [25] Tso J and Hussain AKMF. Organized motions in a fully developed turbulent axisymmetric jet [J]. J Fluid Mech. 1989, 203: 425~448.
    [26] Antonia R A, Bisset D K and Browne L W B. Effect of Reynolds number on the topology of the organized motion in a turbulent boundary layer [J]. J Fluid Mech. 1990, 213: 267~286.
    [27] Antonia R A, Browne L W B and Bisset D K. Effect of Reynolds number on the organized motion in a turbulent boundary layer. In: Kline S J and Afgan N H (eds). Near Wall Turbulence [M]. Hemisphere, 1990.
    [28] Vesely L, Haigermoser C, Greco D, et al. Turbulent flow and organized motions over a two-dimensional rough wall [J]. Phys Fluids. 2009, 21: 125107.
    [29] Kline S J and Robinson S K. Quasi-coherent structures in the turbulent boundary layer. Part 1. Status report on a community-wide summary of the data. In: Kline S J and Afgan N H. (eds). Near-Wall Turbulence [M]. Hemisphere, 1989.
    [30] Robinson S K. Coherent motions in the turbulent boundary layer [J]. Annual Review of Fluid Mechanics. 1991, 23: 601~639.
    [31] Theodorsen T. Mechanism of turbulence [C]. In: Proceedings of the Second Midwestern Conference on Fluid Mechanics, Ohio State University, Columbus, 1952.
    [32] Head M R and Bandyopadhyay P R. New aspects of turbulent boundary-layer structure [J]. J. Fluid Mech. 1981, 107: 297~338.
    [33] Adrian R J, Christensen K T and Liu Z C. Analysis and interpretation of instantaneous turbulent velocity fields [J]. Exps. Fluids. 2000, 29: 275~290.
    [34] Perry A E and Marusic I. A wall wake model for the turbulent structure of boundary layers. Part 1. Extension of the attached eddy hypothesis [J]. J Fluid Mech. 1995, 298: 361~388.
    [35] Marusic I and Perry A E. A wall wake model for the turbulent structure of boundary layers. Part 2. Further experimental support [J]. J Fluid Mech. 1995, 298: 389~407.
    [36] Adrian R J, Meinhart C D and Tomkins C D. Vortex organization in the outer region of the turbulent boundary layer [J]. J Fluid Mech. 2000, 422: 1~54.
    [37] Ganapathisubramani B, Longmire E K and Marusic I. Characteristics of vortex packets in turbulent boundary layers [J]. J Fluid Mech. 2003, 478: 35~46.
    [38] Zhou J, Adrian R J, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow [J]. J. Fluid Mech. 1999, 387: 353~396.
    [39] Kim K C and Adrian R J. Very large-scale motion in the outer layer [J]. Phys. Fluids. 1999, 11: 417~422.
    [40] Smith M W and Smits A J. Visualization of the structure of supersonic turbulent boundary layers [J]. Exps. Fluids. 1995, 18: 288~302.
    [41] Smith M W, Smits A J and Miles R B. Compressible boundary layer density cross section by uv rayleigh scattering [J]. Opt. Lett. 1988, 14: 916.
    [42] Smits A J, Spina E F, Alving A E, et al. A comparison of the turbulence structure of subsonic and supersonic boundary layers [J]. Phys. Fluids A, 1989, 1: 1865~1875.
    [43] Tomkins C and Adrian R. Spanwise structure and scale growth in turbulent boundary layers [J]. J. Fluid Mech. 2003, 490: 37~74.
    [44] del Alamo J C and Jimenez J. Spectra of the very large anisotropic scales in turbulent channels [J]. Phys. Fluids. 2003, 15: 41~44.
    [45] del Alamo J C, Jimenez J, Zandonade P, et al. Scaling of the energy spectra of turbulent channels [J]. J. Fluid Mech. 2004, 500: 135~144.
    [46] del Alamo J C, Jimenez J, Zandonade P, et al. Self-similar vortex clusters in the turbulent logarithmic region [J]. J. Fluid Mech. 2006, 561: 329~358.
    [47] Guala M, Hommema S E and Adrian R J. Large-scale and very-large-scale motions in turbulent pipe flow [J]. J. Fluid Mech. 2006, 554: 521~542.
