用户名: 密码: 验证码:
诺西肽发酵过程生化参数软测量方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发酵是现代流程工业中常见的一种生产方式,被广泛应用于医药、食品和化工等领域。在发酵过程中,重要生化参数(如菌体浓度、基质浓度、产物浓度等)的实时获取,对于过程的优化与控制具有十分重要的意义。然而,目前还没有实用的在线传感器能直接检测这些参数,工业生产中大都采用实验室取样分析的方法来获得。离线分析具有较大的时间滞后,给上述重要生化参数的实时监测以及该过程的直接质量控制带来了很大的困难。因此,在现有技术条件下,如何实现难于在线测量的重要生化参数的在线检测,是目前发酵生产中亟待解决的问题。
     软测量是一种利用在线可测变量对难测变量进行在线估计的技术,为解决上述问题提供了一条有效途径。本文以诺西肽发酵过程为研究背景,结合诺西肽发酵过程的实际生产操作机理,对诺西肽发酵过程难于在线测量的关键生化参数的软测量建模方法及相关问题做了较为深入的研究与探讨。
     本文在深入分析诺西肽发酵过程生产操作机理的基础上,重点研究了诺西肽发酵过程的多阶段特性,提出了两种不同的基于多阶段特性的诺西肽发酵过程生化参数软测量建模方法,同时也对软测量技术的相关问题做了较为深入的研究与探讨:
     (1)对面向诺西肽发酵过程的RBF网络软测量建模方法,做了深入的分析与研究,并对相关的几个关键问题做了改进。针对辅助变量的选择问题,提出了基于隐函数存在定理的辅助变量选择方法;针对异常数据的检测问题,提出了基于k-NN的异常数据检测方法;针对发酵过程中系统的“状态轨迹”与发酵初始条件密切相关的实际特点,提出了基于加权RBF神经网络的软测量辨识建模方法。
     (2)面向可获得充足诺西肽发酵过程输入输出数据的情况,提出了基于分阶段黑箱模型的诺西肽发酵过程生化参数软测量方法。针对诺西肽发酵过程所具有的多阶段特性,提出了基于FCM和神经网络的阶段划分方法,并基于加权RBF神经网络建模方法构建了分阶段的生化参数黑箱软测量模型。
     (3)面向无法获得充足诺西肽发酵过程输入输出数据的情况,以在一定假设条件下简化得到的诺西肽发酵过程机理模型为基础,提出了基于分阶段串联混合模型的生化参数软测量方法。同时,提出了改进的模型训练算法,并利用加权RBF神经网络建模方法,实现了机理模型中未知参数的预估。
     (4)以原有的诺西肽发酵过程计算机监控系统为基础,给出了诺西肽发酵过程关键生化参数软测量系统的实施方案,阐述了各相关功能模块的地位和作用。同时,分析和讨论了软测量模型校正方法,并将本文提出的软测量方法,应用于诺西肽分批发
     酵过程放罐时机的识别。
     上述方法的提出为实现诺西肽发酵过程关键生化参数的实时监测提供了有效的途径,同时也为实现直接质量控制奠定了坚实的基础。针对无法获得充足建模数据的情况,采用机理模型与数据相结合的串联混合模型软测量方法,利用少量的建模数据辨识机理模型中的未知参数,进而实现关键参数的实时预估;当可以获得充足的过程输入输出数据时,为了避免简化的机理模型不能完全描述过程特性的缺陷,利用神经网络可以以任意精度逼近非线性函数的特性,采用基于黑箱模型的软测量方法实现关键参数的实时预估。上述方法在诺西肽发酵过程中所取得的成功应用,验证了提出方法的有效性。这些方法可以推广到其它生物发酵过程或具有类似特性的复杂工业生产过程。
Fermentation is a common mode of production in modern process industry, which has been widely used in the production of medicine, food, chemical products, and so on. During fermentation processes, the real-time access of some important biochemical parameters such as biomass and substrate concentration is of great significance for process optimization and control. However, until now there are no practical on-line sensors that can be used to measure them directly. In the industrial production, biochemical parameters are mostly measured through sampling analysis. Off-line analysis has large time-delay, which brings many difficulties for the real-time monitoring of important biochemical parameters and the direct quality control of this process. Therefore, for fermentation processes, one of the key problems to be solved is how to fulfill the on-line measurements of important biochemical parameters under existing technical conditions.
     Soft-sensing is a technique that estimates the hard-to-measure variables using easily available process variables, which provides an effective way for solving the above problems. Taking Nosiheptide fermentation process as research background, in combination with the mechanism of Nosiheptide fermentation process, deep research and discussion on the soft-sensing modeling methods and related problems are performed for the key biochemical parameters that are hard-to-measure on-line in Nosiheptide fermentation process.
