用户名: 密码: 验证码:
植物促生细菌提高植物对铅、镉的耐受性及富集效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物修复被认为是成本低廉、操作简单的土壤重金属污染修复技术。大量活跃的根际微生物可通过多种作用方式影响重金属污染环境中植物的生长和对重金属的吸收,从而影响植物对重金属污染的修复效率。本文以细菌的铅(Pb)镉(Cd)耐受性、1-氨基环丙烷-1-羧酸脱氨酶(ACCD)活性及对植物苗期的促生效应为指标,筛选出对铅镉具有较强耐受性、对玉米具有促生能力的细菌菌株。研究细菌对重金属铅、镉胁迫下植物生长和富集铅镉的影响,并对细菌提高玉米重金属耐受性的机制进行探讨,以期为植物耐受重金属机制的进一步阐明和植物—微生物联合修复途径的应用提供理论和实验依据。主要研究结果如下:
     1、筛选出对铅镉具有较强抗性、对玉米具有促生能力的六株菌,经生理生化特性和16S rDNA基因序列分析初步鉴定为Burkholderia cepacia J62、Rahnella sp. LR113、Microbacterium oxydans JYC17、Microbacterium foliorum G16、Enterobacter agglomerans J17-2a和Pseudomonas thivervalensis Y3-9;经安全性试验表明供试菌株对作物无致病性。
     2、研究六株菌与促生作用相关的生物学特性,结果表明:菌株J62、G16和Y3-9具有较高的ACCD活性;菌株J62、JYC17、J17-2a和Y3-9具有精氨酸脱羧酶活性;六株菌均能溶解磷酸钙、产生铁载体和分泌IAA。
     3、研究六株菌与重金属相关的生物学特性,结果表明:菌株J62、LR113、J17-2a和Y3-9能在含Pb1000 mg.L-1或Cd50 mg.L-1的培养基中生长,并对Cu、Zn和Ni具有抗性。六株菌能促进碳酸铅和碳酸镉的溶解,使培养液中Pb2+比对照(0.051 mg.L-1)增加3.45~39.3倍、Cd2+由1.03mg.L-1增加至1.23 mg.L-1~127.53 mg.L-1。菌株J62和JYC17溶解碳酸铅效果较好,菌株J62和J17-2a溶解碳酸镉效果最显著。
     4、以菌株J62和LR113为代表,研究细菌对铅镉的溶解机制和溶解-吸附动态,结果表明:菌株生长代谢产酸使培养液pH降低,促使培养液中Pb2+、Cd2+浓度增加,重金属的溶解改变了细菌分泌的有机酸的种类和含量。菌株J62对碳酸铅、镉的增溶能力高于LR113,菌株LR113对铅镉的吸附能力强于J62。研究菌株对土壤中不溶性铅、镉的影响,菌株J62和LR113均能在土壤中存活,菌株J62对土壤重金属铅镉的增溶能力较强,能显著提高土壤中水溶态铅和镉的浓度。
     4、水培条件下研究细菌J62、JYC17和Y3-9对重金属铅、镉胁迫下玉米生长和富集铅镉的影响。结果表明,三株菌对玉米生长均有促进作用。不加重金属处理时,菌株J62和JYC17显著促进玉米生长。Pb50、100 mg.L-1处理下,三株菌使玉米干重比对照增加25%~94%。Cd2、4 mg.L-1处理下,菌株使玉米根重比对照增加8%~102%,JYC17的促生作用最好。重金属胁迫程度的增加降低了菌株的促生效应。接菌处理能提高玉米根部铅、镉的浓度,比对照增加17%~182%。菌株J62、JYC17和Y3-9均提高了玉米植株的铅和镉总积累量,使铅镉富集量分别比对照增加28~126%和47~130%,菌株J62和JYC17对玉米富集重金属的促进作用显著。
     5、研究菌株J62、JYC17和Y3-9促进玉米生长、提高重金属耐受性的机制,结果表明,供试菌株能在玉米根际和根内定殖,接菌玉米根际和根内的细菌数量显著高于不接菌对照。接菌J62、JYC17和Y3-9降低了铅、镉胁迫下玉米的过氧化程度,使玉米根部尤其是铅处理下超氧化物歧化酶(SOD)和过氧化物酶(POD)活性降低;使玉米叶片中抗氧化剂抗坏血酸(ASA)浓度显著提高,比对照增加14%~123%;使Pb处理下还原型谷胱甘肽(GSH)含量增加;使丙二醛(MDA)含量明显降低。供试菌株使玉米叶绿素含量提高,苹果酸浓度显著增加,使玉米内源脯氨酸(Pro)浓度低于对照。采用透射电子显微镜研究菌株对玉米根部重金属铅、镉积累和分布的影响,结果表明供试菌株显著改变了玉米根部细胞内铅的富集量和分布。与对照相比,接菌J62使玉米根部吸收的Pb显著提高,接菌JYC17使铅积累颗粒变大。不接菌对照的玉米根部铅主要分布于细胞内壁和细胞膜上,接菌处理均使铅主要分布在细胞外壁和周质空间中。接菌处理改变了镉在玉米细胞中的分配,减轻了镉对玉米细胞的伤害。在镉处理的玉米根细胞内观察到供试细菌菌体的存在。
     6、以既能提高土壤中铅镉迁移率、又能提高玉米对铅镉抗逆性的菌株J62为试验菌株,盆栽条件下研究细菌对植物富集土壤Pb和Cd的促进作用。由盆栽1的结果可知,菌株J62能促进重金属铅镉污染土壤中玉米和番茄的生长,使地上部干重分别比对照增加54%和17%,根部干重增加75%和30%。接J62菌株促进了植物根部对铅和镉的吸收,使印度芥菜、玉米和番茄根部的Pb浓度分别比对照增加27%、59%和31%,Cd浓度分别增加174%、31%和12%。接J62菌株显著增加了玉米和番茄全株的重金属吸收量,Pb吸收量比对照增加85%和38%,Cd吸收量增加56%和61%。接J62菌株使植物根际土中抗Pb200 mg.L-1&Cd50 mg.L-1细菌和总细菌的数量远高于对照,并促进了解钾、溶磷和固氮细菌数量的增加;菌株J62能在植物根际定殖,在重金属抗性平板中检测到J62的存在。接J62菌株显著提高了玉米和番茄根际交换态铅、镉的浓度;使根际土pH值低于对照,可溶性糖含量增加6%~40%;显著提高印度芥菜和玉米根际草酸浓度和玉米、番茄根际乙酸浓度,刺激印度芥菜和玉米根际土中丁二酸和番茄根际土中柠檬酸的产生。菌株J62自身的促生特性、对植物根际细菌、pH值、重金属形态、有机酸及可溶性糖的影响可能是其促进玉米和番茄富集铅镉的原因。盆栽2的结果与盆栽1基本一致,接菌J62显著提高了玉米根部、叶部和全植株的干重;促进了玉米根部对Cd、茎部对Pb和Cd的吸收,但降低了Pb和Cd向叶片转运的能力;显著增加了玉米各器官的Pb富集量和玉米根、茎部的Cd富集量。综合而言,菌株J62是一种良好的促进玉米修复土壤重金属铅、镉污染的菌剂,具有修复受污染土壤同时进行玉米生产的潜力。
Phytoremediation is considered as a cost-effective and environment-friendly technology for remediation of heavy metal-contaminated soils. A large number of active rhizosphere microorganisms affect growth and heavy metal accumulation of plant in heavy metal-polluted environment, and then change phytoremediation efficiency. In this paper, Pb&Cd-resistant and maize-growth promoting bacterial strains were screened out by their lead and cadmium resistance, ACC deaminase activity and growth promotion to corn seedlings. The effects of bacteria on plant growth and Pb and Cd accumulation under heavy metals stress and mechanism of microbes improving heavy metal tolerance of maize were studied. The results may further clarify mechanism of plant's heavy metal tolerance and offer the theoretical and experimental basis for application of plant-microbe remediation. Major conclusions were summarized as follows:
     1. Bacterial strains J62, LR113, JYC17, G16, J17-2a and Y3-9 were screened out and respectively identified as Burkholderia cepacia J62, Rahnella sp. LR113, Microbacterium oxydans JYC17, Microbacterium foliorum G16, Enterobacter agglomerans J17-2a and Pseudomonas thivervalensis Y3-9. All bacteria did not cause disease to crops.