    [48] Hambleton W T, Hutchins N and Marusic I. Simultaneous orthogonal-plane particle image velocimetry measurements in a turbulentboundary layer [J]. J.Fluid Mech. 2006, 560: 53~64.
    [49] Flores o, Jimenez J and del Alamo J C. Vorticity organization in the outer layer of turbulent channels with disturbed walls [J]. J. Fluid Mech. 2007, 591: 145~154.
    [50] Balakumar B J and Adrian R J. Large and very-large-scale motions in channel and boundary-layer flows [J]. Phil. Trans. R. Soc. A. 2007, 365: 665~681.
    [51] Hutchins N and Marusic I. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers [J]. J. Fluid Mech. 2007, 579: 1~28.
    [52] Hutchins N and Marusic I. Large-scale influences in near-wall turbulence [J]. Phil. Trans. R. Soc. A. 2007, 365: 647~664.
    [53] Spina E F and Smits A J. Organized structures in a compressible turbulent boundary layer [J]. J. Fluid Mech. 1987, 182: 85~109.
    [54] Spina E F, Donovan J F and Smith A J. On the structure of high-Reynolds-number supersonic turbulent boundary layers [J]. J. Fluid Mech. 1991, 222: 293~327.
    [55] Spina E F, Smits A J and Robinson S K. The physics of supersonic turbulent boundary layers [J]. Annual Review of Fluid Mechanics. 1994, 26: 287~319.
    [56] Rai M M, Gatski T B and Erlebacher G. Direct simulation of spatially evolving compressible turbulent boundary layers [J]. AIAA Paper 95-0583, 1995.
    [57] Pirozzoli S, Grasso F and Gatski T B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25 [J]. Phys. Fluids. 2004, 16: 530~545.
    [58] Gao H, Fu D X, Ma Y W, et al. Direct numerical simulation of supersonic turbulent boundary layer flow [J]. Chin. Phys. Lett. 2005, 22: 1709~1712.
    [59] Guarini S E, Moser R D, Shariff K, et al. Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5 [J]. J. Fluid Mech. 2000, 414: 1~33.
    [60] Maeder T, Adams N A and Kleiser L. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach [J]. J. Fluid Mech. 2001, 429: 187~216.
    [61] Huang Z F, Cao W and Zhou H. The mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate-temporal mode [J]. Science in China, Ser. G. 2005, 48: 614~625.
    [62] Martin M P. DNS of hypersonic turbulent boundary layers [J]. AIAA Paper 04-2337, 2004.
    [63] Garnier E and Sagaut P. Large Eddy Simulation of Shock/Boundary-Layer Interaction [J]. AIAA Journal. 2002, 40: 1935~1944.
    [64] Spyropoulos E T and Blaisdell G A. Large-Eddy Simulation of a Spatially Evolving Supersonic Turbulent Boundary-Layer Flow [J]. AIAA Journal. 1998, 36:1983~1990.
    [65] Rizzetta D P, Visbal M R and Gaitonde D V. Direct Numerical and Large-Eddy Simulation of Supersonic Flows by a High-OrderMethod [J]. AIAA Paper 2000-2408, 2000.
    [66] Stolz S and Adams N A. Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique [J]. Phys. Fluids. 2003, 15: 2398~2412.
    [67] Yan H, Knight D and Zheltovodov A A. Large eddy simulation of supersonic flat plate boundary layer using MILES technique [J]. ASME J. Fluids Eng. 2002, 124: 868.
    [68] Dubos S and Hadjadj A. Large-eddy simulation of a supersonic boundary layer at M = 2.25 [C]. In: Proceedings of the 15th Int. Symp. Turbulence and Shear Flow Phenomena, Munchen, Germany, 2007.
    [69] Urbin G and Knight D. Large-eddy simulation of a supersonic boundary layer using an unstructured grid [J]. AIAA J. 2001, 39: 1288.
    [70] Pan H L,Ma H D and Wang Q.Large eddy simulation of transition coherent structures in a supersonic boundary layer [J].Journal of Astronautics. 2006, 27: 498~502.
    [71]潘锦珊.气体动力学基础[M].北京:国防工业出版社, 1995.
    [72]陈懋章.粘性流体动力学基础[M].高等教育出版社, 2002.
    [73] Morkovin M V. Effects of compressibility on turbulent flows [C]. In:Favre A, ed. Mécanique de la Turbulence. Paris: CNRS, 1962, 367~380.
