用户名: 密码: 验证码:
几类不同系统的随机稳定性及多重振动共振现象
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随机稳定性是随机动力学领域的重要研究内容之一,它刻画随机动力系统在平稳解邻域内的稳定性,其研究指标为最大Lyapunov指数和矩Lyapunov指数,分别确定系统响应的几乎肯定渐近稳定性和p阶矩渐近稳定性。由于噪声在自然界的普遍存在性,随机稳定性问题在自然科学及工程科学等领域都具有重要的研究价值。
     一些受高频信号和微弱低频信号同时激励的非线性系统,其响应在低频信号频率处的幅值随加入高频信号幅值的变化呈现非线性关系,出现类似于“共振”的现象,这种现象定义为振动共振。利用振动共振机理,可以实现系统中微弱低频信号的放大。双频信号在通讯技术、激光物理、离子物理、声学、神经科学等领域具有广泛的应用,因此研究振动共振具有重要的意义,实现对振动共振的控制在诸多领域具有潜在的价值。
     本文重点研究不同噪声参激系统的随机稳定性与非线性系统的多重振动共振及其控制两方面的内容,主要进行了以下工作:
     (1)研究了高斯白噪声参激余维2分岔系统的随机稳定性问题。基于一维扩散过程的奇异边界理论,讨论了一维相扩散过程存在奇异边界的所有情形。针对不同情形,推导出了参激矩阵的取值条件,得到了系统不变测度的解析解,并研究了其P-分岔问题。最后根据最大Lyapunov指数的结果,给出了各种情形下系统几乎肯定渐近稳定的边界。
     (2)研究了实噪声(n维Ornstein-Uhlenbeck向量过程的可积函数)参激余维2分岔系统的随机稳定性问题。通过进行n维线性滤波系统的谱分析,得到了实噪声的谱密度函数,用摄动法得到了系统不变测度的标准FPK方程及最大Lyapunov指数的求解式。通过讨论一维相扩散过程存在奇异边界的所有情形,给出了对应参激矩阵的取值条件,得到了不变测度的解析式及系统响应的最大Lyapunov指数。研究了不变测度的P-分岔,给出了系统响应几乎肯定渐近稳定的边界。
     (3)研究了一类非高斯色噪声参激的van der Pol-Duffing振子的随机稳定性。将噪声近似简化之后,通过尺度变换和线性随机变换求得了矩Lyapunov指数的二阶近似解,给出了系统响应p阶矩稳定性和几乎肯定渐近稳定的条件。
     (4)研究了受双频信号激励的一维多稳态系统,发现了一种新颖且规律性较强的多重振动共振现象。在欠阻尼和过阻尼情形下,通过解析分析和数值模拟揭示了序列性多重振动共振现象发生的机理,重点研究了阻尼系数对共振效应的影响,给出了多重振动共振现象潜在的应用价值。
     (5)研究了高频信号和微弱低频信号同时激励下,线性时滞反馈对不同非线性系统中振动共振现象的影响,结果表明通过调节时滞参数可以引起系统的输出发生多重振动共振现象,从而实现对振动共振的有效控制。时滞反馈不仅可以控制振动共振的发生或消失,而且还可以增强振动共振的程度,从而进一步放大微弱低频信号。研究还发现系统对低频信号响应的幅值增益随时滞参数的变化同时呈现两种不同的周期性关系,它们分别等于两激励信号的周期。在一些不存在经典振动共振现象的非线性系统中,引入线性时滞反馈之后,通过调节时滞参数也可以引发多重振动共振现象。
Stochastic stability is one of the most important issues in the field of stochastic dynamics. It characterizes the stability of a random system in the vicinity of the steady state. The measure indicators are maximal Lyapunov exponent and moment Lyapunov exponent, and they determine the almost assure asymptotically stability and pth moment asymptotically stability respectively. Due to the universal existence of noise in the natural world, the problem of stochastic stability has significant research value in natural science and engineering fields.