     2. The plant growth-promoting characteristics of isolated bacteria were studied in this paper. The results showed that test strains expected LR113 had the ACC deaminase activity. Strain J62, JYC17, J17-2a and Y3-9 had the arginine decarboxylase activity. All the strains could dissolve calcium phosphate and produce siderophores and indole acetic acid (IAA). The phosphate solubilization of strain LR113 and J62, siderophores secretion of strain J62 and LR113 and IAA production capacity of strain G16 and LR113 were better than that of other strains.
     3. The heavy metals characteristics of isolated bacteria were assessed. Strains J62, LR113, J17-2a and Y3-9 could grow in media with Pbl000 mg.L-1 or Cd50 mg.L-1 and tolerated Cu, Zn and Ni as well. All test bacteria could promote PbCO3 and CdCO3 solubilization. The bacteria enhanced Pb2+ contents by 3.45 to 39.3 times, compared to non-inoculated control. Cd2+contents in media were increased from 1.03 mg.L-1 to 1.23~127.53 mg.L-1. The lead carbonate activation of strain J62 and JYC17 and cadmium carbonate activation of strains J62 and J17-2a were significantly better than that of other strains. Strain J62 and LR113 were chosen to investigate release and absorption dynamic and mechanism of lead and cadmium. The data revealed that pH descent arose by strains growth increased water-soluble Pb2+or Cd2+concentration in liquid media. The insoluble Pb and Cd solubilization ability of strain J62 was higher than that of LR113. The organic acid species and concentrations produced by bacteria were determined by HPLC. In the media inoculated strain J62, Pb release had no significant effect on organic acids production and Cd release reduced organic acids contents. Carbonate lead and cadmium solubilization promoted organic acids secretion by strain LR113. The organic acids types produced by these two strains were quietly different. Lead and cadmium adsorbed by bacterial cell were measured through the desorption ability of NH4OAc, HCl and EDTA. NH4OAc extracted more Pb (6.17 mg.L-1) on J62 cells. HCl had the best desoiption capability to Cd (77.41mg.L-1) on strain J62 mycelium and Pb (33.65mg.L-1) or Cd (91.92mg.L-1) adsorbed by strain LR113. The Pb and Cd absorption capacity of strain LR113 were better than that of strain J62. The results of bacteria impact on insoluble lead and cadmium in soils demonstrated that strains J62 and LR113 could colonize in the soils; strain J62 had stronger lead and cadmium activation ability than strain LR113 and significantly increased water-soluble Pb and Cd in soils.
     4. Strain J62, JYC17 and Y3-9 were selected as test bacteria to research the effect of bacterial inoculation on maize growth and Pb and Cd accumulation in aqueous culture with heavy metal stress. The experiments clearly showed that all strains promoted maize growth. Strain J62 and JYC17 significantly promoted the growth of corn in nutrient solution without heavy metal ions. In nutrient solution with Pb2+50 or 100 mg.L-1, dry weights of corn inoculated with strains were higher (25%~94%) than that of non-inoculated control. In nutrient solution with Cd+2 or 4 mg.L-1, all bacteria enhanced root weight of maize by 8%~102%; the growth-promoting role of strain JYC17 was better than J62 and Y3-9. The enhancement of heavy metals stress reduced the growth-promoting capability of bacteria. Bacterial inoculation could improve lead and cadmium concentrations by 17%to 182%in com roots, whereas had little effect on lead and cadmium uptake in corn shoots. Inoculation with strain J62, JYC17 and Y3-9 all increased total lead and cadmium accumulation of maize. Compared to non-inoculated control, strain treatments added 28-126%Pb and 47-130%Cd in maize respectively. Strain J62 and JYC17 had a significant improvement on heavy metals accumulation in maize.
     5. The mechanism of three bacteria improving maize growth and heavy metals tolerance was further explored. The results displayed that the test strains could colonize in both root and rhizosphere of maize. The bacterial numbers of maize inoculated strains were significantly higher than that of control. Strain J62, JYC17 and Y3-9 inoculation reduced maize peroxidation level under lead or cadmium stress. In the maize inoculated with strains, SOD and POD activity reduced, especially in Pb treatments; the concentration of antioxidants ASA significantly increased by 14%-123%. GSH content increased in maize treated with Pb and slightly dropped in maize treated with Cd, which might a large number of GSH be used for PCs anabolism. The MDA contents obviously reduced in inoculated maize than that in control maize. It was dissimilar effect of different strains on endogenous Pro concentrations in maize. Strain J62 inoculation significantly declined Pro level in maize treated with Pb, but slightly increased Pro concentration in maize treated with Cd. Strain JYC17 and Y3-9 inoculation made Pro concentrations remarkable lower than that of control, in maize treated with high concentrations of Pb or Cd. The data of organic acids determined by HPLC revealed that strains incubation increased significantly malic acid concentrations in maize shoots. Bacterial effects on lead or cadmium accumulation and distribution in corn roots were studied through TEM. The results showed that bacteria significantly changed Pb concentration and distribution in maize root cells. Compared with the non-inoculated control, strain J62 Inoculation significantly increased Pb absorb in corn roots, moreover, inoculation with strain JYC17 caused larger lead particles. Pb in root of control maize mainly distributed in cellular wall and membrane, whereas Pb in maize roots inoculated bacterial strains mainly distributed in external layer of cellular wall and extracellular space. Bacterial inoculation also altered Cd distribution and alleviated Cd phytotoxicity in maize cells. Bacterial cells of test strains were observed in root cells of maize.
     6. The strain J62 that improved lead and cadmium bioavailability in soils and metal-tolerance of com was selected for pot experiment. The results of pot test one showed that strain J62 could promote growth of maize and tomato in lead and cadmium-contaminated soils. Dry weight of maize and tomato inoculated J62 increased by 54% and 17% in shoots and by 75% and 30% in roots. Strain J62 could improve lead and cadmium uptake in plant roots. The Pb concentrations in Indian mustard, corn and tomato inoculated strain J62 were 27%,59% and 31% respectively more than that in control. The Cd concentrations were 174%,31% and 12% higher than that in control, respectively. In conclusion, lead and cadmium total contents in maize and tomato were significantly increased by inoculation of strain J62. The Pb uptake in maize and tomato inoculated strain J62 were 85% and 38% respectively more than that in control, Cd uptake were 56% and 61% respectively more than that in control. The amount of Pb (200 mg.L-1) and Cd (50 mg.L-1)-resistant bacteria and total bacteria in rhizosphere inoculated with strain J62 were much higher than that in controls. The population of potassium-releasing, phosphorus-soluble and nitrogen-fixing bacteria in rhizosphere was also enhanced by strain inoculation. Strain J62 could colonize in test plants rhizosphere and obtain in heavy metal-resistant plates. Moreover, strain J62 inoculation also significantly improved NH4OAc-extracted Pb and Cd concentration in rhizosphere of maize and tomato. The pH values were decreased in the soils inoculated with strain and dissoluble sugar were increased by 6% to 40%, compared with the uninoculation control. Furthermore, strain J62 inoculation increased ocalic acid concentration in Indian mustard and corn rhizosphere and acetic acid concentration in maize and tomato rhizosphere, stimulated production of succinic acid in Indian mustard and maize rhizosphere and citric acid in tomato rhizosphere. Effects of strain J62 on bacterial number, pH, metal form, organic acid and soluble sugar contents might promote Pb or Cd accumulation of corn and tomato. The results of pot test two were accordant with that of test one. Burkholderia cepacia J62 is a good bioinoculant to strengthen phytoremediation in lead and cadmium contaminated soils.It is potential to apply maize inoculated with strain J62 to remedy metal-polluted soils and produce corn cobs.