    [74] van Driest E R. Turbulent boundary layer incompressible fluids [J]. Journal of the Aeronautical Sciences, 1951, 18: 145~160.
    [75] Ganapathisubramani B. Statistical properties of streamwise velocity in a supersonic turbulent boundary layer [J]. Phys Fluids, 2007, 19: 098108.
    [76] Ganapathisubramani B, Clemens N, and Dolling D. Large-Scale Motions in a Supersonic Turbulent Boundary Layer.[J] Journal of Fluid Mechanics, 2006, 556: 271~282.
    [77] Baumgartner M L. Turbulence structure in a hypersonic boundary layer [D]. Ph.D. Thesis, Princeton University, 1997.
    [78] Huang Z F, Zhou H and Luo J S. Direct numerical simulation of a supersonic turbulent boundary layer on a flat plate and its analysis [J]. Science in China, Ser. G. 2005, 48: 626~640.
    [79] Ferri A. Experimental results with airfoils tested in the high speed tunnel at Guidonia [R]. NACA TM 946, 1939.
    [80] Fage A and Sargent R F. Shock Wave and Boundary Layer Phenomena Near a FlatSurface [J]. Proc. Roy, Soc. A, 1947, 190: 1~20.
    [81] Ackeret J, Feldmann F and Rott N. Investigations of Compression Shocks and Boundary Layers in Gasses Moving at High Speed [R]. NACA TM 1113, 1947.
    [82] Liepmann H W. The Interaction between Boundary Layer and Shock Waves in Transonic Flow [J]. Journal of Aerospace Sciences. 1946, 13: 623~638.
    [83] Donaldson C and Du P. Effects of interaction between normal shock and boundary layer [R]. NACA CB 4A27, 1944.
    [84] Green J E. Interactions between shock waves and turbulent boundary layers [J]. Prog. Aero. Sci. 1970, 11: 253~340.
    [85] Hankey W L and Holden M S. Two-dimensional shock-wave boundary layer interactions in high-speed flows [R]. AGARDograph 203, 1975.
    [86] Adamson T C and Messiter A F. Analysis of two-dimensional interactions between shock waves and boundary layers [J]. Annu. Rev. Fluid Mech. 1980, 12: 103~138.
    [87] Delery J and Marvin J G. Shock-wave boundary layer interactions [R]. AGARDograph 280, 1986.
    [88] Dolling D S. Fifty years of shock wave/boundary layer interaction research: what next? [J]. AIAA J. 2001, 39: 1517~1531.
    [89] Wu M and Martin M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data [J]. J. Fluid Mech. 2008, 594: 71~83.
    [90] Plotkin K J. Shock wave oscillation driven by turbulent boundary-layer fluctuations [J]. AIAA J. 1975, 13: 1036~1040.
    [91] Poggie J and Smits A J. Shock unsteadiness in a reattaching shear layer [J]. J. Fluid Mech. 2001, 429: 155~185.
    [92] Andreopoulos J and Muck K C. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows [J]. J. Fluid Mech. 1987, 180: 405~428.
    [93] Thomas F O, Putman C M and Chu H C. On the mechanism of unsteady shock oscillation in shock wave/turbulent boundary layer interaction [J]. Exps. Fluids. 1994, 18: 69~81.
    [94] Pirozzoli S and Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25 [J]. Phys. Fluids. 2006, 18: 065113.
    [95] Dupont P, Haddad C and Debieve J F. Space and time organization in a shock-induced separated boundary layer [J]. J. Fluid Mech. 2006, 559: 255~277.
    [96] Dussauge J P, Dupont P and Debieve J F. Unsteadiness in shock wave boundary layer interactions with separation [J]. Aero. Sci. Technol. 2006, 10: 85~91.
    [97] Mueller T J. On the historical development of apparatus and techniques for smokevisualization of subsonic and supersonic flow [J]. AIAA Paper 80-0420-CP, 1980.
    [98] Settles G S. Schlieren and Shadowgraph Techniques [M]. Springer, Berlin, Heidelberg, 2001.
    [99] Settles G S. Colour-coding schlieren techniques for the optical study of heat and fluid flow [J]. Int. J. Heat Fluid Flow. 1985, 6: 3~15.
