用户名: 密码: 验证码:
基于新疆甲状腺癌人群的肿瘤分子标记物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:甲状腺疾病是多因素内分泌疾病,发病率高,临床表现为结节性甲状腺肿、桥本氏甲状腺炎、甲状腺瘤(良性)和甲状腺癌(恶性),全球范围内有超过3亿的人口患有甲状腺疾病,严重威胁到人类健康。甲状腺癌是内分泌系统最常见的恶性肿瘤,是我国女性易患的十大恶性肿瘤之一,近30年来发病率显著上升。新疆是我国多民族聚集地区,各大医院临床收治的各民族甲状腺癌患者例数有明显上升趋势,但是关于新疆地区甲状腺疾病,尤其是甲状腺癌的发病情况尚未见详细研究报道。甲状腺癌是由上皮细胞起源的内分泌恶性肿瘤,分为乳头癌、滤泡癌、髓样癌和未分化癌,其中乳头癌占整个甲状腺癌80-90%。临床影像学诊断技术是该肿瘤的主要诊断手段,但是无法对许多症状不明显的肿瘤做出早期诊断,而且难以辨别症状相似的良性和恶性肿瘤,往往导致非恰当性治疗。开展甲状腺癌的分子遗传学、分子生物学和免疫学研究,了解该肿瘤发病的分子机理,寻找肿瘤早期诊断或鉴别良性和恶性肿瘤的分子标记物,是建立甲状腺癌分子诊断标准、有效预防和治疗的重要切入点。因此,在本研究的第一阶段,对近8年入院收治患者信息进行统计分析,从甲状腺患者群体发病趋势、性别、年龄和族别差异角度,明确新疆甲状腺疾病或甲状腺癌的特点。第二阶段,经文献查新,选择腺癌特异性变化或腺癌相关基因,利用新疆甲状腺疾病资源,对候选基因的蛋白质表达水平进行进一步筛选,确定甲状腺癌特异性上、下调表达基因指标,评价其对甲状腺癌病变的标记作用。第三阶段,选择“第二阶段”研究结果中,具有甲状腺癌特异性下调表达或缺失的基因指标,应用Sequenom MassARRAY甲基化DNA定量分析平台,通过甲状腺乳头癌的候选基因启动子区甲基化水平分析,寻找基于基因高甲基化的甲状腺癌特异性分子标记物。方法:1.收集新疆医科大学第一附属医院2002~2009年间收治的甲状腺疾病患者病例资料6071例,包括甲状腺良性病变5865例,甲状腺癌206例。年龄分布1~91岁,男性1707例,女性4364例。汉族4101例,维吾尔族1160例,其他民族810例。用SPSS13.0及Microsoft Excel 2007软件,分析方法采用x~2检验,检验水准α=0.05。2.收集新疆医科大学第一附属医院在2004年~2010年收治的甲状腺疾病患者的石蜡包埋组织标本共195例,其中不同组织类型的甲状腺癌112例,甲状腺腺瘤26例,桥本氏甲状腺炎15例,结节性甲状腺肿10例,正常甲状腺组织32例。选择11种腺癌特异性上或下调表达候选基因CDH1、MGMT、TIMP3、MLH1、ESR1、DAPK1、APC、RARB、CDKN2A、CALCA和MSX1,应用特异性抗体和免疫组织化学S-P法分析每一个基因的蛋白表达水平。3.研究改良的石蜡包埋组织DNA提取方法,从49例甲状腺乳头癌和23例正常组织的石蜡切片中,提取高质量基因组DNA。设计5种候选基因启动子区CpG岛片段特异性PCR引物,应用Sequenom MassARRAY甲基化DNA定量分析平台,对组织DNA进行甲基化水平定量分析。结果:1、2002~2009年间甲状腺疾病的发病率上升趋势非常明显(2002年282和2009年1238例),其中甲状腺癌所占比例很小(3.39%),良性病变占主导地位(96.61%),而良性病变主要是甲状腺机能亢进和甲状腺肿(48%和40%)。甲状腺癌主要是乳头状癌(81%)和滤泡癌(14%)。甲状腺疾病发病的年龄有性别及其年龄差异,男女比例为1/2.56,有统计学差异(P<0.05)。维、汉民族的甲状腺癌发病比例差异很大,但是其总体分布无明显差异。2、(1)免疫组织化学和统计分析显示,从正常到结节性甲状腺肿、桥本氏甲状腺炎、甲状腺瘤和甲状腺癌患者组,CDH1、MLH1、TIMP3和DAPK1等四种基因的蛋白质表达水平(阳性率)明显递减,其组间差异显著(P<0.05);ESR1、MGMT和RARβ等三种基因的蛋白质表达水平变化与此相反,呈明显的上升趋势,其差异也有统计学意义(P<0.05),而APC基因的蛋白表达水平无差异(P>0.05)。(2)从不同甲状腺癌的临床病理参数角度分析,CDH1蛋白质上调表达或ESR1下调表达水平差异与肿瘤预后密切相关;ESR1蛋白表达与不同肿瘤组织类型密切相关即该蛋白在甲状腺乳头癌中高表达,同时ESR1蛋白表达与临床分期密切相关;DAPK1、ESR1、RARβ蛋白表达水平差异与淋巴结转移相关。故CDH1、ESR1、DAPK1和RARβ蛋白表达水平变化可能成为甲状腺癌组织分型、临床分期、淋巴结转移或预后的检测指标,特别是ESR1蛋白表达与甲状腺癌的组织类型、临床分期、淋巴转移和预后指数有关的重要指标。(3)从甲状腺乳头癌角度分析,CDH1、MLH1、TIMP3、DAPK1、ESR1、MGMT和RARβ等7种基因表达水平变化具有甲状腺乳头癌特异性,与正常比较存在明显差异,且具有统计学意义(P<0.05)。此外,CALCA基因在甲状腺乳头癌组织中表达阳性率高,与正常对照组相比有显著差异,而CDKN2A和MSX1基因的表达水平变化无差异。(4)作为肿瘤特异性基因指标,CDH1与MLH1、MLH1与TIMP3、RARβ与ESR1、RARβ与MGMT及CDKN2A与CALCA蛋白表达水平趋势存在不程度相关性(0.4     一基因均较低。ESR1/RARβ/MGMT三者联合检测甲状腺癌的灵敏度、特异度和准确度很高(67.6、77.8、69.2%),是较高组合,而CDH1、MLH1、TIMP3和DAPK1基因的四者组合是较低组合(41.1、20.9、37.8%),但是两两组合分析中也有比较高的组合如TIMP3/CDH1(46.5、25.0、43.2%)、TIMP3/MLH1(44.1、25.0、40.8%),其余组合均为低组合。3、利用改良的石蜡包埋组织DNA提取方法,我们获得了质检合格的高质量基因组DNA。通过甲状腺乳头癌和正常对照DNA的甲基化DNA定量测试(Sequenom MassArray质谱技术)和数据分析,发现只有TIMP3基因启动子区CpG岛片段(目的片段)甲基化水平定量差异显著(P<0.05),而RARB、CALCA、CDH1和MLH等4种基因的目的片段甲基化无统计学差异(P>0.05)。进一步分析CpG位点的单点甲基化水平差异,看出TIMP3基因的目的片段的CpG-7/CpG-8(联合位点)和CpG-9等三个CpG位点甲基化率在肿瘤与正常对照及临床分期之间均有统计学差异(P<0.05或P<0.01)。结论:1.新疆地区甲状腺疾病的发病率呈上升趋势,女性患病率高于男性并且女性甲状腺癌发病年龄早于男性。良性病变是甲状腺疾病的主题,甲状腺癌所占比例极小,甲状腺机能亢进在良性病变居首位,乳头癌是甲状腺癌主题。虽然新疆甲状腺疾病或甲状腺癌患者群体总体分布无明显的年龄或民族差异,但是维、汉两族的甲状腺癌的构成比例差异很大,而且维吾尔族男女比例高于汉族。2.CDH1、MLH1、TIMP3和DAPK1等四种基因的蛋白质表达水平下调或ESR1、MGMT和RARβ等三种基因上调可能是甲状腺癌特异的分子标记物,其中CDH1、MLH1、TIMP3、DAPK1、ESR1、MGMT和RARβ等基因的表达水平变化更具有甲状腺乳头癌特异性。CDH1、ESR1、DAPK1和RARβ蛋白表达水平变化可能成为甲状腺癌预后、组织分型或淋巴结转移的检测指标,特别是其中ESR1蛋白表达与以上所有参数有关,而以上分子标记物中CDH1、MLH1、TIMP3、RARβ、ESR1、MGMT、CDKN2A和CALCA蛋白表达水平趋势存在一定的相关性。以ESR1、RARβ和MGMT三者联合检测甲状腺癌可以大大提高其检测灵敏度、特异度和准确度,TIMP3与CDH1或MLH1的组合也在较大程度上具有联合检测的意义。3.TIMP3基因启动子区CpG岛发生甲基化是甲状腺乳头癌特异的表观遗传学变化,可能是该蛋白质表达下调或表达缺失的重要原因,但是基因启动子去甲基化可能与RARB、CALCA、CDH1和MLH1基因的表达下调或上调无关。