     Based on deep analysis of the mechanism of Nosiheptide fermentation process, multistage characteristic of Nosiheptide fermentation process is mainly studied, and two biochemical parameter soft-sensing modeling methods based on multistage characteristic are proposed in this dissertation. Meanwhile, thorough research and discussion on problems related to soft-sensing technique are performed.
     (1) Discussion and research on RBF neural network soft-sensing modeling method for Nosiheptide fermentation process are performed, and improvements for several related key problems are provided. Aiming at the problem of secondary variable selection, a secondary variable selection method based on the implicit function existence theorem is proposed; Aiming at the problem of outlier identification, a k-NN algorithm based outlier identification method is proposed; By taking into account the fact that the state trajectories of fermentation processes are closely dependent on fermentation initial conditions, a weighted RBF neural network based soft-sensing identification modeling method is presented.
     (2) In the case that sufficient input and output data of Nosiheptide fermentation process can be obtained, a phase-identifying-oriented black-box model based biochemical parameter soft-sensing method is proposed for Nosiheptide fermentation process. For multistage characteristic of Nosiheptide fermentation process, a phase identification method based on FCM algorithm and neural network technique is presented. And based on the weighted RBF neural network soft-sensing modeling method, a phase-identifying-oriented black-box soft-sensing model for biochemical parameters is constructed.
     (3) In the case that no sufficient input and output data of Nosiheptide fermentation process can be obtained, a phase-identifying-oriented series hybrid model based biochemical parameter soft-sensing method is presented on the basis of simplified Nosiheptide fermentation process mechanism model obtained under some assumed conditions. Meanwhile the improved training algorithm for series hybrid model is presented, and the prediction of unknown parameters is realized by using the weighted RBF neural network modeling method.
     (4) Based on the existing computer monitoring and control system for Nosiheptide fermentation process, the implementation scheme of biochemical parameter soft-sensing system is presented for Nosiheptide fermentation process, and the role of some related function modules is also expounded. Meanwhile, the soft-sensing model updating method is analyzed and discussed. Finally, the soft-sensing methods proposed in this dissertation are applied to identify the draw-off timing of Nosiheptide fermentation process.
     The above mentioned methods provide an effective way for the implementation of the real-time monitoring of important biochemical parameters, and also lay a solid foundation for the implementation of direct quality. In the case that no sufficient modeling data can be obtained, by using series hybrid model based soft-sensing method which combines mechanism model and data, the unknown parameters of mechanism model are identified with little modeling data, and then the real-time prediction of key parameters is realized. In case that sufficient process input and output data can be obtained, to avoid the defect that the simplified mechanism model couldn't completely describe process characteristics, taking advantage of the characteristic of neural network that it can approximate nonlinear functions with arbitrary precision, the real-time estimation of the key parameters is realized using the black-box model based soft-sensing method. The above methods have been successfully used in Nosiheptide fermentation process, which validates their effectiveness. The methods can be also generalized to other fermentation processes or other similar complex industrial processes.
引文
1. Montague G, Morris J. Neural-network contributions in biotechnology [J]. Trends in Biotechnology,1994,12(8):312-324.
    2. Thibault J, Van Breusegem V, Cheruy A. On-line prediction of fermentation variables using neural networks [J]. Biotechnology and Bioengineering,1990,36(10):1041-1048.
    3.王树青,元英进.生化过程自动化技术[M].北京:化学工业出版社,1999.
    4.王树青.生化反应过程模型化及计算机控制[M].杭州:浙江大学出版社,1998.
    5.陈坚,堵国成.发酵工程实验技术[M].北京:化学工业出版社,2004.
    6.张明君,皮道应,孙优贤.基于工程观点的软仪表开发策略[J].化工自动化及仪表,1996,23(6):34-36.
    7.于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144.
    8.俞金寿,刘爱伦.软测量技术及其应用[J].世界仪表和自动化,1997,1(2):18-20.
    9.徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,19(2):1-3.
    10. McAcvoy T J. Contemplative stance for chemical process control [J]. Automatica,1992, 28(2):441-442.
    11. Tham M T, Morris A J, Montague G A, Lant, P A. Soft-sensors for process estimation and inferential control [J]. Journal of Process Control,1991,1(1):3-14.
    12.俞金寿.工业过程先进控制[M].北京:中国石化出版社,2002.
    13.哈根(Hagan M T)等著,戴葵等译.神经网络设计[M].北京:机械工业出版社,2002.
    14.金以慧,王诗宓,王桂增.过程控制的发展和展望[J].控制理论与应用,1997,14(2):145-151.
    15.孙欣,王金春,何声亮.过程软测量[J].自动化仪表,1995,16(8):1-5.
    16.王科俊,王克成.神经网络建模、预报与控制[M].哈尔滨:哈尔滨工程大学出版社,1996.
    17. Van den Bos A. Application of statistical parameter estimation methods to physical measurement [J]. Journal of Physics E (Scientific Instruments),1977,10(8):753-760.