    [100] Weinstein L M. Large-field high-brightness focusing schlieren system [J]. AIAA J. 1993, 31: 1250~1255.
    [101] Garg S and Settles G S. Measurements of a supersonic turbulent boundary layer by focusing schlieren deflectometry [J]. Exps. Fluids. 1998, 25: 254~264.
    [102] Goldstein R J. Optical systems for flow measurement: Shadowgraph, Schlieren and interferometric techniques. In: Fluid Mechanics Measurements [M], ed. by Goldstein R J. Springer, Berlin, Heidelberg, 1983.
    [103] Boguszko M and Elliott G S. On the Use of Filtered Rayleigh Scattering for Measurements in Compressible Flows and Thermal Fields [J]. Exps. Fluids, 2005, 38: 33~49.
    [104] Forkey J N, Lempert W R and Miles R B. Accuracy Limits for Planar Measurement of Flow Field Velocity, Temperature and Pressure using Filtered Rayleigh Scattering [J]. Exps. Fluids. 1998, 24: 151~162.
    [105] Elliott G S, Samimy M and Arnette S A. Study of Compressible Mixing Layers Using Filtered Rayleigh Scattering Based Visualizations [J]. AIAA Journal. 1992, 30: 2567~2569.
    [106] Elliott G S, Boguszko M and Carter C D. Filtered Rayleigh scattering: toward multiple property measurements (Invited) [C]. AIAA Paper, 2001-0301, 2001.
    [107] Elliott G S, Glumac N and Carter C D. Molecular filtered Rayleigh scattering applied to combustion and turbulence [C]. AIAA Paper, 99-0643, 1999.
    [108] Danehy P M, Wilkes J A, Alderfer D W, et al. Planar laser-induced fluorescence (PLIF) investigation of hypersonic flowfields in a Mach 10 wind tunnel (invited) [C]. AIAA Paper. 2006-3442, 2006.
    [109] Danehy P M and O' Byrne S. Measurement of NO density in a free-piston shock tunnel using PLIF [C]. AIAA Paper. 99-0772, 1999.
    [110]耿辉,翟振辰,周松柏,等.欠膨胀自由射流密度场的丙酮平面激光诱导荧光显示与测量[J].实验流体力学. 2006, 20: 85~90.
    [111] O' Byrne S, Stotz I, Neely A J, et al. OH PLIF imaging of supersonic combustion using cavity injection [C]. AIAA Paper. 2005-3357, 2005.
    [112] Bathel B F, Danely P M, Inman J A, et al. PLIF visualization of active control of hypersonic boundary layers using blowing [C]. AIAA Paper. 2008-4266, 2008.
    [113] Palma P C, Danely P M, Houwing A F P, et al. PLIF thermometry of a free-pistion shock-tunnel nozzle flow [C]. AIAA Paper. 98-2703, 1998.
    [114] Johnson D and Rose W. Laser velocimeter and hot wire anemometer comparison in a supersonic boundary layer [J]. AIAA Journal. 1975, 13: 512~515.
    [115] Robinson S K, Seegmiller M Land Kussoy M I. Hot-wire and laser Doppler anemometer measurements in a supersonic boundary layer [J]. AIAA Paper No. 83-1723, 1983.
    [116] Elena M, Lacharme J P and Gaviglio J. Comparison of hot-wire and laser Doppler anemometry methods in supersonic turbulent boundary layers In: Dybb A and Pfund P A. (eds), International Symposium on Laser Anemometry. ASME, 1985.
    [117] Elena M and Lacharme J P. Experimental Study of a Supersonic Turbulent Boundary Layer Using a Laser Doppler Velocimetry Anemometer [J]. Journal Mechanique Theorique et Appliquee. 1988, 7: 175~190.
    [118] Johnson D A. Laser Doppler anemometry [M]. Chapter 6, AGARDograph 315, 1989.
    [119] Schrijer F F, Scarano F and van Oudheusden B W. Application of PIV in a mach 7 hypersonic flow [C]. PIVNET II International Workshop on the Application of PIV in Compressible Flows, Delft, The Netherlands, June 6-8, 2005.
    [120] Schrijer F F, Scarano F and van Oudheusden B W. Application of PIV in a Mach 7 double-ramp flow [J]. Exps. Fluids. 2006, 41: 353~363.