Objective: Thyroid disease is a high incident endocrinal disease caused by diverse factors and represents such clinical manifestations as nodular goiter, Hashimoto’s thyroiditis, thyroid adenoma(benign)and thyroid cancer(malignant), threatening the health and life of more than three hundred million people in the world. Thyroid cancer is one of the most common endocrine malignancies in China, occurred in one of ten malignant cancers of Chinese women, rapidly increased in last three decades. Xinjiang is multi-ethnic region of China,the increasing trend of the number of thyroid cancer patients from various ethnic groups treated in major hospitals has been noticeable, however, the incidence of thyroid disease, specially the thyroid cancer in Xinjiang has not been reported so far.Thyroid cancer is a kind of malignant tumor of epithelial cell origin, generally represents the papillary thyroid cancer, follicular thyroid carcinoma, undifferentiated thyroid carcinoma and medullar thyroid carcinoma, with the ratio of 80-90% for papillary thyroid cancer.Medical imaging is the main method for the diagnoses of the cancer, but often fails in early detection of many tumors without distinct clinical symptoms, and always leads to unsuitable treatment because of difficulties in distinguishing benign and malignant tumors with similar clinical features.To study the thyroid cancer by molecular genetics, molecular biology and immunology, to understand the molecular mechanism of the cancer development, to discover the molecular markers for early diagnosis or discrimination of the begin from malignant tumor, is a cutting edge to establish molecular diagnostic profile, effective prevention and clinical treatment of the cancer.Therefore, in the first part of this study, we will analyze the case information of patients treated in the hospital in last eight years, and understand the development state of thyroid diseases or thyroid cancer in Xinjiang in different aspects such as the morbidity trend, gender, age, and ethnic groups.In the second part, we will search for candidate genes specific or related to adenocarcinoma confirmed in previous reports, screen the up-and down-regulated gene profile in thyroid cancer at protein expression level based on cases treated in Xinjiang, and evaluate the role as biomarkers for thyroid disease development. In the third part, we will focus on genes down-regulated or lost in protein expression according to the data generated from the“second part”, identify molecular markers hypermethylated in, and specific to, papillary thyroid cancer by analysis of candidate gene methylation at promoter region using Sequenom MassARRAY platform for quantitative analysis of methylated DNA. Method:1.We collected the information of 6071 case according to the archive of the first affiliated hospital of Xinjiang medical university from 2002~2009, including 5865 cases of thyroid begin lesions and 206 cases of thyroid cancer, with age range of 1~91, 1707 cases of male, 4364 cases of female, 4191 cases of Han, 1160 cases of Uyghur, 810 cases of other ethnic groups. SPSS13.0 and Microsoft Excel 2007 were used for statistical analysis, x~2 with significance atα=0.05.2.195 formalin fixed and paraffin-embedded thyroid specimens were collected from the period of 2004~2010, in tissue bank of pathology department of first affiliated hospital of Xinjiang medical university, divided into 112 cases of thyroid cancer, 10 cases of nodular goiter, 15 cases of Hashimoto’s thyroiditis, 26 cases of thyroid adenoma, 32 cases of normal tissue. Eleven thyroid cancer-specific up-or down-regulated candidate genes CDH1, MGMT, TIMP3, ESR1, DAPK1, RARB, APC, CDKN2A and MSX1 were selected for the analysis of protein expression level of single gene by immunohistochemical S-P method with specific antibodies. 3.High quality tissue DNA was prepared from 49 papillary thyroid cancer tissue specimens and from 23 normal tissue specimens using the improved genomic DNA extraction method resulted from the pilot experiment. PCR primes specific to CpG Island of promoter region of 5 types of candidate genes were designed for the quantitative analysis of methylation in tissue DNA by Sequenom MassARRAY platform.Result:1.The incidence of the thyroid cancer has markedly increased from 2002~2009,the ratio of thyroid cancer cases was very low (3.39%) compared to benign lesion(s96.61%)representing mainly the Graves' disease and nodular goite(r48 and 4 0%, respectively). Papillary thyroid cancer(81%) and folicular cancer(14%)were the main types of thyroid cancer. The morbidity of thyroid disease has significant difference among various age ranges, and in gender with a male to female ratio of 1/2.56(P <0.05).The ratio of Han and Uyghur ethnic group in all cases was dominant ones, but no difference was found in the distribution of both groups in all disease types.The ratio between female to male significantly higher than the ratio of Han’s both in thyroid disease or in thyroid cancer.2.①Immunohistochemical and statistical analysis showed that the protein express level (positive rate) of CDH1, MLH1, TIMP3 and DAPK1 genes was