引文
1. Abou-Shanab R A I, Angle J S, Delorme T A, Chaney R L, Berkum P van, Moawad H, Ghanem K, Ghozlan H A. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale[J]. New phytologist,2003,158:219-224
    2. Abou-Shanab R A I, Berkum P van, Angle J S. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale [J]. Chemosphere,2007,68:360-367
    3. Adams D, Yang S F. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene[J]. Proceeding of National Academy Science of the USA,1979,76 (1):170-174
    4. Adriaensen K, Lelie D, Laere AV, Vangronsveld J, Colpaert J V. A zinc-adapted fungus protects pines from zinc stress [J]. New phytologist,2003,161:549-555
    5. Ahmet A, Mustafa D. Lead (Ⅱ) removal from natural soils by enhanced electrokinetic remediation [J]. Science of the Total Environment,2005,337:1-10
    6. Akihiro I, Takashi M, Yoshie H, Takashi A, Masanori T, Hikaru S, Yumiko S, Tomohiko K, Hiroaki H, Daisuke S, Satoshi T, Yoshibumi K, and Taku T. Spermidine synthase genes are essential for survival of Arnbidopsis[J]. Plant Physiology Preview,2004,135 (9):1565-1573
    7. Alikhani H A, Saleh-Rastin N, Antoun H. Phosphate solubilization activity of rhizobia native to Iranian soils[J]. Plant and Soil,2006,287:35-41
    8. Ana A, Patricia S, Jose L. Martinez. Stenotrophomonas maltophilia D457R contains a cluster of genes from gram-positive bacteria involved in antibiotic and heavy metal resistance[J]. Antimicrobial Agents and Chemotherapy,2000,44 (7):1778-1782
    9. Anderson T A, Guthie E A, Walton B T. Bio-remediation in the rhizophere[J]. Environmental Science Technology,1993,27:2630-2636
    10. Arazi T, Sunkar R, Kaplan B, et al. Tobacco plasma membrane calmodulin binding transporter confers Ni+ tolerance and Pb2+ hypersensitivity in transgenic plants[J]. The Plant Journal,1999, 20:171-182
    11. Arora N K, Kang S C and Maheshwari D K. Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against macrophomina phaseolina that causes charcoal rot of groundnut[J].Current Science,2001,81(6):673-677
    12. Arshad M, Saleem M and Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation[J]. Trends in Biotechnology,2007,25(8):356-362
    13. Avery SV, Smith SL, Ghazi AM, Hoptroff MJ. Stimulation of strontium accumulation in linoleate-enriched Saccharomyces cerevisiae is a result of reduced Sr+efflux [J]. Applied and Environmental Microbiology,1999,65 (3):1191-1197
    14. Bader J A,Shoemaker C A, Klesius P H. Rapid detection of columnaris disease in channel catfish (Ictalurus punctatus) with a new species-specific 16SrRNA gene-based PCR primer for Flavobacterium columnare[J]. Journal of Microbiology Methods,2003, (2):209-220
    15. Baker A J M and Brooks R R. Terrestrial higher plants which accumulate metallic elements—a review of their distribution, ecology and phytochemistry [J]. Biorecovery,1989, (1):81-126
    16. Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J.&C. Presl (Brassicaceae) [J]. New phytologist,1994,127:61-68.
    17. Begonia G B. Comparative lead uptake and responses of some plants grown on lead contaminated soils[J]. J Miss Acad Sci,1997,42:101-106
    18. Belimov A A, Hontzeas N, Safronova V I, Demchinskaya S V, Piluzza G, Bullitta S, Glick B R. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) [J]. Soil Biology and Biochemistry,2005.37,241-250
    19. Ben J D, Jan W M, Peter A H, Bakker M and Schippers B. Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp[J]. Netherlands Journal of.Plant Pathology,1993,99:277-289
    20. Berthelin J, Munier-Lamy C, Leyval C. Effect of microorganisms on mobility of heavy metals in soils. In Huang PM, Berthelin J, Bollag J M, McGill W B, Pago A L ed. Environmental Impact of Soil Component, Mineral-organic and Microorganisms Interaction on Environmental Quality. Boca Raton:CRC Press/Lewis Publishers,1995,3-17
    21. Bertini I, Hartmann H, Klein T, Liu GH, Luchinat C, Weser U. High resolution solution structure of the protein part of Cu- metallothionein[J]. European Journal of Biochemistry,2000,267:1008- 1018
    22. Beveridge T J, Schultze Lam S. Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable flocs and their contribution to mineralization in natural freshwater environment s [A]. In:Allen H E, Huang C P, Bailey G W. Metal speciation and contamination of soil [M]. BocaRaton:CRG Press/ Lewis Publisher,1995
    23. Beveridge T J. Role of cellular design in bacterial metal accumulation and mineralization [J]. Annual Review of Microbiology,1989,43:147-171
    24. Beveridge T J. The response of cell walls of Bacillus subtilisto metals and electron microscopic strains[J]. Canada Journal of Microbiology,1978,24:89-104
    25. Blaha D, Prigent-Combaret C, Mirza M S, Moenne-Loccoz Y. Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminaseencoding gene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography[J]. FEMS Microbiology Ecology, 2006,56:455-47
    26. Bleecker A B, Kende H. Ethylene:a gaseous signal molecule in plants [J]. Annual Review of Cell Develop. Biology,2000,16:1-18
    27. Borremans B, Hobman J L, Provoost A, Brown N L, van der Lelie D. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34 [J]. Journal of Bacteriology,2001,183:5651-5658
    28. Bosecker k. Bioleaching:metal solubilization by microorganisms[J]. FEMS Microbiology Reviews, 1997,20,591-604
    29. Bric, J M, Bostock R M, Silversone S E. Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane[J]. Apply and Environmental Microbiology, 1991,57:535-538
    30. Byers H K, Stackebrandt E, Hayward C, Blackall L L. Molecular investigation of a microbial mat associated with the great artesian basin [J]. FEMS Microbiology Ecology,1998,25:391-403
    31. Cao R X, Ma L Q, Chen M, Singh S P, Harris W G. Phosphate-induced metal immobilization in a contaminated site[J]. Environment Pollution,2003,122:19-28
    32. Carlos G, Itzia A. Phytoextraction:a cost-effective plant-based technology for the removal of metals from the environment[J]. Bioresource Technology,2001,77:229-236
    33. Chabot R, Antoun H and Cescas M P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar.phaseoli[J]. Plant and Soil,1996,184: 311-321
    34. Chang I S, Kim B H. Effect of sulfate reduction activity on biological treatment of hexavalent chromium [Cr (VI)] contaminated electroplating wastewater under sulfate2rich condition [J]. Chemosphere,2007,68 (2):218-226
    35. Chanmugathas P, Bollag J M. A column study of the biological mobilization and speciation of Cadmium in soil [J]. Archives of Environmental Contamination and Toxicology,1988,17 (2):229-237
    36. Chen B D, LiX L, Tao H Q, Christie P, Wong M H. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in acalcareous soil spiked with various quantities of zinc[J]. Chemosphere, 2003,50:839-846
    37. Chen J, Zhon J, Golisbrough P B. Characterization of phytochelatin synthase from tomato[J]. Plant Physiology,1997,101:165-172
    38. Chen T B, Wei C Y, Huang Z C, et al. Arsenic hyperaccumulator Pteris vittata L and its arsenic accumulation[J]. Chinese Science Bulletin,2002,47:902-905
    39. Chen X, Wu C H, Tang J J, Hu S J. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment[J]. Chemosphere,2005,60:665-671
    40. Cindy H W, Thomas K W, Ashok M et al. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals[J]. Apply and Environmental Microbiology,2006,72(2):1129-1134
    41. Citterio S, Prato N, Fumagalli P. The arbuscular mycorrhizal fungus Clomus mosseae induces growth and metal accumulation changes in Cannabis sativa L. [J].Chemosphere,2005.59:21-29.