    [121] Humble R A, Scarano F and van Oudheusden B W. Experimental study of an incident shock wave/turbulent boundary layer interaction using PIV [C]. AIAA Paper, 2006-3361, 2006.
    [122]易仕和,程忠宇,刘大锋. DPIV技术在超声速自由涡气动窗口研究中的应用[J].流体力学实验与测量, 2004, 18: 79~82.
    [123]田立丰,易仕和,赵玉新,等.超声速光学头罩流场的PIV研究[J].实验流体力学, 2010, 24: 26~29.
    [124] Svizher A and Cohen J. Holographic particle image velocimetry system for measurements of hairpin vortices in air channel flow [J]. Exps. Fluids. 2006, 40: 708~722.
    [125] Hinrichs H. Holographic particle image velocimetry [J]. Meas Sci Technol. 2002, 13: 61~72.
    [126] Hinsch K D, Herrmann S F, Hinrichs H, et al. Coherence concepts in holographic particle image velocimetry. In: Adrian R, Hassan Y and Meinhart C (eds). The 3rd international workshop on PIV [C]. 1999.
    [127] Meng H and Hussain F. Holographic particle velocimetry: a 3D measurement technique for vortex interaction, coherent structures and turbulence [J]. Fluid Dyn Res. 1991, 8: 33~52.
    [128] Tao B, Katz J and Meneveau C. Geometry and scale relationship in high Reynoldsnumber turbulence determined from threedimensional holographic velocimetry [J]. Phys Fluids. 2000, 12: 941~944.
    [129] Tao B, Katz J and Meneveau C. Statistical geometry of subgridscale stresses determined from holographic particle image velocimetry measurements. J Fluid Mech. 2002, 457: 35~78.
    [130] Humble R A, Elsinga G E, Scarano F et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction [J]. J. Fluid Mech. 2009, 622: 33~62.
    [131] Kim K C, Yoon S Y, Kim S M, et al. An orthogonal-plane PIV technique for the investigations of three-dimensional vortical structures in a turbulent boundary layer flow [J]. Exps. Fluids. 2006, 40: 876~883.
    [132] Kahler C J. Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV [J]. Exps. Fluids. 2004, 36: 114~130.
    [133] Ganapathisubramani B. Investigation of turbulent boundary layer structure using stereoscopic particle image velocimetry [D]. Ph.D. thesis, University of Minnesota, 2004.
    [134] Pfadler S, Loffler M, Dinkelacker F, et al. Measurement of the conditioned turbulence and temperature field of a premixed Bunsen burner by planar laser Rayleigh scattering and stereo particle image velocimetry [J]. Exps. Fluids. 2005, 39: 375~384.
    [135] Hutchins N, Hambleton W T and Marusic I. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers [J]. J. Fluid Mech. 2005, 541: 21~54.
    [136] Meier G E A. New optical tools for fluid mechanics [C]. Proceedings of the 8th International Symposium Flow Visualization, Sorrento, Italy, September 1-4, 1998.
    [137] Venkatakeishman L and Meier G E A. Density measurement using the background oriented schlieren technique [J]. Exp Fluids. 2004, 27: 237~247.
    [138] Sourgen F, Haertig J, George A, et al. Validation of CFD density field in supersonic axisymmetric flows using BOS and differential interferometry [C]. AIAA Paper, 2005-6036, 2005.
    [139] Gross K P, McKenzie R L and Logan P. Measurement of Temperature, Density, Pressure, and their Fluctuations in Supersonic Turbulence using Laser-Induced Fluorescence [J]. Exps. Fluids, 1987, 5: 372~380.
    [140] Miles R B and Lempert W R. Two-dimensional Measurement of Density, Velocity, and Temperature in Turbulent High-speed Air Flows by UV Rayleigh Scattering [J]. Appl. Phys. 1990, 51: 1~7.
    [141]赵玉新.超声速混合层时空结构的实验研究[D].工学博士论文:国防科技大学,2008.
    [142]范洁川.近代流动显示技术[M].北京:国防工业出版社, 2002.
    [143] Samimy M and Lele S. Motion of particles with inertia in a compressible free shear layer [J]. Phys Fluids, 1991, 3: 1915~1923.
    [144] Hou Y X. Particle image velocimetry study of shock induced turbulent boundary layer separation [D]. PhD thesis, Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin. 2003.