     In some nonlinear systems that excited simultaneously by high- and low-frequency signals, the response amplitude at the low-frequency is a nonlinear function of the amplitude of the high-frequency signal, and it presents“resonance”by adjusting the high-frequency signal. This phenomenon is defined as vibrational resonance (VR). Based on the mechanism of VR, the weak low-frequency signal can be amplified in the system. Biharmonic signals are widely applied in communication technology, laser physics, ion physics, acoustics, neuroscience, etc. Hence, the investigation of VR and its control have important and potential values in a wide range of fields. In the present paper, besides the stochastic stability of some systems that are parametrically excited by different kinds of noise, the vibrational multiresonance and its control in nonlinear systems are also investigated. The main works and results are as following:
     (1) The stochastic stability of a co-dimensional two-bifurcation system driven by a white noise is studied. Based on the theory of singular boundary, all possible singularities that exist in the one-dimensional phase diffusion process are detailed discussed. For all the cases, the different conditions of the matrix that included in the noise excitation term are deduced, and the analytical expressions of the invariant measure are obtained. In addition, the P-bifurcation for the invariant measure is researched completely. Finally, according to the results of the maximal Lyapunov exponent, the regions of the almost assure asymptotically stability are given for all the cases.
     (2) The stochastic stability of a co-dimensional two-bifurcation system subjected to parametric excitation by a real noise that is assumed to be an integrable function of an n-dimensional Ornstein-Uhlenbeck vector process is investigated. Via the spectral analysis for an n-dimensional linear filter system, the spectral density functions for the real noise are given. Then, the standard FPK equation of the invariant measure and the calculation expression of the maximal Lyapunov exponent are obtained. Through discussing all the possible singular boundaries that exist in the one-dimensional phase diffusion process, the corresponding conditions of the matrix that included in the noise term, the expressions of the invariant measure and the maximal Lyapunov exponents are given for all the cases. In addition, the P-bifurcation of the invariant measure is investigated. And finally, the regions for the almost assure asymptotically stability of the system are obtained.
     (3) The stochastic stability of a van der Pol-Duffing oscillator that under the parametric excitation by a non-Gaussian colored noise is studied. After the simplification of the noise, through scale transformation and linear stochastic transformation, the second-order solution of the moment Lyapunov is obtained, and the conditions for the pth moment asymptotically stability and almost assure asymptotically are given finally.
     (4) A novel and much more regular vibrational multiresonance in a multistable system that driven by biharmonic signals is reported. For the underdamped and overdamped cases, the mechanism of the sequential vibrational multiresonance is discovered by both theoretical and numerical methods. The effect of the damping coefficient on the multiresonance is a focus in the investigation. The potential application values of vibrational multiresonance are discussed.
     (5) Under the excitations of both high- and weak low-frequency signals, the effects of linear time delay feedback on the VR in different kinds of systems are investigated. The results show that the vibrational multiresonance appears through adjusting the delay parameter, and then the VR phenomenon can be effectively controlled. Via modulating the delay parameter, the VR phenomenon not only can occur or vanish but also can be enhanced and then improve the weak low-frequency signal further. With the variation of the delay parameter, the response amplitude of the system to the weak low-frequency signal presents vibrational multiresonance, and it is periodic in the delay with two different periods, i.e., the periods of the two-frequency exciting signals. The investigation also shows that the linear time delay feedback can induce VR even in the nonlinear system in which there is no classical VR existing.
引文
[1] Arnold L. A formula connecting sample and moment stability of a linear stochastic system. SIAM Journal of Applied Mathematics, 1984, 44(4): 793-802.
    [2] Khasminkii R, Moshchuk N. Moment Lyapunov exponent and stability index for linear conservative system with small random perturbation. SIAM Journal of Applied Mathematics, 1998, 58(1): 245-256.
    [3] Kozin F, Sugimoto S. Relations between sample and moment stability for linear stochastic differential equations. Proceedings of the Conference on Stochastic Equations and Applications. New York: Academic Press, 1977, 145-162.
    [4]刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究.力学进展, 1996, 26(4): 437-452.
    [5]刘先斌.随机力学系统的分叉行为与变分方法研究.博士学位论文,成都,西南交通大学, 1995.
    [6] Arnold L. Random Dynamical Systems. Berlin: Springer, 1998.
    [7] Crauel H, Gundlach M. Stochastic Dynamics. Berlin, New York: Springer, 1997.
    [8] Lin Y K, Cai G Q. Probabilistic Structural Dynamics, Advanced Theory and Applications. New York: McGraw-Hill, 1995.
    [9]方同.工程随机振动.北京:国防工业出版社, 1995.
    [10]朱位秋.随机振动.北京:科学出版社, 1998.
    [11]朱位秋.非线性随机动力学与控制一Hamilton理论体系框架.北京:科学出版社, 2003.