    18. Yu C-C, Luyben W L. Use of multiple temperatures for the control of multicomponent distillation columns [J]. Industrial and Engineering Chemistry, Process Design and Development,1984,23(3):590-597.
    19.王景芳,李桦.催化裂化轻柴油倾点预估模型辨识[J].石油油化工自动化,1992,(2):20-24.
    20. Jay H L, Morari M. Robust Measurement Selection [J]. Automatica,1991,27(3): 519-527.
    21.李华生,董文葆,袁一.化工过程测量数据中过失误差的侦破[J].石油化工自动化,1992,(2):16-20.
    22. Harikumar P, Narasimhan S. A Method to Incorporate Bounds in Data Reconciliation and Gross Error Detection [J]. Computers and Chemical Engineering,1993,17(11): 1121-1128.
    23.李红军,秦永胜,徐用懋.化工过程中的数据协调及显著误差检测[J].化工自动化及仪表,1997,24(2):25-32.
    24.袁永根,李华生.过程系统测量数据校正技术[M].北京:中国石化出版社,1996.
    25.武春燕,马俊英,潘立登.小波分析在软测量技术中的应用[J].信息与控制,1999,28(2):53-57.
    26.蔺田.过程控制中的软测量的研究[D].沈阳东北大学硕士论文,2001.
    27. Kosanovich K A, DahL K S, Piovoso M J. Improve Process Understanding Using Multiway Principal Component Analysis [J]. Industrial and Engineering Chemistry Research,1996,35(1):138-146.
    28. Karmy M, Warwick K. System Identification Using Partial Least Squares [J]. IEE Proceedings-Control Theory and Applications,1995,142(3):223-231.
    29. Enrique Quintere-Marmvl, Luyben W L, Georgakis Christos. Application of an Extended Luenberger Observer to the Control or Multicomponent Batch Distillation [J]. Industrial and Engineering Chemistry Research,1991,30(8):1870-1880.
    30. Mehra R.K. On the Identification of Variances and Adaptive Kalman Filtering [J]. IEEE Transactions on Automatic Control,1970,15(2):175-184.
    31. Mehra R. K. Approaches to adaptive filtering [J]. IEEE Transactions on Automatic Control,1972,17(7):693-702.
    32. Haber R, Unbehauen H. Structure Identification of Nonlinear Dynamic Systems-A Survey on Input-Output Approaches [J]. Automatica,1990,26(4):651-658.
    33. Joseph B, Brosilow C B. Inferential control of processes:Part I Steady state analysis and design [J]. AIChE Journal,1978,24(3):485-491.
    34. Brosilow C, Martin T. Inferential control of processes:Part II The structure and dynamics of inferential control systems [J]. AIChE Journal,1978,24(3):492-500.
    35. Joseph B, Brosilow C. Inferential control of processes:Part Ⅲ Construction of optimal and subopimal dynamic estimation [J], AIChE Journal,1978,24(3):500-509.
    36. Tham M T, Montague G A, Morris A J, Lant P A. Soft-sensors for Process Estimation and Inferential Control [J]. Journal of Process Control,1991,1(1):3-14.
    37. Pearson R K. Nonlinear Input/Output Modeling [J]. Journal of Process Control,1995, 5(4):197-211.
    38.杨辉.稀土萃取分离过程成分软测量方法及其应用研究[D].沈阳东北大学博士论文,2004.
    39. Hunt K J, Sbarbaro D, Zbikowski R, Gawthrop P J. Neural Networks for Control Systems-A survey [J]. Automatica,1992,26(6):1083-1112.
    40. Savkovic-Stevanovic J. Neural Networks for Process Analysis and Optimization: Modeling and Application [J]. Computers and Chemical Engineering,1994,18(11-12): 1149-1155.
    41. Brambilla A, Trivella F. Estimate Product Quality with ANNs [J]. Hydrocarbon Processing,1996,75(9):61-66.
    42.朱群雄,麻德贤.神经网络过程模型辨识[J].化工学报,1997,48(5):547-552.
    43. Mashor M.Y. Nonlinear system identification using RBF networks with linear input connections [J]. Malaysian Journal of Computer Science,1998,11(1):74-80.
    44.王旭东,邵惠鹤.RBF神经元网络在非线性系统建模中的应用[J].控制理论与应用,1997,14(1):59-64.
    45. Delgado A, Kambhampati C, Warwick K. Dynamic Recurrent Neural Network for System Identification and Control [J]. IEE Proceedings:Control Theory and Applications, 1995,142(4):307-314.
    46. Shaw A M, Doyle F J Ⅲ, Schwaber J S. A Dynamic Neural Network Approach to Nonlinear Process Modeling [J]. Computers and Chemical Engineering,1997,21(4): 371-385.
    47.高雪鹏,从爽.BP网络改进算法的性能对比研究[J].控制与决策,2001,16(2):167-171.
    48.臧春华,郭小萍.基于PCA改进BP算法的软测量技术[J].仪表技术与传感器,2001,37(2):26-29.