     significantly decreased from the group of normal tissues to nodular goiter, Hashimoto’s thyroiditis, thyroid adenoma and thyroid cancer(P <0.05), and in contrast, the alteration trend of ESR1, MGMT and RARβprotein expression remarkably increased with statistical significance. But no difference was found for APC.②From the clinicopathological point of view, the downregulation of CDH1 protein expression or the upregulation of ESR1 were closely associated with the prognosis and types of the cancer, whereas the downregulation of DAPK1 or upregulation of RARβcorrelated with lymphnode metastasis(P<0.05).③Analysis focused on the papillary thyroid cancer showed significant difference of CDH1, MLH1, TIMP3, DAPK1, ESR1, MGMT and RARβprotein expression between papillary thyroid cancer and the normal control,(P<0.05).Additionally, the positive rate of CALCA protein expression was significantly higher in papillary thyroid cancer compared to normal control, but no difference was found for CDKN2A and MSX1.④As tumor specific genes of thyroid cancer , CDH1 and MLH1, MLH1 and TIMP3, RARβand ESR1, RARβand MGMT or CDKN2A/p14ARF and CALCA at protein expression level to various exten(t0.4     the promoter region specific to papillary thyroid cancer with statistical difference, in comparison to the normal control (P<0.05),but no difference was shown for RARB, CALCA,CDH1 and MLH1. Further analysis of TIMP3 for single CpG site methylation indicated that the methylation of CpG-7/CpG-8 combination and CpG-9 was quantitatively higher in cancer tissue DNA than in the normal, and associated with the degree of clinical stages(P<0.05 or P<0.01).Conclusion:1. An increasing trend in morbidity was a common feature of thyroid disease in Xinjiang population, high in women patients than in men, earlier age in women patient than in men (malignant)with only a minimal proportion of malignancy compared to the predominance of benign lesions. Papillary thyroid cancer and the Grave’s diseases are the most common types occurred as malignant cancer and benign disease, respectively.Although there was no age or ethnic difference in all thyroid disease types in Xinjiang,whereas there was significant difference at constituent ratio of clinical types of thyroid cancer between the Uyghur and Han,at the same time the ratio of gender of patient in Uyghur higher than in Han.2. (1)The upregulation of CDH1,MLH1,TIMP3 and DAPK1 protein expression or downregulation of ESR1,MGMT and RARβmay be a molecular marker profile of thyroid cancer, and among them, the alteration of CDH1,MLH1, TIMP3,DAPK1,ESR1,MGMT,RARβand CALCA protein level was more specific to papillary thyroid cancer than the other cancer types. (2)The change in CDH1,ESR1,DAPK1and RARβprotein expression may be a important marker for the estimation of prognosis, cancer types or lymphnode metastasis. An association of the alteration trend in protein expression was estimated for CDH1,MLH1,TIMP3,RARβ,ESR1,MGMT,CDKN2A and CALCA. (3)The combined detection with three genes ESR1,RARβand MGMT at protein level may promise a very high sensitivity, specificity and accuracy for the diagnosis of thyroid cancer, whereas the combination of TIMP3with CDH1or MLH1 may also promise a high detection rate of the cancer. 3. The methylation of TIMP3 at promoter region may be an epigenetic event accounting for the downregulation or loss of protein expression specific to papillary thyroid cancer, but not the case for such genes as RARB, CALCA, CDH1 or MLH1.