    [12]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社, 2002.
    [13]马军海,复杂非线性系统的重构技术.天津:天津大学出版社, 2005.
    [14] Kantz H, Schreiber T. Nonlinear time series analysis. New York: Cambridge University press, 2000.
    [15] Wolf A, Swift J, Swinney H, et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16(3):285-317.
    [16] Rosenstein M T, Collins J J, Luca C J De. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 1993, 65(1-2):117-134.
    [17] Khasminskii R Z. Necessary and sufficient conditions for the asymptotic stability of linear stochastic systems. Theory of Probability and its Applications, 1967, 12(1): 144-147.
    [18] Mitchell P R, Kozin F. Sample stability of second order linear differential equations with wide band noise coefficients. SIAM Journal of Applied Mathematics, 1974, 27(4):571-605.
    [19] Nishoka K. On the stability of two-dimensional linear stochastic systems. KodaiMathematical Seminar Reports, 1976, 27(1-2):211-230.
    [20] Ariaratnam S T, Xie W C. Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation. ASME Journal of Applied Mechanics, 1992, 59(3): 664-673.
    [21] Labou M, Ma T W. Lyapunov exponent of parametrically coupled linear two-DOF stochastic systems and related stability problems. Journal of Sound and Vibration, 2009, 325(1-2): 421-435.
    [22] Wihstutz V. Perturbation methods for Lyapunov exponents. Stochastic Dynamics. New York: Springer-Verlag, 1999, 209-239.
    [23] Namachchivaya N S, Roessel H J V. Maximal Lyapunov exponent and rotation numbers for two coupled oscillators driven by real noise. Journal of Statistic Physics, 1993, 71(3-4): 549-567.
    [24] Doyle M M, Namachchivaya N S. Almost-sure asymptotic stability of a general four- dimensional system driven by real noise. Journal of Statistic Physics, 1994, 75(3-4):525-552.
    [25] Nolan V J, Namachchivaya N S. Almost-sure stability of linear gyroscopic systems. Journal of Sound and Vibration, 1999, 227(1):105-130.
    [26]刘先斌,陈大鹏,陈虬.实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ).应用数学和力学, 1999, 20(9):902-912.
    [27]刘先斌,陈大鹏,陈虬.实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅱ).应用数学和力学, 1999, 20(10):997-1003.
    [28] Liu X B, Liew K M. The Lyapunov exponent for a co-dimension system driven by a real noise. International Journal of Non-linear Mechanics, 2003, 38(10):1495-1511.
    [29] Liu X B, Liew K M. On the almost-sure stability condition for a co-dimension two bifurcation system under the parametric excitation of a real noise. Journal of Sound and Vibration, 2004, 272(1-2):85-107.
    [30] Liu X B, Liew K M. Maximal Lyapunov exponent for a co-dimension two-bifurcation system excited by a white noise. International Journal of Non-linear Mechanics, 2005, 40(5):635-668
    [31] Liew K M, Liu X B. The maximal Lyapunov exponent for a three-dimensional stochastic system. ASME Journal of Applied Mechanics, 2004, 71(5):677-690.
    [32]蔡祥梅,刘先斌.白噪声参激一类余维2分岔系统最大Lyapunov指数研究.力学季刊, 2008, 29(2):236-240.
    [33]蔡祥梅,刘先斌.白噪声参激余维2分岔系统奇点分析及最大Lyapunov指数.南京航空航天大学学报, 2009, 41(1):21-24.
    [34]蔡祥梅.几类随机动力系统的最大Lyapunov指数和矩Lyapunov指数研究.硕士学位论文,南京,南京航空航天大学, 2007.
    [35] Rong H W, Meng G, Wang X D, Xu W, et al. Invariant measures and Lyapunov exponents for stochastic Mathieu system. Nonlinear Dynamics, 2002, 30(4):313-321.
    [36] Li R J, Xu W, Ren Z Z, et al. Maximal Lyapunov exponent and almost-sure stability for stochastic Mathieu-Duffing systems. Journal of Sound and Vibration, 2005, 286(1-2):395 -402.
    [37] Yang X L, Xu W, Sun Z K, et al. Responses of strongly non-linear oscillator parametrically excited by random narrow-band noise. Applied Mathematics and Computation, 2005, 171(2): 885-899.