    49.王华,王连华,葛岭梅.主成分分析与BP神经网络在煤耗氧速度预测中的应用[J].煤炭学报,2008,33(8):920-925.
    50.钟璇,王树清.粗汽油干点的在线软测量[J].化工学报,1998,49(2):251-255.
    51.刘妹琴,沈铁.一类新的RBF神经网络在非新线性建模中的应用[J].控制与决策,2001,16(3):277-281.
    52.赵望达,徐志胜,吴敏.基于主元分析和RBF神经网络的火灾模拟实验炉温软测量[J].中国工程科学,2008,9(1):82-85.
    53.李俊,马铁军.胶料粘度的PCA-RBF多网络软测量研究[J].微计算机信息,2006,22(8-1):98-100.
    54.沈明新,隋有功.钢水碳含量的模糊辨识及应用[J].自动化仪表,1997,18(4):11-16.
    55.黄仿元.基于神经网络的模糊史密斯控制系统[J].微计算机信息,2008,24(7-2):256-258.
    56.万金泉,黄明智,马邕文.基于模糊神经网络的工业废水处理预测研究[J].中国造纸学报,2008,23(2):96-99.
    57.沈智鹏,郭晨.一种广义模糊小脑模型神经网络及其仿真研究[J].系统仿真学报,2005,17(11):2708-2712.
    58. Helena Cristina Aguiar, Rubens Maciel Filho. Neural network and hybrid model-a discussion about different modeling techniques to predict pulping degree with industrial data [J]. Chemical Engineering Science,2001,56(2):565-570.
    59. Qi H-Y, Zhou X-G, Liu L-H, Yuan W-K. A hybrid neural network-first principles model for fixed-bed reactor [J]. Chemical Engineering Science,1999,54(13-14):2521-2526.
    60. Psichogios D C, Ungr L H. A hybrid neural networks first principle approach to process modeling [J]. AIChE Journal,1992,28(8):1499-1511.
    61. Takagi T, Sugeno M. Fuzzy Identification of Systems and its Applications to Modeling and Control [J]. IEEE Transactions on Systems, Man and Cybernetics,1985, SMC-15(1): 116-132.
    62.陈建勤,席裕庚,张仲俊.用模糊模型在线辨识非线性系统[J].自动化学报,1998,24(1):90-94.
    63. Kasabov Nikola K. Learning Fuzzy Rules and Approximate Reasoning in Fuzzy Neural Networks and Hybrid Systems [J]. Fuzzy Sets and Systems,1996,82(2):135-149.
    64.乔俊飞,王会东.模糊神经网络的结构自组织算法及应用[J].控制理论与应用,2008,25(4):703-707.
    65.叶楠,吕勇哉.模式识别在状态估计中的应用——一类软测量技术[J].仪器仪表学报,1988,9(4):368-374.
    66.陈守煜,陈小冰.模糊模式识别理论模型及在化工中的应用[J].化工学报,1991,(6):660-668.
    67.穆罕默德.阿塔,祝如松,蒋慰孙.间歇精馏塔塔板效率的在线模式识别[J].信息与控制,1993,22(1):47-49.
    68.李海清,黄志尧.软测量技术原理及应用[M].北京:化学工业出版社,2000.
    69. Beck M S, Williams R A. Process tomography:a European innovation and its applications [J]. Measurement Science and Technology,1996,7(3):215-224.
    70.李海青.两相流参数检测及应用[M].杭州:浙江大学出版社,1991.
    71. Isermann R. Process fault detection based on modelling and estimation methods-A survey [J]. Automatica,1984,20(4):387-404.
    72. Mejdell T, Skogestad S. Output estimation using multiple secondary measurements: high-purity distillation [J]. AIChE Journal,1993,39(10):1641-1653.
    73.吕柏权,李天译.一种基于小波网络的故障检测方法[J].控制理论与应用,1998,15(5):802-805.
    74.张晓东,王伟,王小刚.选矿过程神经网络粒度软测量方法的研究[J].控制理论与应用,2000,19(1):55-55.
    75.韩璞,王东凤,翟永杰.基于神经网络的火电厂烟气含氧量软测量[J].信息与控制,2001,30(2):189-192.
    76.李向阳,李艳,朱学峰等.基于模型的模糊推理及其在制浆蒸煮软测量中的应用[J].化工自动化及仪表,2000,27(5):9-13.
    77. Jiang Shi-shang, Joseph, B, Mukai, H. On-line optimization of constrained multivariable chemical processes [J]. AIChE Journal,1987,33(1):26-35.
    78. Greg Martin. Consider Soft Sensor [J]. Chemical engineering progress,1997,93(7): 66-70.
    79. Olsson L, Nielson J. Online monitoring of biomass in submerged cultivation [J]. Trends in Bioteehnology,1997,15(11):517-522.
    80.王贻俊,樊育.生物量浓度实时在线检测方法的研究[J].生物化学与生物物理进展,2000,27(4):357-390.