    42. Cobbett C S, Goldsbrough P. Phytochelatins and metallothioneins, roles in heavy metal detoxification and homeostasis[J]. Annual Review of Plant Biology,2002,53:159-182
    43. Cobbett C S. Phytochelatins and their role in heavy metal detoxification[J]. Plant Physiology,2000, 123:825-833
    44. Crowley D E, Wang Y C, Reid C P P, Szaniszlo P J. Mechanism of iron acquisition from siderophores by microorganisms and plants[A]. Plant and Soil,1991,130:179-198
    45. Dar G H. Impact of lead and sewage-sludge on soil microbial biomass and carbon and nitrogen mineralization[J]. Bulletin of Environmental Contamination and Toxicology,1997,58:234-240
    46. de Souza M P, Huang C P, Chee N, Terry N. Rhizosphere bacteria enhance the accumulation of selenium and mercury in wetland plants[J]. Planta,1999,209(2):259-263
    47. Dean W B. Ecological effects, transport and fate of mercury:a general review [J].Chemosphere, 2000,40 (12):1335-1351
    48. Dell'Amico E, Cavalca L, Andreoni V. Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria[J]. Soil Biology and Biochemistry,2008,40:74-84
    49. Dermont G, Bergeron M, Mercier G, Richer-Lafl eche M. Soil washing for metal removal:A review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials,2008, 152:1-31
    50. Dey R, Pal K K, Bhatt D M, Chauhan S M. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria[J]. Microbiological Research,2004,159(4):371-394
    51. Dodd J C, Boddington C L, Rodriguez A, Gonzalez-Chavez C and Mansur I. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera:form, function and detection[J]. Plant and Soil, 2000,226:131-151
    52. Douchkov D, Gryczka C, Stephan U W, Hell R, BaumLein H. Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco[J]. Plant, Cell and Environment,2005,28:365-374
    53. Ebbs S D, Kochian LV. Phytoextraction of zinc by oat, barely and Indian mustard [J]. Bulletin of Environmental Contamination and Toxicology,1998,60 (3):433-440
    54. Ekmekci Y, Tanyolac D, Ayhana B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars[J]. Journal of Plant Physiology,2008,165:600-611
    55. Elizabeth B, Christopher P, Chanway. The growth promoting effects of a bacterial endophyte on lodgepole pine are partially inhibited by the presence of other rhizobacteria [J]. Canada Journal of Microbiology,1998,44: 980-988
    56. Elliott H A, Brown GA. Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils [J].Journal of Water, Air and Soil Pollution,1989,45:361-369
    57. Elliott H A, Shastri N L. Extractive decontamination of metal-polluted soils using oxalate[J]. Water Air Soil Pollut,1999,110:335-346
    58. Ellman G L. Tissue sulfhydryl groups [J]. Archives of Biochemistry and Biophysics,1959,82:70-77
    59. Endo G, Silver C C. The transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureusplasmid pI258[J]. Journal of Bacteriology,1995,177 (15):4437-4441
    60. Fiore S D, Gallo M.D. Endophytic bacteria:their possible role in the host plant[M]. In:Fendrik, I. eds. Azospirillum Ⅵ and related microorganisms. Berlin:Springel-Vefiag,1995:169-187
    61. Fliebbach A, Martens R. Soil microbial biomass and activity in soil treated with heavy metal contaminated sewage sludge [J]. Soil Biology,1994,26:1201-1205
    62. Flores H E and Galston A W. Osmotin stress-induced polyamine accumulation in cereal leaves[J]. Plant Physiology,1984,75:102-109
    63. Gadd GM. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization[J]. Current Opinion in Biotechnology,2000,11:271-279
    64. Gekeler W, Grill E, Winnacker E L, Zenk M H. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins[J]. Z. Naturforsch,1989,44:361-369
    65. Giachetti G and Sebastiani L. Metal accumulation in poplar plant grown with industrial wastes[J]. Chemosphere,2006,64:446-454
    66. Giblin FJ. Glutathione: a vital lens antioxidant[J]. Journal of Ocular Pharmacology and therapeutics, 2000,16: 121-135
    67. Gisbert C, Ros R, De Haro A, et al. A plant genetically modified that accumulates Pb is especially promising for phytoremediation[J]. Biochemical and Biophysical Research Communications,2003, 303:440-445
    68. Glick B R, Jacobson C B, Schwarze M M K, Pasternak J J.1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation[J]. Canada Journal of Microbiology,1994,40:911-915
    69. Glick B R. Phytoremediation:synergistic use of plants and bacteria to clean up the environment [J]. Biotechnology Advance,2001,21:383-393
    70. Glick, B R, Penrose D M, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria[J]. Journal of Theoretical Biology,1998,190:63-68
    71. Gravel V, Antoun H, Tweddell R J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride:Possible role of indole acetic acid (IAA) [J]. Soil Biology and Biochemistry,2007,39:1968-1977
    72. Grichko V P, Glick B R. Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria[J]. Plant Physiology and Biochemistry,2001,39:11-17
    73. Grill E, Winnacker E L and Zenk M H. Phytochelatins:a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins[J]. Proceedings of the National Academy of Sciences of USA,1987,84(2):439-443
    74. Groppa M D, Tomaro M L, Benavides M P.Polyamines as protectors against cadmium or copper-induced oxidatived amage in sunflower leaf discs [J]. Plant Sci,2001,161:481-488
    75. Gupta M, Rai N U and Tripathi D R. Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (L.f.) Royle [J]. Chemosphere,1995,30 (10):2011-2020
    76. Ha S B, Smith A P, Howden R, DietrichW M, Bugg S, O'Connell M J, Goldsbrough P B., Cobbett C S. Phytochelatin synthase genes from Arabidopsis and the yeast schizosaccharomyces pombe[J]. Plant Cell,1999,11:1153-1164
    77. Hanson A D, Hitz W D. Metabolic responses of mesophyte to plant water deficits [J]. Annual Reviews in Plant Physiology,1982,33:163-203
    78. Hasegawa I, Terada E, Sunairi M, et al. Genetic improvement of heavy metal tolerance in plants by yransfer of the yeast metallothionein gene (CUPI) [J]. Plant and Soil,1997,196:277-281
    79. Hasnain S, Sabri A N. Growth stimulation of Triticum Aestivum seedlings under Cr-stresses by non rhizospheric Pseudomonad strains. Abstracts of the 7th International Symposium on Biological Nitrogen Fixation with Non-Legumes. Kluwer Academic Publishers, the Netherlands,1996,36
    80. Hasnain S, Yasmin S, Yasmin A. The effects of lead resistant Pseudomonads on the growth of Triticum aestivum seedlings under lead stress[J]. Environmental Pollution,1993,81,179-184
    81. Hassan M T, Lelie van der D, Springael D, RomLing U, Ahmed N, Mergeay M. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa[J]. Gene, 1999,238:417-425
    82. Heaton A C P, Rugh C L. Phytoremediation of mercury and methylmercury polluted soils using genetically engineered plants [J]. Journal of Soil Contamination,1998,7:497-509
    83. Heggo A, Angle J S, Chaney R L. Effeets of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans[J]. Soil Biology and Biochemistry,1990,22:865-869
    84. Hoflich G, Metz R. Interaction of plant-microorganism association in heavy metal containing soils from sewage farms[J]. Bodenkultur,1997,48:238-247
    85. Honma M, Shimomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid[J]. Agricultural and Biological Chemistry,1978,42,1825-1831
    86. Hontzeas N, Richardson AO, Belimov A, Safronova V, AbuOmar M M, Glick B R. Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes[J]. Apply and Environmental Microbiology,2005,71:7556-7558
    87. Hontzeasa N, Zoidakisb J, Glicka B R, Abu-Oma r M M. Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion[J]. Biochimica et Biophysica Acta,2004,1703(1): 11-9
    88. Huang J W, Chen J, Berti W R, Cunningham S D. Phytoremediation of lead-contaminated soils:Role of synthetic chelates in lead phytoextraction [J]. Environmental Science and Technology,1997,31: 800-805
    89. Ian Martin, Paul Bardos. A review of full scale treatment technologies for the remediation of contaminated soil [M].EPP Publication,1995