    [38] Arnold L, Kliemann W, Oeljeklaus E. Lyapunov exponent for linear stochastic systems. Lyapunov Exponents. Proceedings of a workshop held in Bremen, November 12-15, 1984. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1986, 1186:85-125.
    [39] Arnold L, Oeljeklaus E, Pardoux E. Almost sure and moment stability for linear Ito equations. Lyapunov Exponents. Proceedings of a workshop held in Bremen, November 12-15, 1984. Lecture Notes in Mathematics. Berlin: Springer-Verlag, 1986, 1186:129-159.
    [40] Arnold L, Kliemann W. Large deviations of linear stochastic equations. Stochastic Differential Systems, Engelbert H J, Schmidt W, editors, Lectures Notes in Control and Information Sciences. Berlin: Springer, 1987, 96:115-151.
    [41] Baxendale P H. Moment stability and large deviations for linear stochastic equations. Proceedings of the Taniguchi Symposium on Probabilistic Methods in Mathematical Physics, Ikeda N, editor, Japan: Kinokuniya, 1985, 31-54.
    [42] Baxendale P H, Stroock D. Large deviations and stochastic flows of diffeomorphisms. Probability Theory and Related Fields, 1988, 80(2):169-215.
    [43] Wedig W. Lyapunov exponent of stochastic systems and related bifurcation problems. Stochastic Structural and Dynamics-Progress in Theory and Applications, London: Elsevier, 1988, 315-327.
    [44] Xie W C. Moment Lyapunov exponents of a two-dimensional system under real-noise excitation. Journal of Sound and Vibration, 2001, 239(1):139-155.
    [45] Xie W C. Moment Lyapunov exponents of a two-dimensional system under bounded noise parametric excitation. Journal of Sound and Vibration, 2003, 263(3):593-616.
    [46] Xie W C, Ronalad M C So. Parametric resonance of a two-dimensional system under bounded noise excitation. Nonlinear Dynamics, 2004, 36(2-4):437-453.
    [47] Xie W C. Monte Carlo simulation of moment Lyapunov exponents. ASME Journal of Applied Mechanics, 2005, 72(1):269-275.
    [48] Xie W C. Moment Lyapunov exponents of a two-dimensional system under both harmonic and white noise parametric excitations. Journal of Sound and Vibration, 2006, 289(1-2): 171-191.
    [49] Xie W C, Ronalad M C So. Numerical determination of moment Lyapunov exponents of two-dimensional systems. ASME Journal of Applied Mechanics, 2006, 73(1):120-127.
    [50] Xie W C. Moment Lyapunov exponents of a two-dimensional system under combined harmonic and real noise excitations. Journal of Sound and Vibration, 2007, 303(1-2): 109-134.
    [51] Zhu J Y, Xie W C. Parametric resonance of a two degrees-of-freedom system induced by bounded noise. ASME Journal of Applied Mechanics, 2009, 76(4): 041007.
    [52] Xie W C, Huang Q H. Simulation of moment Lyapunov exponents for linear homogeneous stochastic systems. ASME Journal of Applied Mechanics, 2009, 76(3):031001.
    [53] Kozi? P, Pavlovi? R, Rajkovi?. Moment Lyapunov exponents and stochastic stability of a parametrically excited oscillator. Meccanica, 2007, 42(4):323-330.
    [54] Kozi? P, Pavlovi? R, Janevski G. Moment Lyapunov exponents of the stochastic parametrical Hill’s equation. International Journal of Solids and Structures, 2008, 45(24):6056-6066.
    [55] Kozi? P, Janevski G, Pavlovi? R. Moment Lyapunov exponents and stochastic stability of a double-beam system under compressive axial loading. International Journal of Solids and Structures, 2010, 47(10):1435-1442.
    [56]胡岗.随机力与非线性系统.上海:上海科技教育出版社, 1994, 39-40.
    [57] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, 1981, 14(11):L453-L457.
    [58] Benzi R, Parisi G, Sutera A, et al. Stochastic resonance in climatic change. Tellus, 1982, 34(1):10-16.
    [59] Benzi R, Parisi G, Sutera A. A theory of stochastic resonance in climatic change. SIAM Journal of Applied Mathematics, 1983, 43(3):565-578.
    [60] Nicolis C. Solar variability and stochastic effects on climate. Solar Physics, 1981, 74(2): 473-478.