    81.史仲平,潘丰等.发酵过程解析、控制与检测技术[M].北京:化学工业出版社,2005.
    82. ZhaoY. Studies on modeling and control continuous biotechnical processes [D]. Norwegian University of Science and Technology, Norway,1996
    83. Pinchuk R J, Brown W A, Hughes S M, Cooper D G. Modeling of Biological Processes Using Self-Cycling Fermentation and Genetic Algorithms [J]. Biotechnoogy and Bioengineering,2000,67(1):19-24.
    84. Chae H J, Delisa M P, Cha H J, Weigand W A, Rao G, Bentley W E. Framework for Online Optimization of Recombinant Protein Expression in High-Cell-Density Escherichia Coli Cultures Using GFP-Fusion Monitoring [J]. Biotechnology and Bioengineering,2000,69(3):275-285.
    85. Yuan Z, Bogaert H, Devisseher M. On-line estimation of the maximum specific growth rate of nitrifiersin activated sludge systems [J]. Biotechnology and Bioengineering,1999, 65(3):265-273.
    86. Lubenova V. On-line estimation of biomass concentration and non stationary parameters for aerobic bioprocesses [J]. Journal of Biotechnology,1996,46(3):197-207.
    87. Takiguchi N, Shimizu H, Shioya S. An on-line physiological state recognition system for the lysine fermentation process based on a metabolic reaction model [J]. Biotechnology and Bioengineering,1997,55(1):170-181.
    88. Beluhan D, Gosak D, Pavolvic N, Vampola M. Biomass Estimation and Optimal Control of the Baker's Yeast Fermeniation process [J]. Computers and Chemical Engineering, 1995,19(Suppl):387-392.
    89. Feng M, Glassey J. Physiological state-specific models in estimation of recombinant Eseherichia coli fermentation performance [J]. Biotechnology and Bioengineering,2000, 69(5):495-503
    90. Warnes M R, Glassey J, Montague G A. On data-based modeling fermentation process [J]. Process Bioehemistry,1996,31(2):147-155
    91.张泉灵,金晓明,王树青.基于主元分析和模糊模型得链霉素发酵过程建模[J].无锡轻工大学学报,2000,19(5):447-451.
    92. Lennox B, Montague G A, Hiden H G. Process monitoring of an industrial fed-batch fermentation [J]. Biotechnology and Bioengineering,2001,74(2):125-135.
    93. McGovern A C, Broadhurst D, Taylor J. Monitoring of complex industrial bioproeesses for metabolite concentration using modern spectroscopies and machine learning: application to gibberellic acid production [J]. Biotechnology and Bioengineering,2002, 78(5):527-538.
    94. Montague G A, Morris A J, Tham M T. Enhancing bioprocess operability with generic software sensors [J]. Journal of Biotechnology,1992,25(1-2):183-201.
    95. Daeosta P, Kordieh C, Williams D. Estimation of inaccessible fermentation with variable inoculum sizes [J]. Artificial Intelligence in Engineering,1997,11(4):383-392.
    96. Glassey J, Ignova M, Ward A C. Bioproceess supervision:neural networks and knowledge based systems [J]. Journal of Bioteehnology,1997,52(3):201-205.
    97. Bhowmik U K, Saha G, Barua A. on-line detection of contamination in a bioprocess using artificial neural network [J]. Chemical Engineeringand technology,2000,23(6): 543-549.
    98. Baehinger T, Martensson P, Mandenius C F. Estimation of biomass and specific rate in a recombinant Eseherichia coli batch cultivation process using a chemical multisensor array [J]. Journal of Biotechnology,1998,60(1-2):55-66.
    99. Cimander C, Carlsson M, Mandenius C F. Sensor fusion for on-line monitoring of yoghurt fermentation [J]. Journal of Biotechnology,2002,99(3):237-248.
    100. James S, Legge R, Budman H. Comparative study of black-box and hybrid estimation methods in fed-batch fermentation [J]. Journal of Process Control,2002,12(1):113-121.
    101.黄明志,杭海峰,储炬.人工神经网络在红霉素发酵过程状态预估中的应用[J].华东理工大学学报,2000,26(2):162-165.
    102.Ronen M, Shabtai Y. Hybrid model building methodology using unsupervised fuzzy clustering and supervised neural networks [J]. Biotechnology and Bioengineering,2002, 77(4):420-429.
    103.方千山,王永初.软测量技术在发酵过程中的应用研究[J].厦门大学学报(自然科学版),2001,40(6):1324-1327.
    104. Shene C, Diez C, Bravo S. Neural Networks for the Prediction of the State of Zymomonas Mobilis CP4 batch fermentations [J]. Computers and Chemical Engineering, 1999,23(8):1097-1108.
    105.Zorzetto L F M, Maeiel F R, Wolf-Maeiel M R. Process modeling development through artificial neural networks and hybrid models [J]. Computers and Chemical Engineering, 2000,24(2-7):1355-1360.