引文
[1] Josena. K. Stephen, Dhananjay Chitale, Vinod Narra, et al. DNA methylation in thyroid tumorigenesis[J]. Cancers(Basel). 2011, 3(2):1732-1743.
    [2] Burch HB. Evaluation and management of the solid thyroid nodule[J]. Endocrino-logy and Metabolism Clinics of North America. 1995, 24:663-664.
    [3] Mackenzie EJ, Mortimer RH. Thyroid nodule and thyroid cancer[J]. MJA. 2004, 180:242-247.
    [4] Hodgson NC, Button J, Solorzano CC. Thyroid cancer:is the incidence still increasing[J]. Ann Surg Oncol. 2004, 11(12):1093-1097.
    [5] Reis EM, Ojopi EP, Alberto FL, et al. Large-scale transcriptome analyses reveal new genetic marker candidates of head neck, and thyroid cancer[J]. Cancer Res. 2005, 65:1693-1699.
    [6]杨爱红.彩色多普勒超声对甲状腺肿块的诊断价值(附76例报告)[J].福建医药杂志. 2010, 32(3):97-99.
    [7] Mackenzie EJ, Mortimer RH. Thyroid nodule and thyroid cancer[J]. MJA. 2004, 180:242-247.
    [8]方海飞,沈美萍,徐银峰.甲状腺乳头状癌TGF-B1, CD31表达与肿瘤转移的关系[J].南京医科大学学报(自然科学版). 2007, 27(5):472-475.
    [9] QuickFACTS Thyroid Cancer. American Cancer Society[N];Atlanta:2009. p. 1-131.
    [10] Surveillance Research Program CSB Surveillance, Epidemiology, and End Results (SEER) Program. National Cancer Institute;2004. November 2003.
    [11]夏米西努尔·伊力克,热莎来提·吐尔逊,阿布力孜·阿不都拉.新疆人群中199例甲状腺癌临床病理分析[J].现代肿瘤学. 2008, 16(6):937-939.
    [12] 116夏米西努尔·伊力克,尼加提·热合木,阿布力孜·阿布杜拉等. 116例维?汉甲状腺疾病临床病理分析[J].新疆医科大学学报. 2009, 32(6):709-713.
    [13] Cancer Facts and Figures 2005[R]. American Cancer Society. Atlanta:2005. Mazzaferri EL, Kloos RT. Clinical review 128:Current approaches to primary therapy for papillary and follicular thyroid cancer[J]. J Clin Endocrinol Metab. 2001; 86:1447-1463.
    [14] Schlumberger MJ. Papillary and follicular thyroid carcinoma[J]. N Engl J Med, 1998, 338:297-306.
    [15] Williams ED. Chernobyl and thyroid cancer[J]. J Surg Oncol. 2006, 94:670-677.
    [16] Ming Zhao Xing. Gene methylation in thyroid tumor genesis[J]. Endocrinology.2007, 148:3948-953.
    [17]江燕春.新疆库尔勒地区蒙?维?汉族人群甲状腺疾病发病率的调查[J],放射免疫学杂志. 2001, 14(2):111-112.
    [18]任玉波,李旭东,陈冰.甲状腺癌的早期诊断方法探讨[J].山东医药, 2004, 44(24):34-35.
    [19]温加登(美),主编.西氏内科学[M].世界图书出版公司. 1995,2(19):994-995.
    [20] International Union Against Cancer(UICC):TNM Classification of malignant tumors. 6th ed Sobin LH, Wittekind Ch. , eds[M]. New York:Wiley-Liss, 2002.
    [21]周庚寅,等主编.甲状腺病理与临床[M].北京:人民卫生出版社. 2005:156.
    [22] Josena K. Stephen, Dhananjay Chitale, et al. DNA methylation in thyroid tumorigenesis[J]. Cancers(Basel). 2011, 3(2):1732-1743.
    [23]徐先发,邵姗.分化型甲状腺癌的治疗策略[J].中国耳鼻咽喉头颈外科, 2008, 15(6):331-334.
    [24] Hegedus L. Clinical practice:the thyroid nodule[J]. N Engl J Med. 2004,351:1764- 1771.
    [25]王恩华主编.病理学[M].北京:高等教育出版社. 2003:287-288.
    [26] Nijaguna. Prasad, Helina Somervell, Ralph P. Tufano et. al. Identification of Genes Differentially Expressed in Benign versus Malignant Thyroid Tumor[J]. Clin Cancer Res. 2008, 14(11):3327-3337.
    [27]余红梅,陈世清,朱大菊等.甲状腺肿瘤相关基因的研究进展[J].临床外科杂志. 2006, 14(9):597-599.