    [61] Nicolis C, Nicolis G. Stochastic aspects of climatic transitions–Additive fluctuations. Tellus, 1981, 33(3):225-234.
    [62] Nicolis C. Stochastic aspects of climatic transitions—response to a periodic forcing. Tellus, 1982, 34(1):1-9.
    [63] Nicolis G, Nicolis C, McKernan D. Stochastic resonance in chaotic dynamics. Journal of Statistical Physics, 1993, 70(1-2):125-139.
    [64] Fauve S, Heslot F. Stochastic resonance in a bistable system. Physics Letters A, 1983, 97(1-2):5-7.
    [65] McNamara B, Wiesenfeld K, Roy R. Observation of Stochastic Resonance in a Ring Laser. Physical Review Letters, 1988, 60(25):2626-2629.
    [66] Gammaitoni L, Marchesoni F, Menichella-Saetta E, et al. Stochastic Resonance in Bistable Systems. Physical Review Letters, 1989, 62(4):349-352.
    [67] McNamara B, Wiesenfeld K. Theory of stochastic resonance. Physical Review A, 1989, 39(9):4854-4869.
    [68] Presilla C, Marchesoni F, Gammaitoni L. Periodically time-modulated bistable systems: Nonstationary statistical properties. Physical Review A, 1989, 40(4):2105-2113.
    [69] Hu G, Nicolis G, Nicolis C. Periodically forced Fokker-Planck equation and stochastic resonance. Physical Review A, 1990, 42(4):2030-2041.
    [70] Jung P, H?nggi P. Stochastic Nonlinear Dynamics Modulated by External Periodic Forces. Europhysics Letters, 1989, 8(6):505-510.
    [71] Jung P, H?nggi P. Resonantly driven Brownian motion: Basic concepts and exact results. Physical Review A, 1990, 41(6):2977-2988.
    [72] Jung P, H?nggi P. Amplification of small signals via stochastic resonance. Physical Review A, 1991, 44(12):8032-8042.
    [73] Douglass J K, Wilkens L, Pantazelou E, et al. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 1993, 365:337-340.
    [74] Collins J J, Chow C C, Imhoff T T. Stochastic resonance without tuning. Nature, 1995, 376:236-238.
    [75] Wiesenfeld K, F Moss. Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature, 1995, 373:33-36.
    [76] Levin J E, Miller J P. Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature, 1996, 380:165 -168.
    [77] Bezrukov S M, Vodyanoy I. Stochastic resonance in non-dynamical systems without response thresholds. Nature, 1997, 385:319-321.
    [78] Gammaitoni L, H?nggi P, Jung P, et al. Stochastic resonance. Reviews of Modern Physics, 1998, 70(1):223-287.
    [79] Kitajo K, Nozaki D, Ward L M, et al. Behavioral Stochastic Resonance within the Human Brain. Physical Review Letters, 2003, 90(21):218103.
    [80]张雪娟.双稳态系统,单稳态系统,耦合振子系和混沌系统的随机共振现象.博士学位论文,北京,北京大学, 2002.
    [81]杨定新.微弱特征信号检测的随机共振方法与应用研究.博士学位论文,长沙,国防科学技术大学, 2004.
    [82] Vilar J M G, Rubi J M. Stochastic multiresonance. Physical Review Letters, 1997, 78(15): 2882-2885.
    [83] Volkov E I, Ullner E, Kurths J. Stochastic multiresonance in the coupled relaxation oscillators. Chaos, 2005, 15(2):023105.
    [84] Wang Q Y, Perc M, Duan Z, Chen G R. Delay-induced multiple stochastic resonance on scale-free neurnol networks. Chaos, 2009, 19(2):023112.
    [85] L?cher M, Cigna D, Hunt E R. Noise sustained propagation of a signal in coupled bistable electronic elements. Physical Review Letters, 1998, 80(23):5212-5215.
    [86] Zhang Y, Hu G, Gammaitoni L. Signal transmission in one-way coupled bistable systems: noise effect. Physical Review E, 1998, 58(3):2952-2956.
    [87] Lindner J F, Chandramouli S, Bulsara A R, L?cher M, Ditto W L. Noise enhanced propagation. Physical Review Letters, 1998, 81(23): 5048-5051.
    [88] Stocks N G. Information transmission in parallel threshold arrays:Suprathreshold stochastic resonance. Physical Review E, 2001, 63(4): 041114.