    90. Jaeckel P, Krauss G. Sieglinde menge cadmium induces a novel metallothionein and phytochelatin in an aquatic fungus [J]. Biochemical and Biophysical Research Communications,2005,333:150-155
    91.Janouskova M, Pavli'kova D, Vosatka M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil[J]. Chemosphere,2006,65:1959-1965
    92. January M C, Cutright T J, Keulen H V, Wei R. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe:Can Helianthus annuus hyperaccumulate multiple heavy metals?[J]. Chemosphere,2008,70: 531-537
    93. Juwarkar A A, Nair A, Dubey Kirti V, Singh S K, Devotta S. Biosurfactant technology for remediation of cadmium and lead contaminated soils [J]. Chemosphere,2007,68:1996-2002
    94. Kandeler E, Luftenegger G. Influence of heavy metals on the functional diversity of soil microbial communites [J]. Biology and fertility of soil,1997,23:299-306
    95. Kersten W J, Brooks R R, Reeves R D, Jadffre T. Nature of nickel complexes in psychotria douarrei and other nickel-accumulating plants[J]. Phytochemistry,1980,19:1963-1965
    96. Khan A G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation [J]. Journal of Trace Elements in Medicine and Biology,2005,18: 355-364
    97. Khan K S, Xie Z M, Huang CY. Effects of cadmium, lead and zinc on size of microbial biomass red soil [J]. Pedosphere,1998, A8:27-32
    98. Komarek M, TlustosaP, kova J, Chrastny V, Ettler V. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils [J]. Chemosphere, 2007,67:640-651
    99. Kramer U, Cotter-Howells J D, Charnock J M, Baker A J M, Smith A C. Free histidine as a metal chelator in plants that accumulate nickel[J]. Nature,1996,379:635-638
    100. Kramer U, Pickering I J, Prince R C, Raskin I, Salt D E. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi Species [J]. Plant Physiology,2000, 122(4):1343-1354
    101. Kumar P B, Dushenkov V, Motto H, et al. Phytoextraction:the use of plants to remove heavy metals from soils[J].Environmental Science and Technology,1995,29: 1239-1245
    102. Kuroda K, Ueda M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His[J]. Applied Microbiology and Biotechnology,2003,63:182-186
    103. Ledin M. Accumulation of metals by microorganisms -processes and importance for soil systems[J]. Earth Science Reviews,2000,51 (1-4):1-31
    104. Lee J, Bae H, Jeong J, et al. Functional expression of heavy metal transporter in arabidopsis enhances resistance to and decreases uptake of heavy metals [J]. Plant Physiology,2003, 133:589-596
    105. Leung H M, Ye Z H, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution,2005,139 (1):1-8
    106. Li H F, Wang Q R, Cui Y S, Dong Y T, Christie P. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil—a preliminary study[J]. Science of the total environment,2005,339:179-187
    107. Li X L, Christic P. Changes in soil solution Zn and pH and uptake of Zn by Arbusecular mycorrhizal red clover in Zn contaminated soil [J]. Chemophere,2001,42(2):201-207
    108. Liu Y, Zhu Y G, Chen B D, Christie P, Li X L.Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions[J]. Environment international,2005,31:867-873
    109. Lichtenthaler H K. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes[M]. In: Baltscheffsky, M. (Ed.), Current Research in Photosynthesis. Kluwer Academic Publishers, Dordrecht,1987,471-474
    110. Lindsay W L. Chemical Equilibrium in Soils [M].New York:John Wiley&Sons,1979
    111. Lisbeth M O, Anne J P, Alexandra B. Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis[J]. Engineering Geology,2005,77:317-329
    112. Liu SQ, Yang ZX, Wang XM, Zhang XG, Gao RT, Liu X. Effects of Cd and Pb pollution on soil enzymatic activities and soil microbiota[J]. Frontiers of Agriculture in China,2007,1(1):85-89
    113. Liu Y, Zhu Y G, Chen B D, Christie P, Li X L. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L [J]. Mycorrhiza,2005,15(3):187-192
    114. Li Z Y, Guo S Y, Li L. Mechanism and effect of polycose to alga[J], Chemistry of Life,1998,18(1): 17-19
    115. Lu X Y, He C Q. Tolerance, uptake and accumulation of cadmium by Ricinus comrnunis L.[J]. J Agro Environ Sci,2005,24(4):674-677
    116. Madhaiyan M, Poonguzhali S, Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.) [J].Chemosphere,2007,69:220-228
    117. Marchiol L, Fellet G, Perosa D, Zerbi G. Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes:A field experience [J]. Plant Physiology and Biochemistry,2007,45:379-387
    118. Mario Garcia-Dominguez, Luis Lopez-Maury, Francisco J. Florencio, Jose C. Reyes. A gene cluster involved in metal homeostasis in the cyanobacterium Synechocystis sp. strain PCC 6803[J]. Journal of Bacteriology,2000,182(6):1507-1514
    119. Mathys W. The role of malate, oxalte and mustard oil glucosides in the evolution of zinc-resistance in herbage plants[J]. Physiol Plant,1977,40:130-136
    120. Mavropoulos E, Rocha N C, Moreirac J C, Rossi A M, Soares G A. Characterization of phase evolution during lead immobilization by synthetic hydroxylapatite[J]. Materials Characterization, 2004,53:71-78
    121. Mayaka S, Tirosh T, Glick B R, Plant growth-promoting bacteria that confer resistance in tomato to salt stress [J]. Plant Physiology and Biochemistry 2004,42:565-572
    122. Mayaka S, Tirosh T, Glick B R. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers [J]. Plant Science,2004,166:525-530
    123. McGrath SP, Zhao FJ, Lombi E. Plant and rhizosphere processes involved in phytoremediation of metal contaminated soils[J]. Plant Soil,2001,232:207-214
    124. Meagher R B, Heaton A C. Strategies for the engineered phytoremediation of toxic element pollution:mercury and arsenic[J]. Industrial Microbiology and Biotechnology,2005,32(11-12): 502-513
    125. Meers E, Ruttens A, Hopgood M, Lesage E, Tack F M G. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils[J]. Chemosphere,2005,61:561-572
    126. Menaoza-Cozatl D, Loza-Tavera H, Herna A, et al. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants[J]. FEMS Microbiology Reviews,2005,29(4): 653-671
    127. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, Lelie van der D, Wattiez R. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes[J]. FEMS Microbiology Reviews,2003,27:385-410
    128. Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science,2002,7: 405-410
    129. Montinaro S, Concas A, Pisu M, Cao G. Remediation of heavy metals contaminated soils by ball milling[J]. Chemosphere,2007,67:631-639
    130. Morel J L. Assessment of phyto availability of trace elements is soils [J]. Analysis Magazine,1997, 25:70-72
    131. Narender R G, Prasad M N V. Heavy metal-binding proteins/peptides:occurrence, structure, synthesis and functions:A review [J]. Environmental and Experimental Botany,1990,30 (3):251-264
    132. Nassar A H, El-Tarabily K A, and Sivasithamparam K. Growth promotion of bean(Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus[J]. Plant Growth Regulation,2003,40:97-106
    133. Nies D H. Efflux-mediated heavy metal resistance in prokaryotes[J]. FEMS Microbiology Reviews, 2003,27:313-339
    134. Nies DH, Nies A, Chu L, Silver S. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus [J]. Proc Natl Acad Sci USA,1989,86: 7351-7355
    135. Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell w all in the heavy metal tolerance of Athyrium yokosense [J]. Plant and Soil,1987,101(1):15-20
    136. Nolte K D, HansonA D, DouglasA G. Proline accumulation and methylation to proline betaine in Citrus:Implications for genetic engineering of stress resistance[J]. J Amer Sc Hort Sci,1997,122 (1):8-13
    137. Nosir S. The impact of the almalyk industrial complex on soil chemical and biological properties [J]. Environmental Pollution,2005,136:331-340
    138. Nriagu JO. A silent epidemic of environmental metal poisoning[J]? Environmental Pollution,1988, 50:139-161
    139. Ogera C, Bertheb T, Quilleta L, Barraya S, Chiffoleauc J F, Petita F. Estimation of the abundance of the cadmium resistance gene cadA in microbial communities in polluted estuary water[J]. Research in Microbiology,2001,152:671-678