    [28] Kitamura Y, Shim izu K, Tto K, et al. A llelotyp ing of follicular thyroid carcinoma: frequent allelic losses in chromosome arm s 7q, 11p, and 22q[J]. J Clin Endocrinol Metab. 2001, 86(9):4268-4272.
    [29] Kroll TG, Sarraf P, Pecciarini L, et al. PAX82PPARγ-1 fusion on-cogene in human thyroid carcinoma[J]. Science. 2000, 289(5483):1357-1360.
    [30] Roque L, Clode A, Belge G, et al. Follicular thyroid carcinoma:chromosome analysis of 19 cases[J]. Genes Chromosomes Cancer, 1998, 21(3):250-255.
    [31] Gazzanfer Belge, Anke Meyer, Markus Klemke, et al. Upregulation of HMGA2 in Thyroid Carcinomas:A Novel Molecular Marker to Distinguished Between Benign and Malignant Follicular Neoplasias[J]. Genes, Chromosomes &Cancer. 2008, 4756-4763.
    [32]康新江. DNA甲基化与肿瘤[J].內肛科技. 2006, 3:105-106.
    [33]伊飞鹏,于世鹏. PI3K对分化型甲状腺癌中NIS表达调节的研究进展[J].国际内科学杂志. 2009, 36(8):491-494.
    [34] Du Y, Carling T, Fang W, et al. Hypermethylation in human cancers of the RIZ1 t umor suppressor gene, a member of a histone/protein methyltransferase superfamily [J]. Cancer Res. 2001, 61(22):8094-8099.
    [35] King Yin Lam, Chung Yau Lo, Pauline Leung, et al. Clinicopathological Roles of Alterations of Tumor Suppressor Gene p16 in Papillary Thyroid Carcinoma[J]. Ann Surg Oncol. 2006, 14(5):1772-1779.
    [36]彭正良,曹仁贤,文格波等,甲状腺乳头状癌组织中p16基因甲基化的研究[J].现代肿瘤医学杂志. 2006, 14(12):1501-1503.
    [37] Milde L K, Riethdorf L, Bamberger AM, et al. p16/M TS1 and PRB exp ression in endomet rial carcinomas[J]. Virchow Arch. 1999, 434(1):238-281.
    [38] Kashiwabara K, Oyama T, Sano T, et al. Correlation between methylation status of the p16/CDKN2 gene and the expression of p16 and Rb proteins in primarynon- small cell lung cancers[J]. Int J Cancer. 1998, 79(3):215-220.
    [39] Boltze C, Zack S, Quednow C, et al. Hypermethylation of the CD2 KN2/p16INK4A promotor in thyroid carcinogenesis[J]. Pathol Res Pract. 2003, 199(6):399-404.
    [40] Lewiniski A, Wojciechowska K. Genetic Background of Carsinogenesis in the thyroid gland[J]. Neuro Endocrinol Lett. 2007, 15:28(2).
    [41]郭贵龙,姚榛祥. p27在甲状腺滤泡状肿瘤中表达及意义[J].中国普外基础与临床杂志. 2001, 8(5):324-325.
    [42] Dammann R, Li C, Yoon JH, et al. Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21. 3[J]. NatGenet. 2000, 25(3):315-319.
    [43] Burbee DG, Forgacs E, Zochbauer-Muller S, et al. Epigenetic inactivation of RASSF1A in lung and breast cancer and malignant phenotype suppression[J]. J Natl Cancer Inst. 2001, 93(9):691-699.
    [44]刘桂芝,吴逸明. RASSF1A表达或缺失的两类早期肺腺癌组织差显蛋白的筛选与鉴定[J].第二军医大学学报. 2008, 29(2):136-141.
    [45]唐纪全,王川,傅芳萌等. DAPK1基因启动子甲基化与乳腺癌临床病例特征的关系[J].国际病理科学与临床杂志. 2010, 30(4):277-281.
    [46]华海蓉,金克炜,阮永华等. DAPK基因启动子甲基化在云锡矿粉诱导F334大鼠中的作用[J].中国职业医学. 2008, 35(2):95-97.
    [47]孔祥勇,胡世莲等.胃癌中DAPK基因启动子区CpG岛高甲基化的研究[J].肿瘤. 2009, 29(11):1065-1069.
    [48]何晶晶,毛易捷,许刚等.前列腺癌组织中GSTP1和DAPK基因异常甲基化检测及临床意义[J].实用医学杂志. 2009, 25(9):1364-1364.
    [49]赵先兰,孟志英等. DAPK和DNMT1在宫颈癌中的相关性研究[J].免疫学杂志. 2009, 25(1):80-87.
    [50] Hu S, Liu D, Tufano RP, et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer[J]. International Journal of Cancer. 2006, 119(10):2322-2329.
    [51]花敏慧. DAPK1?RARβ甲基化联合高危型HPV检测对宫颈癌前病变及宫颈筛查的研究[D].南通大学硕士研究生毕业论文汇编. 2009.
    [52]徐娟,曲芃芃.维甲酸受体α?β在卵巢组织中的表达及与卵巢肿瘤的关系[J].天津医药. 2010, 38(8):651-653.
    [53] Xu XC. Tumor-suppressive activity of retinoic acid receptor-beta in cancer[J]. Cancer Lett, 2007, 253(1):14-24.
    [54] Swift ME, Wallden B, Wayner EA, et al. Truncated RAR beta isoform enhances proliferation and retinoid resistance[J]. J Cell Physiol. 2006, 209(3):748-725.
    [55] Leung WK, TO KF, Chu ES, et al. Potential diagnostic and prognostic values of detecting promoter hypernethylation in the serum of patients with gastric cancer[J]. Br J Cancer. 2005, 92(12):2190-2194.