    [89] Stocks N G, Mannella R. Generic noise-enhanced coding in neuronal arrays. Physical Review E, 2001, 64(3):030902(R).
    [90] Tessone C J, Mirasso C R, Toral R, et al. Diversity-induced resonance. Physical Review Letters, 2006, 97(19):194101.
    [91] Wu D, Zhu S, Luo X. Cooperative effects of random time delays and small-world topologies on diversity-induced resonance. Europhysics Letters, 2009, 86(5):50002.
    [92] Wu L, Zhu S, Luo X, Wu D. Effects of clustering on diversity-induced resonance in hidden metric spaces. Physical Review E, 2010, 81(6):061118.
    [93] Perc M. Stochastic resonance on weakly paced scale-free networks. Physical Review E, 2008, 78(3):036105.
    [94] Perc M, Gosak M. Pacemaker-driven stochastic resonance on diffusive and complex networks of bistable oscillators. New Journal of Physics, 2008, 10:053008.
    [95] Landa P S, McClintock P V E. Vibrational resonance. Journal of Physics A: Mathematical and General, 2000, 33(45):L433-L438.
    [96]程韧,蒋磊.现代通讯原理与技术概论.北京:清华大学出版社, 2005.
    [97] Maksimov A O. On the subharmonic emission of gas bubbles under two-frequency excitation. Ultrasonics, 1997, 35(1):79-86.
    [98] Su D C, Chiu M H, Chen C D. Simple two-frequency laser. Precision Engineering, 1996,18(2-3):161-163.
    [99] Gherm V E, Zernov N N, Lundborg B, et al. The two-frequency coherence function for the fluctuating ionosphere: narrowband pulse propagation. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(14): 1831-1841.
    [100] Victor J D, Conte M M. Two-frequency analysis of interactions elicited by Vernier stimuli. Visual Neuroscience, 2000, 17(6): 959-973.
    [101] Shepherd G M. The Synaptic Organization of the Brain. New York: Oxford University Press, 1990.
    [102] Knoblauch A, Palm G. What is signal and what is noise in the brain. BioSystems, 2005, 79(1-3): 83-90.
    [103] Gitterman M. Bistable oscillator driven by two periodic fields. Journal of Physics A: Mathematical and General, 2001, 34(24): L355-L357.
    [104] Zaikin A A, L?pez L, Baltanás J P, et al. Vibrational resonance in a noise-induced structure. Physical Review E, 2002, 66(1): 011106.
    [105] Baltanás J P, L?pez L, Blechman I I, et al. Experimental evidence, numerics, and theory of vibrational resonance in bistable systems. Physical Review E, 2003, 67(6): 066119.
    [106] Casado-Pascual J, Baltanás J P. Effects of additive noise on vibrational resonance in a bistable system. Physical Review E, 2004, 69(4):046108.
    [107] Chizhevsky V N, Giacomelli G. Improvement of signal-to-noise ratio in a bistable optical system: Comparison between vibrational and stochastic resonance. Physical Review E, 2005, 71(1):011801(R).
    [108] Chizhevsky V N, Giacomelli G. Experimental and theoretical study of vibrational resonance in a bisatble system with asymmetry. Physical Review E, 2006, 73(2):022103.
    [109] Chizhevsky V N, Giacomelli G. Vibrational resonance and the detection of aperiodic binary signals. Physical Review E, 2008, 77(5):051126.
    [110]林敏,黄咏梅.双稳系统的振动共振及特性分析.振动与冲击, 2007, 26(12):151-153.
    [111]林敏,黄咏梅.基于振动共振的随机共振控制.物理学报, 2007, 56(11):6173-6177.
    [112]林敏,孟莹.双稳系统的频率耦合与随机共振机理.物理学报, 2010, 59(6): 3627-3632.
    [113] Rajasekar S, Jeyakumari S, Chinnathambi V, Sanjuan M A F. Role of depth and location of minima of a double-well potential on vibrational resonance. Journal of Physics A: Mathematical and Theoretical, 2010, 43(46):465101.
    [114] Gandhimathi V M, Rajasekar S, Kurths J. Vibrational and stochastic resonances in two coupled overdamped anharmonic oscillators. Physics Letters A, 2006, 360(2): 279-286.