    140. Pan A, Yang M, Tie F, et al. Expression of mouse Metallothionein-1-Gene confers cadmium resistance in transgenic tobacco plants[J]. Plant Molecular Biology,1994,24:341-351
    141. Pandey A, Trivedi P, Kumar B, Palni L M S. Characterization of a phosphate polubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central himalaya[J]. Current microbiology,2006,53:102-107
    142. Pethkar AV, Kulkarni S K, Paknikar K. M.Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides[J]. Bioresource Technology,2001,80:211-215
    143. Perry J, Carol A. Role of a Candida albicans P1-Type ATPase in resistance to copper and silver ion toxicity[J]. Journal of Bacteriology,2000,182(17):4899-4905
    144. Persans M W, Yan X, Patnoe J M, Kramer U, Salt DE.Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense[J]. Plant Physiology,1999,121:1117-1126
    145. Probstein R F, Hick R E. Removal of contaminants from soils by electric fields[J]. Science,1993, 260:498-503
    146. Qiu R L, Fang X H, Tang Y T, Du S J, Zeng X W, Brewer E. Zinc hyperaccumulation and uptake by Potentilla Griffithii Hook[J]. International Journal of Phytoremediation,2006,8:299-310
    147. Rajkumar M, Freitas H. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals[J]. Chemosphere,2008,71:834-842
    148. Rajkumar M, Nagendran R, Lee K J, Lee H W, Kim S Z. Influence of plant growth promoting bacteria and Cr on the growth of Indian mustard[J], Chemosphere,2006,62:741-748
    149. Rauser W E. Phytochelatins and related peptides:structure, biosynthesis and function[J]. Plant Physiology,1995,109:1141-1149
    150. Reddy AM, Kumar SG, Jyothsnakumari G, Thimmanaik S, Sudhakar C. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.)[J]. Chemosphere,2005,60(1):97-104
    151. Reeves R D, Baker AJ M. Metal-accumulating plants.In:Raskin I and Ensley BD eds., Phytoremediation of Toxic Metals:Using Plants to Clean Up the Environment[M]. John Wiley & Sons.New York,2000
    152. Reeves R D, Brooks R R. Hyperaccumulation of lead and zinc by two metallophytes from a mine area in Central Europe[J]. Environmental Pollution,1983,31:277-287
    153. Requejo R, Tena M. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity[J]. Phytochemistry,2005,66:1519-1528
    154. Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B,Zenk MH. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata[J]. Phytochemistry,1998,47: 339-347
    155. Salt D E, P rince R C, P ick ing I J, et al. Mechanism s of cadmium mobility and accumulation in indian mustard[J]. Plant Physiology,1995,109:1427-1433
    156. Saravanan V S, Madhaiyan M, Thangaraju M. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 2007,66:1794-1798
    157. Sheng X F, Xia J J. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria[J]. Chemosphere,2006,64:1036-1042
    158. Shweta S, Arvind M, Kayastha. Response of microbial organism to metal contained soil [J]. Journal of Microbiology and Biotechnology,2001,17:667-672
    159. Siegel S M, Keller P, Siegel BZ, Galun E. Metal speciation, separation and Recovery [M]. Proc Intern Symp. Chicago:Kluwer Academic Publishers,1986,77-94
    160. Silva-Stenicoa M E, Pachecoa F T H, Rodriguesa J L M, Carrilhob E, Tsaia S M. Growth and siderophore production of Xylella fastidiosa under iron-limited conditions[J]. Microbiological Research,2005,160:429-436
    161. Silver S, Phung L T. A bacterial view of the periodic table:genes and proteins for toxic inorganic ions[J]. Journal of Industrial Microbiology and Biotechnology,2005,32:587-605
    162. Silver S. Bacterial resistance to toxic metal ions-a review[J]. Gene,1996,179:9-19
    163. Simon C Andrews, Andrea K Robinson, Francisco Rodriguez-Quinones. Bacterial iron homeostasis[J]. FEMS Microbiology Reviews,2003,27 (2-3):215-237
    164. So L M, Chu L M, Wong P K. Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.) [J]. Chemosphere,2003,52:1499-1503
    165. Song W Y, Sohn E J, Martinoia E, et al. Engineering tolerance and accumulation of lead and cadmium in transgenic plants[J]. Nature Biotechnology,2003,21(8):914-919
    166. Srivastava M, Ma L Q, Santos J A G. Three new arsenic hyperaccumulating ferns[J]. Science of the Total Environment,2006,364,24-31
    167. Stearns J C, Shah S, Greenberg B M, Dixon D G, Glick B R. Tolerance of transgenic canola expressing 1-aminocyclopropane-'-carboxylic acid deaminase to growth inhibition by nickel [J]. Plant Physiology and Biochemistry,2005,43:701-708
    168. Steffens J C. The heavy metal-binding peptides of plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:533-575
    169. Stephan U W, Scholz G. Nicotianamine:mediator of trans2port of ion and heavy metals in the phloem [J]? Physiologia Plantarum,1993,88:522-527
    170. Sun Yuebing, Zhou Qixing, Diao Chunyan. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. [J]. Bioresource technology,2008,99: 1103-1110
    171. Szmigielask A M, Van Rees K C J, Cieslinski G. Low molecular weight dicarboxylic acids in rhizosphere soil of durum wheat [J]. Journal of agricultural Food Chemistry,1996,44:1036-1040
    172. Tanja K, Ralph J, Eva O, Claes-Goran G. Silver-based crystalline nanoparticles, microbially fabricated[J]. Proc Natl Acad Sci USA,1999,96 (24):13611-13614
    173. Thieken A, Winkelmann G. A novel bioassay for the detection of siderophores containing ketohydroxy bidentate ligands[J]. FEMS Microbiology Letters,1993,111(2-3):281-285
    174. Umrania V V. Bioremediation of toxic heavy metals using acidothermophilic autotrophes [J]. Bioresource Technology,2006,97(10):1237-1242
    175. Vasak M. Advances in metallothionein st ructure and functions[J]. Journal of Trace Elements in Medicine and Biology,2005,19 (1):13-17
    176. Verkleij J A C, Koevoets P L M, Blake-Kalff M M A, Chardonnens A N. Evidence for an important role of the tonoplast in the mechanism of naturally selected Zn tolerance in Silene vuIgaris[J]. Journal of Plant Physiology,1998,153:188-191
    177. Wei S H, Zhou Q X. Phytoremdiation of cadmium-contaminated soils by Rorippa globosa using two-phase planting[J]. Environmental Science and Pollution Research,2006,13(3):151-155
    178. Weissenhom I, Leyval C, Belgy G, Berthelin J. Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mavs L.) in pot culture with contaminated soil [J]. Mycorrhiza,1995,5(4): 245-251
    179. Whiting S N, De-Souza M P, Terry N. phizosphere bacteria mobilize Zn for hyperacuumulation by Thlapi caerulescens[J]. Environmental science and technology,2001,35:3144-3150
    180. Wilfried H O Ernst, Hans J M Nelissen, Wilma M. Ten Bookum Combination toxicology of metal-enriched soils:physiological of a Zn-and Cd- resistant ecotype of Silene V ulgaris on polymetallic soils [J]. Environmental and Experimental Botany,2000,43:55-71
    181. Williams ST, McNeilly T, Wellington E M H. The decomposition of vegetation growing on metal mine wastes [J]. Soil Biology and Biochemistry,1977,9:271-275
    182. Wu S C, Cheung K. C, Luo Y M, Wong M H. effect of inoculation of plant growth-promoting rhizobacteria on metal uptake by brassica juncea[J]. Environmental Pollution,2006,140:124-135
    183. Xiang C B, Oliver D J. Glutathione metabolic genes coordinately respond to heavy metals and jasmoni acid in Arabidopsis[J]. Plant Cell,1998,10(7):1539-1550
    184. Xiong J B, He Z L, Liu D, Mahmood Q, Yang X E. The role of bacteria in the heavy metals removal and growth of Sedum alfredii Hance in an aqueous medium[J]. Chemosphere,2008,70: 489-494
    185. Yang Z M. Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassiatora L [J]. Planta,2003,217:168-174
    186. Yehuda Z, Shenker M, Hadar Y, Chen YN. Remedy of chlorosis induced by iron deficiency in plant with the fungal siderophore rhizoferrin[J]. Journal of Plant Nutrition,2000,23 (11-12):1991-2006
    187. Zaidi S, Usmani S, Singh B R, Musarrat J. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea [J].Chemosphere,2006,64:991-997
    188. Zhang Y X, Chai T Y. Research advances on the mechanisms of heavy metal tolerance in plants[J]. Acta Botanica Sinica (Journal of Integrative Plant Biology),1999,41(5):453-457.