    [56] Shaw RJ, Li loglou T, Rogers SN, et al. Promoter methylation of P16, RAR beta, E-cadherin, cyclin A1 and cytoglobin in oral cancer quantitative evaluation using pyrosequencing[J]. Br J Cancer. 2006, 94(4):561-568.
    [57] Korshunova Y, M aloney RK, et al. Massively parallelbisulphite pyrosequencing r eveals the molecular complexity of breast cancer-associated cytosine-methylation patterns obtained from tissue and serum DNA[J]. Genome Res. 2008, 18(1):19-29.
    [58] Hoque MO. DNA methylation changes in prostate cancer current developments and future clinical implementation[J]. Expert Rev Mol Diagn. 2009, 9(3):243-257.
    [59] Spurling CC, Suhi JA, Boucher N, et al. The short chain fatty acid butyrate induces promoter demethylation and reactivation of RAR beta2 in colon cancer cells[J]. Nutr Cancer. 2008, 60(5):692-702.
    [60]韩冲,王在军,王立东. APC与肿瘤浸袭转移的关系[M].中国科技信息. 2010, 14:175-176.
    [61] Kawakami K, Brabender J, Lord RVJ, et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma[J]. Natl Cancer Inst.2000, 92(22):1805-11.
    [62] Virmani AK, Rathi A, Sathyanarayana UG, et al. Aberrant methylation of the adenomatouspolyposis coli(APC)gene promoter 1A in breast and lung carcinomas[J]. Clin Cancer Res 7. 2001, 1998-2004.
    [63]王震凯,朱人敏等.β-catenin和APC蛋白在胃癌?胃腺瘤中的表达变化及研究[M].第九届国际治疗内镜和消化疾病学术会议论文汇编. 2010:262-263.
    [64]李飞. APC基因与大肠癌关系研究进展[J].肿瘤学杂志. 2010, 16(2):108-110.
    [65]王世凤,刘倩,张尚福等. APC和c-Myc在非小细胞肺癌中的表达及意义[J].四川大学学报(医学版). 2010, 41(5):822-826.
    [66]白同,杨斌,娄诚等. APC和CDKN2A基因甲基化定量分析对肝细胞癌的诊断价值[J].世界华人消化杂志. 2009, 17(29):3001-3007.
    [67] Yamashita S, Tsujino Y, Moriguchi, et al. Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2'-deoxycytidine treatment and oligonucleotide microarray[J]. KCancer Sci. 2006, 97(1):64-71.
    [68] Goodman MT, Ferrell R, McDuffie K, et al. Calcitonin gene p olymorphism CALCA-624(T/C)and ovarian caneer[J]. Environ Mol Mutagen. 2005, 46(1):53-58.
    [69] Magana J, Gomez R, Cisneros B, et al. Association of the CTgene (CA) polylmorphism with BMD in osteoporotic mexican women[J]. Clin Genet. 2006, 70(5):402-408.
    [70] Buervenich S, Xiang F, Sydow O, et al. Identification of four novel polymorphisms in the calcitonin/a1pha-CGRP(CALCA)gene and aninvestigation of their possible associations with Parkinson disease, schizophrenia and manic depression[J]. Hum Mutat. 2001, 17(5):435-436.
    [71]罗新林.降钙素基因相关肽基因CALCA遗传多态性与高血压病易感性的相关性研究[D]:[硕士学位论文].湖南:中南大学, 2007, 66-67.
    [72] Wang L, Zhang F, Wu PP, et al. Disordered beta-catenin expression and E-cadherin/CDH1 promoter methylation in gastric carcinoma[J]. World J Gastroe-nterology. 2006, 12(26):4228-4231.
    [73]徐军,王红琳,陆果川等.人宫颈癌组织CDH1和PAX1基因甲基化研究[J].肿瘤. 2009, 29(5):483-485.
    [74]吉敏,盛剑秋,付蕾,等.遗传性非息肉病性结直肠癌错配修复基因MLH1启动子甲基化研究[J].胃肠病学和肝病学杂志. 2008, 17(4):291-293.
    [75]舒珊荣,柯佩琪,李小毛,等.子宫内膜癌错配修复基因hMLH1的表达和启动子甲基化研究[J].中山大学学报(医学科学版). 2009, 30(3):241-245.
    [76] Yu-Xian Bai, Ji-Lin Yi, Jian-Feng Li, et al. Clinicopathologic significance of BAG1 and TIMP3 expression in colon carcinoma[J]. World J Gastroenterol. 2007, 13(28):3883-3885.
    [77] Eric Smith, Neville J, DeYoung, et al. World Gastroenterol. 2008, 14(2):203-210.
    [78] Lindsey JC, Lusher ME, Anderton JA, et al. Identifieation of tumour-specifiec pigenetie events in medulloblastoma development by hypermethylation profiling[J]. Carcinogenesis. 2004, 25:661-668.
    [79] Bachman KF, Herman JG, Corn PG, et al. Methylation-associated silencing of the tissue inhibitor of matalloproteinase gene suggest a suppressor role in kidney, brain and other human cancers[J]. Cancer Res. 1999, 59:798-802.
    [80] Ogechukwu P, Eze Lee F, Starker, et al. The Role of Epigenetic Alterations in Papillary Thyroid Carcinogenesis[J]. Thyroid Res. 2011.