    [115] Gandhimathi V M, Rajasekar S. Vibrational and stochastic resonances in two coupledoverdamped anharmonic oscillators driven by an amplitude modulated force. Physica Scripta, 2007, 76(6):693-698.
    [116] Blekhman I I, Landa P S. Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation. International Journal of Non-linear Mechanics, 2004, 39(3): 421-426.
    [117] Jeyakumari S, Chinnathambi V, Rajasekar S, et al. Analysis of vibrational resonance in a quintic oscillator. Chaos, 2009, 19(4):043128.
    [118] Jeyakumari S, Chinnathambi V, Rajasekar S, et al. Single and multiple vibrational resonance in a quintic oscillator with monostable potentials. Physical Review E, 2009, 80(4):046608.
    [119] Ullner E, Zaikin A, García-Ojalvo J, et al. Vibrational resonance and vibrational propagation in excitable systems. Physics Letters A, 2003, 312(3): 348-354.
    [120] Deng B, Wang J, Wei X. Effect of chemical synapse on vibrational resonance in coupled neurons. Chaos, 2009, 19(1):013117.
    [121] Shi J, Huang C, Dong T, Zhang X. High-frequency and low-frequency effects on vibrational resonance in a synthetic gene network. Physical Biology, 2010, 7(3):036006.
    [122] Deng B, Wang J, Wei X, et al. Vibrational resonance in neuron populations. Chaos, 2010, 20(1):013113.
    [123] Yang J H, Liu X B. Delay induces quasi-periodic vibrational resonance. Journal of Physics A: Mathematical and Theoretical, 2010, 43(12):122001.
    [124] Yang J H, Liu X B. Controlling vibrational resonance in a multistable system by time delay. Chaos, 2010, 20(23):033124.
    [125] Yang J H, Liu X B. Controlling vibrational resonance in a delayed multistable system driven by an amplitude-modulated signal. Physica Scripta, 2010, 82(2):025006.
    [126] Yao C, Zhan M. Signal transmission by vibrational resonance in one-way coupled bistable systems. Physical Review E, 2010, 81(6): 061129.
    [127] Guckenheimer G, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York: Springer-Verlag, 1983, 376-396.
    [128] Higham D J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Review, 2001, 43(3):525-546.
    [129] Karlin S, Taylor H M. A second course in stochastic process. New York: Academic press, 1981, 241.
    [130]数学手册.北京:高等教育出版社, 1979.
    [131] Roberts J B,Spanos P D. Stochastic averaging: An approximate method of solving random vibration problems. International Journal of Non-Linear Mechanics, 1986, 21(2):111-134.
    [132] Liberzon D, Brockeet R W. Spectral analysis of Fokker-Planck and related operatoprs arsing from linear stochastic differential equation. SIAM Journal on Control and Optimization, 2000, 38(5):1453-1467.
    [133] Roy R V. Stochastic averaging of oscillators excited by colored Gaussian processes. International Journal of Non-linear Mechanics, 1994, 29(4):461-475.
    [134] Fuentes MA, Toral R, Wio HS. Enhancement of stochastic resonance: the role of non- Gaussian noises. Physica A, 2001, 295(1-2):114-122.
    [135] Fuentes MA, Wio HS, Toral R. Effective Markovian approximation for non-Gaussian noises: a path integral approach. Physica A, 2002, 303(1-2): 91-104.
    [136] Wio HS, Tora R, Effect of non-Gaussian noise sources in a noise-induced transition. Physica D, 2004, 193(1-4):161-168.
    [137] Bouzat S, Wio HS. New aspects on current enhancement in Brownian motors driven by non-Gaussian noises. Physica A, 2005, 351(1): 69-78.
    [138] Wu D, Zhu S Q. Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise. Physics Letters A, 2007, 363(3): 202-212.
    [139] Risken H. The Fokker-Planck Equation: Methods of Solution and Applications. 2nd Ed. Berlin: Springer, 1989, 100.
    [140] Borromeo M, Marchesoni F. Noise-assisted transport on symmetric periodic substrates. Chaos, 2005, 15(2): 026110.
    [141] Blekhman I I. Vibrational Mechanics. Singapore: World Scientific, 2000.
    [142] Borromeo M, Marchesoni F. Mobility oscillations in high-frequency modulated devices. Europhysics Letters, 2005, 72(3):362-368.
    [143] Borromeo M, Marchesoni F. Vibrational ratchets. Physical Review E, 2006, 73(1):016142.