    106. Hagedorn A, Legge R L, Budman H. Evaluation of spectrofluorometry as a tool for estimation in fed-batch fermentations[J]. Biotechnology and Bioengineering,2003,83(1): 104-121.
    107. Thompson M L, Kramer M A. Modeling chemical processes using prior knowledge and neural networks [J]. AIChE Journal,1994,40(8):1328-1340.
    108.马勇,黄德先,金以惠.基于支持向量机的软测量建模方法[J].信息控制,2004,33(4):417-421.
    109.许光,陈德钊,俞欢军.基于支持向量机的柠檬酸发酵过程统计建模[J].化学反应工程与工艺,2004,20(2):59-63.
    110.于湘莉,苗志奇,元英进,李睿洁,张磊.基于模糊理论的酵母发酵动力学模型[J].食品与生物技术,2002,21(6):638-644.
    111.肖冬光.微生物工程原理[M].北京:中国轻工业出版社,2004.
    112.白秀峰.发酵工艺学[M].北京:中国医药科学出版社,2003.
    113.童群义,王国成,堵国成等.补料方式对酵母菌生产谷肽甘肽的影响[J].工业微生物,2003,33(1):19-22.
    114.李振,杜海燕.新型饲料添加剂那西肽在动物生产中的应用[J].广东畜牧兽医科技,2006,31(4):16-18.
    115.Tanaka T, Endo T, Shimazu A, Yoshida R, Suzuki Y. A new antibiotic, multhiomycin [J]. Journal of Antibioties,1970,23(5):231-237.
    116.周珮,姜雅芬,李霞,等.深层培养诺西肽的初步研究[J].中国抗生素杂志,1990,15(4):308-309.
    117.皮雄娥,费笛波,王龙英,冯观泉.那西肽及其应用研究[J].粮食与饲料工业,2005,(8):33-34.
    118.吴婷,黄海,周佩.诺西肽抗乙肝病毒体外实验研究[J].中国抗生素杂志,1997,22(5):373-376.
    119.李红军,邹晓庭.一种新型饲料添加剂-那西肽[J].饲料添加剂,2004,(2):17-19.
    120.刘连.诺西肽的薄层色谱测定[J].中国医药工业杂志,1996,27(8):453-455.
    121.Tanaka T, Sakaguchi K. Yonehara H. On the mode of multhiomyein Ⅱ [J]. Journal of antibioties,1970,23(8):401-407.
    122.周佩,姜雅芬,包卓雅,等.那西肽产生菌Streptomyces actuosus的诱变[J].上海医科大学学报,1991,18(2):133-136.
    123.Mocek U, Knaggs A R, Tsuchiya R, et al. Biosynthesis of modified peptide antibiotic nosiheptide in Streptomyces actuosus [J]. Journal of the American Chemical Society, 1993,115(17):7557-7568.
    124.沈顺新,任银娥.不同抗生素对仔猪的促生长效果[J].中国动物保健,2006,(4):39-40.
    125.朱淑斌,刘长有,魏国生.那西肽对生长肥育猪作用效果的研究[J].中国畜牧杂志,2005,41(10):44-52.
    126.李红军,邹晓庭.那西肽(Nosiheptide)对肉仔鸡免疫功能的影响[J].中国兽医学报,2005,25(5):534-535.
    127.张震宁,程文虹.那西肽在肉鸭饲料中的应用效果[J].饲料博览,2005,(9):40-41.
    128.戴贤君.那西肽对宝石鲈生长性能及小肠绒毛的影响[J].中国动物保健,2006,(6):42-47.
    129.周歧存,王丽,曾美举.那西肽对南美白对虾生长及饲料利用的影响[J].饲料研究,2005,(4):6-8.
    130.周善洲.国产和进口那西肽抑菌试验对照研究[J].上海预防医学杂志,1994,5(6):16-17.
    131.陈贵才,王丽,胡伟莲,等.那西肽在家禽生长中的应用[J].畜牧与兽医,2002,34(增刊):147-150.
    132.杭州汇能生物技术有限公司.诺西肽在中国[J].饲料广角,2006,(1):25-26.
    133.Depairs H, Thonas J P, Brun A, et al. C N.M.R spectroscopy of nosiheptide [J]. Tetrahedron Letters,1977,18(16):1397-1400.
    134. Depairs H, Thonas J-P, Brun A, et al.15N N.M.R. spectroscopy of nosiheptide.determination of the elemental formula and the molecular weight of the antibiotic [J]. Tetrahedron Letters,1977,18(16):1401-1402.
    135. Depairs H, Thonas J P, Brun A, et al. The structure relationship between the antibiotics nosiheptide and thiostrepton [J]. Tetrahedron Letters,1977,18(16):1403-1406.
    136.周佩,李继扬,章玲,等.诺西肽突变生物合成的研究(Ⅰ)[J].中国抗生素杂志,1995,20(3):159-162.