    [81] Baumann S, Keller G, Pühringer F, et al. The prognostic impact of O6-Methylguanine-DNAMethyltransferase(MGMT)promotorhypermethylation in esophageal adenocarcinoma[J]. Int J Cancer. 2006, 119(2):264-268.
    [82]唐平章,吴雪林.甲状腺恶性肿瘤.谷铣之.现代肿瘤学(临床部分)[M].北京;北京医科大学中国协和医科大学联合出版社. 1993. 1288-2951.
    [83]王代科,扬俊请.分化性甲状腺癌的外科治疗进展普外临床[J]. 1992, 7(6):329.
    [84] Hodgson NC, Button J, Solorzano CC. Thyroid cancer is the incidence still increasing[J]. Ann Surg Oncol. 2004, 11(12):1093-1097.
    [85] Ferlay J, Bray F, Pisani P, et al. GLOBOCAN 2000. Cancer incidence, Mortality and Prevalence Worldwide[C]. IARC press. Lyon 2001.
    [86]敖小凤,高志红.甲状腺流行现状研究进展[J].中国慢性病预防和控制. 2008, 16(2):217-219.
    [87] Lundgren CI, Hall P, Ekbom A, et al. Incidence and survival of Swedish patients with differentiated thyroid cancer[J]. Int J Cancer. 2003, 106:569-573.
    [88] Liang H, Zhong Y, Luo Z, Huang Y, et al. Diagnostic value of 16 cellular tumor markers for metastatic thyroid cancer:an immunohistochemical study[J]. 2011, 31(10):3433-40.
    [89]扬其昌,韩枋. 171例甲状腺癌的临床病理与预后分析[J].临床与实验病理学杂志. 1995, 11(11):47-48.
    [90] Leenhardt L, Grosclaude P, Cherie-Challine L. Increased incidence of thyroid carcinoma in France:A true epidemic or thyroid nodule management effects French Thyroid Cancer Committee[J]. Thyroid. 14:1056-1060.
    [91] Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States[J], JAMA. 295:2164-2167.
    [92] Mazzaferri EL, Harmer C, Mallick UK, et al. Practical Management of Thyroid Cancer:A Multidisciplinary Approach[J]. London, United Kingdom, Springer- Verlag. 2006:281-286.
    [93] Fonseca E, Soares P, Rossi S, et al:Prognos-tic factors in thyroid carcinomas J]. Verh Dtsch Ges Pathol. 81:82-96.
    [94] Gilliland FD, Hunt WC, Morris DM, et al. Prognostic factors for thyroid carcinoma:A population-based study of 15, 698 cases from the Surveillance, Epidemiology and End Results(SEER)program 1973-1991[J]. Cancer. 79:564-573.
    [95] Hay ID, Bergstralh EJ, Goellner JR, et al, Predicting outcome in papillary thyroid carcinoma:Development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989[J]. Surgery. 114:1050-1057.
    [96] Mazzaferri EL, Jhiang SM:Long-term impact of initial surgical and medical therapy on papillaryand follicular thyroid cancer[J]. Am J Med. 97:418-428.
    [97] Sherman SI, Brierley JD, Sperling M, et al. Prospective multicenter study of thyroid carcinoma treatment:Initial analysis of staging and outcome:National Thyroid Cancer Treatment Cooperative Study Registry Group[J]. Cancer. 83:1012-1021.
    [98] LiVolsi VA, Fadda G, Baloch ZW:Prognostic factors in well-differentiated thyroid cancer[J]. Rays. 25:163-175.
    [99]周庚寅,等主编.甲状腺病理与临床[M].北京:人民卫生出版社. 2005:135.
    [100] Tanaka K, Iwamooto S, Gon G, et al. Expression of survivin and its relationship to loss of apopotosis in breast carcinomas[J]. Clin Cancer Res. 2000, 6(1):127.
    [101] Smith JA, Fan CY, Zou C, et al. Methylation status of genes in papillary thyroid carcinoma[J]. Arch Otolaryngol Head Neck Surg. 2007, 133:1006-1011.
    [102] Hu S, Liu D, Tufano RP, et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer[J]. Int J Cancer. 2006, 119(10):2322-2329.
    [103]姜伶俐,辛晓燕,上皮性卵巢癌中CDH1基因突变/甲基化对上皮型钙黏附素表达的影响[J].山西医科大学学报. 2010, 41(3):214-218.
    [104] Sibel Erdamar, Esra Ucaryilmaz, Gokhan Demir. Importance of MutL homologue MLH1 and MutS homologue MSH2 expression in Turkish patients with sporadic colorectal cancer[J]. World J Gastroenterol. 2007, 13(33):4437-4444.
    [105] Anania MC, Sensi M, Radaelli ETIMP3 regulates migration, invasion and in vivo tumorigenicity of thyroid tumor cells[J]. Oncogene. 2011, 30(27):3011-3023.
    [106]唐纪全.乳腺癌中DAPK1基因的表达及启动子甲基化状态的研究[D]:[硕士学位论文].福建:福建医科大学. 2011. 4-2.
    [107] Lewy-Trenda I. Estrongen and progesterone receptors in neoplastic and non-neoplastic thyroid Iesions[J]. Pol J Pathology. 2002, 53(2):67-69.
    [108]阎慧娟,米建强.胃癌及癌前病变中MGMT的表达及其意义[J].现代肿瘤医学. 2011, 19(2):300-302.
    [109]蔡小强,谢作煊.不同组织学类型人肺癌细胞系的维甲酸受体表达[J].临床与实验病理学杂志. 2002, 18(3):316-318.