    [144] Borromeo M, Marchesoni F. Artificial sieves for quasimassless particles. Physical Review Letters, 2007, 99(15):150605.
    [145] Abramowitz M, Stegun I A. Handbook of Mathematical Functions. London:Dover, 1972.
    [146] Barbi M, Salerno M. Stabilization of ratchet dynamics by weak periodic signals. Physical Review E, 2001, 63(6):066212.
    [147] Gammaitoni L, L?cher M, Bulsara A, et al. Controlling Stochastic Resonance. Physical Review Letters, 1999, 82(23): 4574-4577.
    [148] L?cher M, Inchiosa M E, Neef J, et al. Theory of controlling stochastic resonance. Physical Review E, 62(1):317-327.
    [149] Ma J, Hou Z H, Xin H W. Control coherence resonance by noise recycling. The European Physical Journal B, 2009, 69(1):101-107.
    [150] Janson N B, Balanov A G, Scholl E. Delayed feedback as a means of control of noise-induced motion. Physical Review Letters, 2004, 93(1): 010601.
    [151] Pawlik A H, Pikovsky A. Control of oscillators coherence by multiple delayed feedback. Physics Letters A, 2006, 358:181-185.
    [152] Jin Y F, Hu H Y. Coherence and stochastic resonance in a delayed bisable system. Physica A, 2007, 382(2): 423-429.
    [153] Wu D, Zhu S. Stochastic resonance in FitzHugh-Nagumo system with time-delayed feedback. Physics Letters A, 2008, 372(32): 5299-5304.
    [154]杨定新,胡茑庆.随机共振在微弱信号检测中的数值仿真.国防科技大学学报, 2003, 25(6):91-94.
    [155] Yanchuk S, Kapitaniak T. Symmetry-increasing bifurcation as a predictor of a chaos- hyper- chaos transition in coupled systems. Physical Review E, 2001, 64(5):056235.
    [156] Yanchuk S, Kapitaniak T. Manifestation of riddling in the presence of a small parameter mismatch between coupled systems. Physical Review E, 2003, 68(1):017202.
    [157] Stefanski A, Perlikowski P, Kapitaniak T. Ragged synchronizability of coupled oscillators. Physical Review E, 2007, 75(1):016210.
    [158] Stefanski A, Wojewoda J, Kapitaniak T. Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic systems. Physical Review E, 2004, 70(2):026217.
    [159] Saha P, Banerjee S, Chowdhury AR. Some aspects of synchronization and chaos in a coupled laser system. Chaos, Solitons, Fractals, 2002, 14(7):1083-1093.
    [160] Rajesh S, Nandakumaran VM. Control of bistability in a directly modulated semiconductor laser using delayed optoelectronic feedback. Physica D, 2006, 213(1):113-120.
    [161] Xie S, Xiang B, Deng H, Wu J. Coupled stochastic resonance to improve chromatography determinations. Analytical and Bioanalytical Chemistry, 2010, 396(5):1921-1927.
    [162] Morillo M, Gomez-Ordonez J, Casado J M. System size stochastic resonance in driven finite arrays of coupled bistable elements. The European Physical Journal B, 2010, 74(2):211-215.
    [163] Gandhimathi V M, Murali K, Rajasekar S. Stochastic resonance in overdamped two coupled anharmonic oscillators. Physica A, 2005, 347:99-116.
    [164] Gandhimathi V M, Murali K, Rajasekar S. Stochastic resonance with different periodic forces in overdamped two coupled anharmonic oscillators. Chaos, Solitons, Fractals, 2006, 30(5):1034-1047.
    [165] Baxter G, McKane A J. Quantifying stochastic outcomes. Physical Review E, 2005, 71(1): 011106.
    [166] Lai Y C, Liu Z H, Nachman A, Zhu L Q. Suppression of jamming in excitable systems byaperiodic stochastic resoance. Internatioanl journal of Bifurcation and Chaos, 2004, 14(10):3519-3539.
    [167] Ravichandrana V, Chinnathambia V, Rajasekarb S. Homoclinic bifurcation and chaos in Duffing oscillator driven by an amplitude-modulated force. Physica A, 2007, 376:223-236.
    [168] Cao L, Wu D J. Stochastic resonance in a bistable system driven by cross-correlated noises and an amplitude modulation signal. Physica Scripta, 2007, 76(5):539-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700