    137.俞俊棠 唐孝宣.生物工艺学(上、下册)[M].上海:华东理工大学出版社,1991.
    138.储炬,李友荣.现代工业发酵调控学[M].北京:化学工业出版社,2002.
    139.臧荣春,夏凤毅.微生物动力学模型[M].北京:化学工业出版社,2003.
    140.Bona R, Moser A. Modeling of the L-glutamic acid production with Corynebacterium glutamicum under biotin limitation [J]. Bioprocess and Biosystems Engineering,1997, 17(3):139-142.
    141. Khan N S, Mishra I M, Singh R P, Prasad B. Modeling the growth of Corynebacterium glutamicum under product inhibition in L-glutamic acid fermentation [J]. Biochemical Engineering Journal,2005,25(2):173-178.
    142. Van Impe J F M. Power and limitations of model based bioprocess optimization [J]. Mathematic and Computers in Simulation,1996,42(2-3):159-169.
    143.饯铭铺.发酵工程最优化控制[M].南京:江苏科学技术出版社,1998.
    144. Yang Y K, Morikawa M, Shimizu H, et al. Maximum virginiamycin production by optimization of cultivation conditions in batch culture with autoregulator addition [J]. Biotechnology and Bioengineering,1996,49(4):437-444.
    145.Amrane A, Prigent Y. Differentiation of pH and free lactic acid effects on the various growth and production phases of Lactobacillus helveticus [J]. Journal of Chemical Technology and Biotechnology,1999,74(1):33-40.
    146.王树青,元英进.生化过程自动化技术[M].北京:化学工业出版社,1999.
    147. Alexander Dimitrov Kroumov, Aparecido Nivaldo Modenes, Maicon C. de Araujo Tait. Development of new unstructured model for simultaneous saccharification and fermentation of starch to ethanol by recombinant strain [J]. Biochemical Engineering Journal,2006,28(3):243-255.
    148.Boonmee M, Leksawasdi N, Bridge W, et al. Batch and continuous culture of Lactococcus lactis NZ133_experimental data and model development [J]. Biochemical Engineering Journal,2003,14(2):127-135.
    149. Birol G, Undey C, Cinar A. A modular simulation package for fed-batch fermentation: penicillin production [J]. Computers and Chemical Engineering,2002,26(11): 1553-1565.
    150.何小荣.化工过程优化[M].北京:清华大学出版社,2003.
    151.戚以政,王叔雄.生化反应动力学与反应器(第二版)[M].北京:化学工业出版社,1999.
    152.张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社,2001.
    153.Vrsalovic Presecki A, Vasic-Racki D. Modelling of the alcohol dehydrogenase production in baker's yeast [J]. Process Biochemistry,2005,40(8):2781-2791.
    154. Koutinas A A, Wang R, Kookos I K, Webb C. Kinetic parameters of Aspergillus awamori in submerged cultivations on whole wheat flour under oxygen limiting conditions [J]. Biochemical Engineering Journal,2003,16(1):23-34.
    155.Claudio Gelmi, Ricardo Perez-Correa, Eduardo Agosin. Modeling Gibberella fujikuroi growth and GA3 production in solid-state fermentation [J]. Process Biochemistry,2002, 37(9):1033-1040.
    156. Moody J, Darken C J. Fast learning in networks of locally-tuned processing units [J]. Neural Computation,1989,1(2):281-294.
    157. Funahashi K-I. On the Approximate Realization of Continuous Mapping by Neural Network [J]. Neural Networks,1989,2(3):183-192.
    158.王洪元,史国栋.人工神经网络技术及应用[M].北京:中国石化出版社,2002.
    159. Chen S, Cowan C F N, Grant P M. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks [J]. IEEE Transactions on Neural Networks,1991,2(2): 302-309.
    160.Nicolaos B K, Mi G W. Growing Radial Basis Neural Networks:Merging Supervised and Unsupervised Learning with Network Growth Techniques [J]. IEEE Transactions on Neural Networks,1997,8(6):1492-1499.
    161.张友民,李庆国,戴冠中,张洪才.一种RBF网络结构优化方法[J].控制与决策,1996,11(6):667-671.
    162. Billings S A, Zheng G L. Radial Basis Function Network Configuration Using Genetic Algorithm [J]. Neural Networks,1995,8(6):877-890.
    163. Bishop C. Improving the Generalization Properties of Radial Basis Function Neural Networks [J]. Neural Computation,1991,3(4):579-588.
    164.王舟,余英林,张百灵.提高RBF网络推广能力的一种新方法[J].华南理工大学报,1995,23(5):31-36.
    165.陆启韶.现代数学基础[M].北京:北京航空航天大学出版社,1997.
    166. Yang Youqi, Ten Rongbo, Jao Luiqun. Study of gross error detection and data reconciliation in process industries [J]. Computers and Chemical Engineering,1995, 19(Suppl):217-222.