    189.陈炳辉,邓迎春,郭莉,于波.微生物对金属元索的浸出作用及其应用研究进展[J].矿产与地质,2004,18(5):484-487
    190.陈宏,徐秋曼,王葳,洪仁远,彭永康.镉对小麦幼苗脂质过氧化和保护酶活性的影响[J].西北植物学报,2000,20(3):399-403
    191.陈怀满.土壤植物系统中的重金属污染[M].北京:科学出版社.1996
    192.陈秀华.丛枝菌根真菌对重金属、稀土元素污染土壤生物修复研究[D].华中农业大学,博士学位论文,2007,22-24
    193.陈媛.土壤中镉及镉的赋存形态研究进展[J].广尔微量元素科学,2007,14(7):7-12
    194.陈志良,仇荣亮,张景书,万云兵.重金属污染土壤的修复技术[J].环境保护,2001,8:17-19
    195.崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):366-370
    196.崔婧.水杨酸与植物抗逆性[J].安徽农学通报,2007,13(9):35-38
    197.崔妍,丁永生,公维民,丁德文.土壤中重金属化学形态与植物吸收的关系[J].大连海事大学学报,2005,31(2):59-63
    198.代全林.植物修复与超富集植物[J].亚热带农业研究,2007,3(1):51-56
    199.代全林,袁剑刚,方炜,杨中艺.玉米各器官积累Pb能力的品种间差异[J].植物生态学报,2005,29(6):992-999
    200.戴尧仁.多胺的生理学作用以及高等植物中精氨酸脱叛酶的调节[J].植物生理生化进展,1986,(4):61-73
    201.东秀珠,蔡妙英.2001.常见细菌系统鉴定手册[M].北京:科学出版社
    202.董园园,董彩霞,卢颖林,缪辰,沈其荣.植物组织中有机酸的提取方法比较[J].南京农业大学学报,2005,28(4):140-143
    203.郜春花,王岗,董云中,张乃明.解磷菌剂盆栽及大田施用效果[J].山西农业科学,2003,31(3):40-43
    204.郜金荣.2007.分子生物学实验指导[M].武汉:武汉大学出版社,83-85
    205.顾红,李建东,赵炕赫.土壤重金属污染防治技术研究进展[J].中国农学通报,2005,21(8):397-399,408
    206.顾继光,林秋奇,胡韧,诸葛玉平,周启星.土壤—植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(1):128-133
    207.郭学军,黄巧云,赵振华,陈雯莉.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110
    208.何冰,杨肖娥,倪吾钟.一种新的铅富集植物-富集生态型东南景天[J].植物学报,2002,44(11):365-370
    209.何红.辣椒内生枯草芽孢杆菌防病促生作用的研究[D].福建农林大学,博士学位论文,2003
    210.何琳燕,殷永娴,黄为一.一株硅酸盐细菌的鉴定及其系统发育学分析[J].微生物学报,2003,43(2)162-167
    211.洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报,1991,6(3):193-197
    212.胡江存,薛德林,马成新,王书锦.植物根际促生菌(PGPR)内研究与应用前景[J].应用生态学报,2004,15(10):1963-1966
    213.华珞,陈世宝,白玲玉,韦东普.有机肥对镉锌污染土壤的改良效应[J].农业环境保护,1998,17(2):55-59,62
    214.黄丽丹,陈玉惠.生防菌及相关生物技术在植物病害防治中的应用[J].西南林学院学报,2006,26(1):85-89
    215.黄晓东,季尚宁, Glick B, Greenberg B,卢林纲.植物促生菌及其促生机理续[J].现代化农业,2002,7:13-15
    216.黄艺,陶澍,陈有键,张学青.外生菌根对欧洲赤松苗(Pinus sylvestris) Cu、Zn积累和分配的影响[J].环境科学,2000,21(2):1-6
    217.黄铮,徐力刚,徐南军,杨劲松.土壤作物系统中重金属污染的植物修复技术研究现状与前景[J].农业环境科学学报2007,26(增刊):58-62
    218.姜理英,杨肖娥,石伟勇,叶正钱.植物修复技术中有关土壤重金属活化机制的研究进展[J].土壤通报,2003,34(2):154-157
    219.蒋先军,骆永明,赵其国.重金属污染生物修复机制及研究进展[J].土壤,2000,3:130-134
    220.可欣,李培军,巩家强.重金属污染土壤修复技术中淋洗剂的研究进展[J].生态学杂志,2004,23(5):145-149
    221.旷远文,温达志,周国逸.有机物及重金属植物修复研究进展[J].生态学杂志,2004,23(1):90-96
    222.匡少平,张书圣.作物对土壤中环境激素铅的吸收效应及污染防治[J].农业环境保护,2002,21(6):481-484
    223.李红霞,赵新华,马伟芳,王晓丹.玉米对受污染河道复合沉积物的修复[J].环境科学,2008,29(3):709-713
    224.李剑敏,杨劲松,杨晓英,孙梅华,吕伟明EDTA对铅污染土壤上芥菜生长及铅积累特性的影响[J].土壤通报,2007,38(6):1178-1181
    225.李静,依艳丽,李亮亮,张大庚,栗杰,焦颖.几种重金属(Cd、 Pb、Cu、Zn)在玉米植株不同器官中的分布特征[J].中国农学通报,2006,22(4):244-247
    226.李文一,徐卫红,李仰锐,刘吉振,王宏信,熊治廷.重金属污染土壤植物修复机理研究[J].广州农业科学,2006,4:79-81
    227.李晓鸣.黑土接种VA菌根真菌对大豆植株吸磷及固氮的影响[J].土壤肥料,1994,(3):43-45
    228.李铉,郝守进,刘颖,茹炳根.金属硫蛋白的α、β结构域与铅结合形式及稳定性的研究[J].卫生研究,2001,30(4):198-200
    229.刘爱民,黄为一.应用红外方法探讨耐镉菌株高积累Cd2+的机理[J].环境科学学报,2005,25(11):1502-1506
    230.刘爱民,黄为一.耐镉菌株的分离及其对Cd2+的吸附富集[J].中国环境科学2006,26(1):91-95
    231.刘登义,王友保,张徐祥等.污灌对小麦生长及活性氧代谢的影响[J].应用生态学报,2002,13(10):1319-1322
    232.刘威,束文胜,蓝崇钰.宝山堇菜—一种新的cd超积累植物[J].科学通报,2003,48(19):2046-2049
    233.陆引罡,黄建国.番茄对酸性黄壤中铅的吸收特性与富集效果.植物营养与肥料学报,2004,10(6):647-650
    234.马瑾,周永章,窦磊,张澄博,万洪富.广东汕头市农业土壤和蔬菜铅含量及健康风险评估[J].安全与环境学报,2007,7(6):77-79
    235.孟凡乔,史雅娟,吴文良.我国无污染农产品重金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护,2000,19(6):356-359
    236.聂俊华,刘秀梅,王庆仁.Pb(铅)富集植物品种的筛选[J].农业工程学报,2004,20(4):255-258
    237.任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116
    238.施积炎,陈英旭,田光明,林琦.海州香薷和鸭跖草铜吸收机理[J].植物营养与肥料学报,2004,10(6):642-646
    239.施振云.硅酸盐菌剂对提高玉米产量的效应[J].土壤肥料,1997,3:38-40
    240.时进钢,袁兴和,曾光明,戴芳,傅海燕.鼠李糖脂对沉积物中Cd和Pb的去除作用[J].环境化学,2005,24(1):55-58