    [145] Hou Y X, Clemens N T and Dolling D S. Wide-Field PIV Study of Shock-Induced Turbulent Boundary Layer Separation [C]. 41st AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, 2003, 6~9.
    [146] Kastengren A, CraigDutton J, and Elliott G. A method for measuring recompression shock unsteadiness applied to two supersonic wakes [J]. Exps. Fluids, 2005, 39: 140~151.
    [147] Clemens N T. Flow imaging [C]. In Encyclopedia of Imaging Science and Technology. John Wiley and Sons, New York, 2002.
    [148] Tennekes H, Lumley J L. A first course in turbulence [M]. London: MIT press, 1972.
    [149] Rossmann T. An experimental investigation of high compressibility mixing layers [R]. Stanford University, 2001.
    [150] Zhao Y X, Yi S H, Tian L F, et al. Supersonic flow imaging via nanoparticles [J]. Sci China Ser E-Tech Sci, 2009, 52(12): 3640~3648.
    [151] Raffel M, Willert C E and Kompenhans J. Particle Image Velocimetry: A Practical Guid [M]. Springer, Berlin, 1998.
    [152] Gilbert R A D. Evaluation of FFT based cross-correlation algorithms for particle image velocimetry [D]. Master’s Thesis. University of Waterloo, 2002.
    [153] Westerweel J, Dabiri D, Gharib M. The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings [J]. Exps. Fluids, 1997, 23: 20~28.
    [154] Scarano F, Riethmuller M L. Iterative multigrid approach in PIV image processing with discrete window offset [J]. Exps. Fluids, 1999, 26: 513~523.
    [155] TIAN L F, YI S H, ZHAO Y X, HE Lin, CHENG Z Y. Study of density field measurement based on NPLS technique in supersonic flow [J]. Sci China Ser G, 2009, 52(9): 1357~1363.
    [156] Zhao Y X, Yi S H, Tian L F, et al. Density field measurement and approximate reconstruction of supersonic mixing layer [J]. Chinese Sci Bull, 2010, 55: 2004~2009.
    [157] Zhao Y X, Yi S H, Tian L F, et al. Multiresolution analysis of density fluctuation in supersonic mixing layer [J]. Sci China Tech Sci, 2010,53: 584~591.
    [158] Hommema S E and Adrian R J. Packet structure of surface eddies in the atmospheric boundary layer [J]. Boundary-Layer Meteorol. 2003, 106: 147.
    [159] Huntley M and Smits A J. Transition studies on an elliptic cone in Mach 8 flow using filtered Rayleigh scattering [J]. European Journal of Mechanics B-Fluids, 2000, 19,695~706.
    [160] Kachanov Y S. Physical mechanism of laminar boundary-layer transition [J]. Annu. Rev. Fluid Mech. 1994, 26: 411~482.
    [161] Craik A D D. Non-linear resonant instability in boundary layer [J]. J. Fluid Mech. 1971, 50: 393~413.
    [162] Herbert Th. Secondary instability of plane channel flow to subharmonic three-dimensional disturbances [J]. Physics of Fluids, 1983, 26: 871~874.
    [163] Herbert Th. Subharmonic three-dimensional disturbances in unstable plane Poiseuille flows [J]. 1983, AIAA-83-1759.
    [164] Herbert Th. Analysis of subharmonic route to transition in boundary layer [J]. 1984, AIAA paper No. 84-0009.
    [165]周恒,赵耕夫.流动稳定性[M].北京:国防工业出版社, 2004.
    [166] Thomas A S W and Saric W S. Harmonic and subharmonic waves during boundary-layer transition [J]. Bull. Am. Phys. 1981, 26: 1252.
    [167] Wu X H and Moin P. Forest of hairpins in a low-Reynolds-number zero-pressure-gradient flat-plate boundary layer [J]. Phys Fluids, 2009, 21: 091106.
    [168]赵学端,廖其奠.粘性流体力学[M].北京:机械工业出版社, 1983.
    [169] Klebanoff P S. Characteristics of turbulence in a boundary layer with zero pressure gradient [R]. 1955, NACA report 1247.
    [170] White F M. Viscous fluid flow 2nd [M]. McGraw-Hill, New York, 1991.
    [171] Sreenivasan K R, Meneveau C. The fractal facets of turbulence [J]. J Fluid Mech. 1986, 173: 357~386.