    167.Tamhane A C, Mah R S H. Data reconciliation and gross error detection in chemical process networks [J].Technometrics,1985,27(4):409-422.
    168.Narasimhan S, Mah R S H. Generalized likelihood ratios for gross error identification [J]. AIChE Journal,1988,34(8):1321-1331.
    169. Chiang L H, Pell R J, Seasholtz M B. Exploring process data with the use of robust outlier detection algorithms [J]. Journal of Process Control,2003,13(5):437-449.
    170. Lin Bao, Recke Bodil, Knudsen J(?)rgen K H, J(?)rgensen Sten Bay. A systematic approach for soft sensor development [J]. Computers and Chemical Engineering,2007,31(5-6): 419-425.
    171.边肇棋,张学工.模式识别[M].北京:清华大学出版社,2001.
    172. Duda R O, Hart P E. Pattern Classification and Science Analysis [M]. New York:John Wiley and Sons,1973.
    173.Horiuchi J I, Shimada T, Funahashi H, Tada K, Kobayashi M and Kanno T. Artificial neural network model with a culture database for prediction of acidification step in cheese production [J]. Journal of Food Engineering,2004,63(4):459-465.
    174. Centner V, Massart D L. Optimization in locally weighted regression [J]. Analytical Chemistry,1998,711(19):4206-4211.
    175.李春富,王桂增,叶吴.基于操作域划分的聚丙烯熔融指数软测量[J].化工学报,2005,56(10):1915-1921.
    176. Karim M N, Yoshida T, Rivera S L, Saucedo V M, Eikens B, Oh G-S. Global and local neural network models in biotechnology:Application to different cultivation processes [J]. Journal of Fermentation and Bioengineering,1997,83(1):1-11.
    177. Foss B A, Johansen T A, Sorensen A V. Nonlinear predictive control using local models applied to a batch fermentation process [J]. Control Engineering Practice,1995,3(3): 389-396.
    178.刘红波,李少远,柴天佑.一种基于工况分解的热工过程非线性控制模型建立方法及应用[J].控制理论与应用,2004,21(5):785-790.
    179. Horikawa S, Furuhashi T, Uchikawa Y. On fuzzy modeling using fuzzy neural networks with the back propagation algorithm [J]. IEEE Transactions on Neural Networks,1992, 3(5):801-806.
    180.戚以政,汪叔雄.生化反应动力学与反应器(第一版)[M].北京:化学工业出版社,1996.
    181.戚以政,汪叔雄.生化反应动力学与反应器(第二版)[M].北京:化学工业出版社,1999.
    182. Beluhan D, Beluhan S. Hybrid modeling approach to on-line estimation of yeast biomass concentration in industrial bioreactor [J]. Biotechnology Letters,2000,22(8):631-635.
    183. Doan X-T, Srinivasan R, Bapat P M, et al. Detection of phase shifts in batch fermentation via statistical analysis of the online measurements:A case study with rifamycin B fermentation [J]. Journal of Biotechnology,2007,132(2):156-166.
    184. Simon L, Karim M N, Schreiweis A. Prediction and classification of different phases in a fermentation using neural networks [J]. Biotechnology Techniques,1998,12(4): 301-304.
    185.陈元青,王树青,陈琦.多元统计分析方法在链霉索发酵中的应用[J].生物工程学报,1999,15(3):369-374.
    186. Muthuswamy K, Srinivasan R. Phase-based supervisory control for fermentation process development [J]. Journal of Process Control,2003,13(5):367-382.
    187. Konstantinov K, Yoshida T. Physiological state control of fermentation processes [J]. Biotechnology and Bioengineering,1989,33(9):1145-1156.
    188.Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York:Plenum Press,1981.
    189.杨慧中,张素贞,陶振麟.聚合反应过程质量指标的推理估计混合模型[J].高校化学工程学报,2003,17(5):552-558.
    190.王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究[D].中南大学博士学位论文,2001
    191.Ng C W, Hussain M A. Hybrid neural network-prior knowledge model in temperature control of a semi-batch polymerization process [J]. Chemical Engineering and Processing: Process Intensification,2004,43(4):559-570.
    192. Adilson J, Rubens M. Soft sensors development for on-line bioreactor state estimation [J]. Computers and Chemical Engineering,2000,24(2):1099-1103
    193. James S, Legge L, Budman H. Comparative study of black-box and hybrid estimation methods in fed-batch fermentation [J]. Journal of Process Control,2002,12(1):113-121.
    194. Laursen Siris O, Webb Daniel, Ramirez W. Fred. Dynamic hybrid neural network model of an industrial fed-batch fermentation process to produce foreign protein [J]. Computers and Chemical Engineering,2007,31(3):163-170.
    195.薜定宇 陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用[M].北京:清华大学出版社,2002.
    196.周佩,李霞.饲料添加剂那西肽的分离提取和精制[J].工业微生物,1991,21(1):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700