    241.孙文越,王辉.外来甜菜碱对干旱胁迫下小麦幼苗膜质过氧化作用的影响[J].西北植物学报,2001,21(3):487-491
    242.孙小峰,吴龙华,骆永明.有机修复剂在重金属污染土壤修复中的应用[J].应用生态学报,2006,17(6):1123-1128
    243.覃丽萍,黄思良,李杨瑞.植物内生固氮菌的研究进展[J].植物生理科学,2005,21(2):150-153
    244.谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,30(4):703-712
    245.唐莲,刘振中,蒋任飞.重金属污染植物修复法[J].环境保护科学,2003,29(6):33-36
    246.滕应,龙健.矿区侵蚀土壤的微生物活性及群落多样性研究[J].水土保持学报,2003,17(1):23-26
    247.滕云.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002,11(1):85-89
    248.佟洪金,涂仕华,赵秀兰.土壤重金属污染的治理措施[J].西南农业学报,2003,16卷增刊:33-37
    249.童潜明,何长顺,樊睿.土壤镉污染调查研究[J].四川环境,2004,23(5):8-13
    250.万云兵,仇荣亮,陈志良,张景书.重金属污染土壤中提高植物提取修复功效的探讨[J].环境污染治理技术与设备,2002,3(4):56-59
    251.王慧忠,何翠屏.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,6:73-75
    252.王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-510
    253.王平,董飚,李阜棣,胡正嘉.小麦根圈铁载体的检测[J].微生物学通报,1994,21(6):323-326
    254.王启明.铅、镉单一及复合胁迫对玉米幼苗生理生化特性的影响[J].安徽农业科学,2006,34(10):2036-2037,2048
    255.王秀枝,陈锦,孙治华,门果桃.玉米品种比较试验[J].内蒙古农业科技,2004,6:17-18
    256.韦朝阳,陈同斌,黄泽春,张学青.大叶井口边草一一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778
    257.魏树和,周启星,王新,张凯松,郭观林.一种新发现的镉超积累植物龙葵[J].科学通报,2004,49(24):2568-2573
    258.吴洪生,张军,陈佳宏.钾细菌制剂在小麦上的应用[J].安徽农业大学学报,2002,29(4):373-375
    259.吴雁华.京南地区土壤重金属污染特征与杨树修复效应[D].中国地质大学,2005,3-4
    260.吴志强,顾尚义,李海英,王春梅.重金属污染土壤的植物修复及超积累植物的研究进展[J].环境科学与管理,2007,32(3):67-71,75
    261.武攀峰,吴为.长江下游典型滨海地区农业土壤重金属污染特征[J].中国环境监测,2008,24(1):71-74
    262.席琳乔,冯瑞章.植物根际解磷菌的研究进展[J].塔里木大学学报,2006,18(4):57-61
    263.夏娟娟.植物促生内生细菌的筛选及其强化油菜富集土壤铅镉重金属的研究[D].南京农业大学,硕士学位论文,2006
    264.夏立江,王宏康.土壤污染及其防治[M].上海:华东理工大学出版社,2001
    265.新楠,连秀芬,樊明寿.非共生生物固氮的重要作用和研究进展[J].内蒙古农业科技,2005,2:18-19
    266.许嘉琳,鲍子平,杨居荣,刘虹,宋文昌.农作物体内铅、镉、铜的化学形态研究[J].应用生态学报,1991,2(3):244-248
    267.许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995,448
    268.许晔,施国新,徐勤松,王学,丁秉中.外源脯氨酸(Pro)对茶菱抗Cd2+胁迫能力的影响[J].植物研究,2002,27(2):169-174
    269.徐勤松,施国新,杜开和.重金属镉、锌在菹草叶细胞中的超微定位观察[J].云南植物研究,2002,24(2):241-244
    270.薛生国,陈英旭,林琦,徐圣友,王远鹏.中国首次发现的锰超积累植物商陆[J].生态学报,2003,23(5):935-937
    271.杨红玉,王焕校.绿藻的Cd结合蛋白及其耐性机制初探[J].植物生理学报,1985,11(4):357-365.
    272.杨居荣,贺建群,蒋婉茹.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5): 193-197
    273.杨科璧.中国农田土壤重金属污染与其植物修复研究[J].世界农业,2007,8:58-61
    274.杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版),2004,27(1):71-75
    275.杨晓英,杨劲松,黄铮,徐力刚.螯合剂对铅污染十壤上玉米幼苗生长及铅积累特性的影响[J].农业环境科学学报,2007,26(2):482-486
    276.杨肖娥,龙新宪,倪吾钟,傅承新.东南景天一一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006
    277.杨秀梅,陈保冬,朱永官,王冬梅,王幼珊.丛枝菌根真菌(Glomus intraradices)对铜污染土壤上玉米生长的影响[J].生态学报,2008,28(3):1052-1058
    278.杨振寅,廖声熙.丛枝菌根对植物抗性的影响研究进展[J].世界林业研究,2005,18(2):26-29
    279.叶国平,梁锦锋.解磷细菌(PSB)解磷机理及应用研究进展[J].安徽农学通报,2007,13(9):53-54
    280.尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,23(1):105-110
    281.张福锁.根际微生态系统养分有效性及植物适应性机理[J].土壤学报,1992,29(3):239-250
    282.张建芳.铅污染与儿童健康[J].中国食物与营养,2007,8:55-56
    283.张健,孙根年.土壤重金属污染与植物修复研究进展[J].云南师范大学学报,2004,3:52-57
    284.张开明,黄苏珍,原海燕,顾永华.铜污染的植物毒害、抗性机理及其植物修复[J].江苏环境科技,2005,18(1):4-6
    285.张美琴,马建华,赵月英,田自华,樊明寿.植物联合固氮菌及其促生作用研究进展[J].内蒙古农业科技,2007,4:80-83
    286.张正洁,李东红,许增贵.我国铅污染现状、原因及对策[J].环境保护科学,2005,15(4):41-42,47
    287.赵丽红,李素霞,柯滨,刘爽.铅污染现状及其修复机理研究进展[J].武汉生物工程学院学报,2006,2(1):43-46
    288.郑喜珅,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84
    289.周东美,邓吕芬.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-508
    290.周建民,党志,陈能场,徐胜光,谢志宜.NTA对玉米体内Cu Zn的积累及化学形态的影响[J].农业环境科学学报,2007,26(2):453-457
    291.周启星,宁玉芳.植物修复的技术内涵及展望[J].安全与环境学报,2001,1(3):48-53
    292.朱芳,方炜,杨中艺.番茄吸收和积累Cd能力的品种间差异[J].生态学报,2006,26(12)4071-4081

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700