    [172] Turcotte D L. Fractals in fluid mechanics [J]. Annu Rev Fluid Mech. 1988, 20: 5~16.
    [173] Sreenivasan K R. Fractals and multifractals in fluid turbulence [J]. Annu Rev Fluid Mech. 1991, 23: 539~600.
    [174] Falconer K, Geometry F. Mathematical foundations and applications 2nd edition [M]. Chichester: John Wiley & Sons Ltd. 2003, 41~57.
    [175] Sreenivasan K R, Meneveau C. Mixing, entrainment, and fractal dimensions of surfaces in turbulent flows [C]. Proc. Roy. Soc. Lond. A, 1989, 421: 79~92.
    [176] Spalding D B. A single formula for the law of the wall [J]. J Appl Mech, 1961, 28:455~457.
    [177] Kendall A, Koochesfahani M. A method for estimating wall friction in turbulent wall-bounded flows [J]. Exps. Fluids, 2008, 44: 773~780.
    [178] Robinson S K. Space-time correlation measurements in a compressible turbulent boundary layer [J]. AIAA Paper, 1986-1130, 1986.
    [179] Kistler A L. Fluctuation measurements in supersonic turbulent boundary layer [J]. Phys Fluids, 1959, 2: 290~296.
    [180] Gatski T B and Erlebacher G. Numerical simulation of a spatially evolving supersonic turbulent boundary layer [R]. NASA Tech. Memo. 2002-211934
    [181] Urbin G, Knight D and Zheltovodov A A. Compressible Large Eddy Simulation using Unstructured Grid: Supersonic Turbulent Boundary Layer and Compression Corner [J]. AIAA Paper 99-0427, Jan. 1999.
    [182] Wu M and Martin M P. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer over a Compression Ramp [J]. AIAA Journal, 2007, 45: 879-889
    [183] Muck K, Spina E and Smits A. Compilation of Turbulence Data for an 8 degree Compression Comer at Mach 2.9 [R]. Report No. MAE-1642. April 1984.
    [184] Oakley T R, Loth E, Adrian R J. Cinematic particle image velocimetry of high-reynolds-number free shear layer [J]. AIAA J, 1996, 34:299~308.
    [185] Olsen M G, Dutton J C. Stochastic estimation of large structures in an incompressible mixing layer [J]. AIAA J, 2002, 40:2431~2438.
    [186] Blackwelder R F and Kaplan R E. On the wall structure of the turbulent boundary layer [J]. J. Fluid Mech. 1976, 76: 89~112.
    [187] Fujii S, Gomi M and Equchi K. A remote laserprobe system for velocity and temperature measurements [J]. J. Fluids Eng, 1983, 105: 128-133.
    [188] Fujii S, Gomi M, Equchi K, et al. Time resolved LDV and CARS measurements in a premixed reacting flow [J]. Combust. Sci. Technol, 1984, 36: 211-226.
    [189] Goss L P, Trump D D and Roquemore W M. Simultaneous CARS and LDA measurements in a turbulent flame [J]. AIAA J, 84-1458, 1984.
    [190] Goss L P, Trump D D and Roquemore W M. Combined CARS/LDA instrument for simultaneous temperature and velocity measurements [J]. Exps. Fluids 1988, 6: 189-198.
    [191] Bram R D, Seller E T, LaRue J C, et al. Instantaneous two-component laser anemometry and temperature measurements in a complex flow model combustor [J]. AIAA Paper 83-0334, 1983.
    [192] Heitor M V, Taylor A M K P and Whitelaw J H. Simultaneous velocity and temperature measurements in a premixed flame [J]. Exps. Fluids, 1985, 3: 323-339.
    [193] Tagawa M, Nagaya S, Ohta Y. Simultaneous measurement of velocity andtemperature in high-temperature turbulent flows: a combination of LDV and a three-wire temperature probe [J]. Exps. Fluids, 2001, 30: 143-152.
    [194] Li F C, Wang D Z, Kawaguchi Y, et al. Simultaneous measurements of velocity and temperature fluctuations in thermal boundary layer in a drag-reducing surfactant solution flow [J]. Exps. Fluids, 2004, 36: 131-140.
    [195] Lemoine F, Antoine Y, Wolff M, Lebouche M. Simultaneous temperature and 2D velocity measurements in a turbulent heated jet using combined laser-induced fluorescence and LDA [J]. Exps. Fluids, 1999, 26: 315-323.
    [196] Fujisawa N, Funatani S, Katoh N. Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh-Bérnard convection [J]. Exps. Fluids, 2005, 38: 291-303.
    [197] Ke J, Bohl D. Effect of experimental parameters and image noise on the error levels in simultaneous velocity and temperature measurements using molecular tagging velocimetry/thermometry (MTV/T) [J]. Exps. Fluids, 2011, 50: 465-478.
    [198] Webster D R, Roberts P J and Ráad L. Simultaneous DPTV/PLIF measurements of a turbulent jet [J]. Exps. Fluids, 2001, 30: 65-72.
    [199] Cowen E A, Chang K A, Liao Q. A single camera coupled PTV-LIF technique [J]. Exps. Fluids, 2001, 31: 63–73.
    [200] Borg A, Bolinder J and Fuchs L. Simultaneous velocity and concentration measurements in the near field of a turbulent low-pressure jet by digital particle image velocimetry-planar laser-induced fluoresecnce [J]. Exps. Fluids, 2001, 31: 140-152.
    [201] Feng H, Olsen M G, Hill J C, et al. Simultaneous velocity and concentration field measurements of passive-scalar mixing in a confined rectangular jet [J]. Exps. Fluids, 2007, 42: 847-862.
    [202] Konle M, Kiesewetter F and Sattelmayer T. Simultaneous high repetition rate PIV–LIF-measurements of CIVB driven flashback [J]. Exps. Fluids, 2008, 44: 529-538.
    [203] Zarruk A G and Cowen E A. Simultaneous velocity and passive scalar concentration measurements in low Reynolds number neutrally buoyant turbulent round jets [J]. Exps. Fluids, 2008, 44: 865-782.
    [204] Ramaprabhu P and Andrews M J. Simultaneous measurements of velocity and density in buoyancy-driven mixing [J]. Exps. Fluids, 2003, 34: 98-106.
    [205] Horner-Devine A R. Velocity, density and transport measurements in rotating, stratified flows [J]. Exps. Fluids, 2006, 14: 559-571.
    [206] Balakumar B J, Orlicz G C, Tomkins C D and Prestridge K P. Simultaneous particle-image velocimetry–planar laser-induced fluorescence measurements ofRichtmyer–Meshkov instability growth in a gas curtain with and without reshock [J]. Phys Fluids, 2008, 20: 124103.
    [207] Nau T. Rayleigh scattering as a quantitative tool in compressible turbulent boundary layers [D]. Masters Thesis, Princeton University, 1995.
    [208]童秉纲.气体动力学[M].北京:高等教育出版社, 1990.
    [209] Moderass D and Johnson D A. Investigation of Shock-Induced Separation of a Turbulent Boundary Layer Using Laser Velocimetry [J]. AIAA Paper 76-374, 1976.
    [210] Meyer M J, Buter T A and Bowersox R D W. Compressible Turbulence Measurements in a Supersonic Boundary Layer with Impinging Shock Wave Interactions [C]. 35th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, Jan 6-9, 1997.
    [211] Garnier E and Sagaut P. Large Eddy Simulation of Shock/Boundary-Layer Interaction [J]. AIAA Journal, 2002, 40: 1935~1944.
    [212] Humble R A, Scarano F and van Oudheusden B W. Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction [J]. Exps. Fluids, 2007, 43: 173~183.
    [213] Bourgoing A and Reijasse P. Experimental analysis of unsteady separated flow in a planar nozzle [C]. In: Proceedings of the International Symposium on Shock Waves (ISSW 23). The University of Texas Fort Worth, Texas, 2001.
    [214] Doerffer P and Szwaba R. Shock wave/ boundary layer interaction control by streamwise vortices [C]. In: Proceedings of ICTAM XXI. Warsaw, Poland, 2004.
    [215] Bookey P, Wyckham C M and Smits A J. Experimental Investigations of Mach 3 shock-wave turbulent boundary layer interactions [J]. AIAA Paper 2005-4899, 2005.
    [216] Dussauge J P, Dupont P and Debieve J F. Unsteadiness in shock wave boundary layer interactions with separation [C]. In: AAAF 40th Colloquium on Applied Aerodynamics. Toulouse, March 21-23, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700