    [110]张丽娟,魏万里,王芳,等. APC?B-catenin及c-myc在大肠腺瘤-癌组织序列中的表达及其意义[J].实用癌症杂志. 2008, 2(1):3-7.
    [111]田桂红,马金龙,王家耀,等.甲状腺肿瘤组织中p14~(ARF)基因纯合性缺失及其产物表达状况的研究[J].肿瘤防治杂志. 2005,(17):1292-1294.
    [112] Fux C, Lnager D, Fussenegger M. Dual-regulated myoD-nad msx1-based interverntions in C2C12-derived cells enable precise myogenic/osteoge-nic/ adipogenic lineage control[J]. JGene Med. 2004, 6(10):1159-1169.
    [113] Magana J, Gomez R, Cisneros B, et al. Association of the CTgene (CA) polylmorphism with BMD in osteoporotic mexican women[J]. Clin Genet. 2006, 70(5):402-408.
    [114]李储忠,桂松柏,刘方军,等. ESR1及其亚型Δ5-Del-ESR1 mRNA在泌乳素腺瘤中的表达[J].现代肿瘤医学. 2010, 18(6):1087-1089.
    [115] Lewy-Trenda I. Estrongen and progesterone receptors in neoplastic and non-neoplastic thyroid Iesions[J]. Pol J Pathology. 2002, 53(2):67-69.
    [116] Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers[J]Am J Pathol, 1998, 153:333-339.
    [117]辛积华. XRCC1?MGMT在散发性结肠癌中表达的基础研究[D]:[硕士学位论文].大连:大连医科大学. 2007. 6-2.
    [118]吉艳荣,薄爱华,吉彦丽,等. MGMT和HSP70在大肠癌中的表达及临床意义[J].现代肿瘤医学. 2009, 17(5):886-887.
    [119]白金君,王发亮,薄爱华,等. O6-甲基鸟嘌呤-DNA-甲基转移酶(MGMT)在乳腺癌中的表达及其临床意义[J].现代肿瘤医学. 2008, 16(9):1499-1501.
    [120]吕伟朋,李梅,冯璐. hMLH1与MGMT蛋白在非小细胞肺癌的表达及病理意义[J].现代肿瘤医学. 2008, 19(9):1709-1712.
    [121]李启凤,吴名耀.食管癌组织TopoⅡα和MGMT表达及其临床意义的研究[J].中华肿瘤防治杂志. 2010, 17(22):1818-1820.
    [122] W A Cooper, M R J Kohonen-Corish, C Chan, et al. Prognostic significance of DNA repair proteins MLH1, MSH2 and MGMT expression in non-small-cell lung cancer and precursor lesions[J]. Histopathology. 2008, 52, 613-622.
    [123]刘莹,王静,吴逸明,等.非小细胞肺癌组织MGMT蛋白的表达[J].中华肿瘤防治杂志. 2010, 17(15):1196-1198.
    [124]李俊. p73, MGMT基因启动子甲基化状态与膀胱尿路上皮癌的相关性研究[D]:[博士学位论文].武汉:华中科技大学, 2010. 5-4.
    [125]王东,张沁宏,李增鹏.肝细胞肝癌DNA损伤修复基因MGMT的表达及其与p53的关系[J].消化外科. 2005, 4(6):425-429.
    [126]秦积龙.新疆维吾尔族妇女宫颈上皮内瘤变及宫颈癌中FHIT?p16INK4a?RARB蛋白表达及意义[D]:[硕士学位论文].乌鲁木齐:新疆医科大学. 2010. 4-1.
    [127]皮明毅.维甲酸受体β在膀胱移行细胞癌中的表达及意义[J].中国现代手术学杂志. 2008, 12(3):168-170.
    [128]张梅.同一个体贲门癌和癌前病变组织p16?APC?RARβ甲基化及其表达:同一地区食管和贲门癌及其癌前病变组织对比研究[D]:[博士学位论文].郑州:郑州大学. 2007, 5-6.
    [129] Jia H, Jiang X, Zhao Z. High frequency of down-regulation of E-cadherin detected in benign sporadic insulinomas by multiplex ligation-dependent probe amplification [J]. Hum Pathol. 2009, 40(9):1336-1341.
    [130] Qian ZR, Sano T, Yoshimoto K. Tumor-specific downregulation and methylation of the CDH13(H-cadherin)and CDH1(E-cadherin)genes correlate with aggressiveness of human pituitary adenomas[J]. Mod Pathol. 2007, 20(12):1269-1277.
    [131]杨兰辉,向莉,周洁晶. CDH1基因甲基化水平与肺癌的相关性研究[J].昆明医学院学报. 2009,(7):72-76.
    [132]何云,庄志雄. DNA错配修复的分子机制[J].卫生毒理学杂志, 2001, 15(4):246-249.
    [133] Oh K, Redston M, Odze RD. Support for hMLH1 and MGMT silencing as a mechanism of tumorigenesis in the hyperplastic-adenoma-carcinoma (serrated) carcinogenic pathway in the colon[J]. Hum Pathol, 2005, 36(1):101-111.
    [134] Lee MH, Dodds P, Verma V, et al. Tailoring tissue inhibitor of metalloproteinase (TIMP)-3 to overcome the weakening effects of the cysteine-rich domains of tumornecrosis factor-a converting enzyme(TACE)[J]. Biochem J. 2003, 37(3):378-382.
    [135] Yeow KW, Kishnani NS, Hutton M, et al. Sorsby's fundus dystrophy tissue inhibitor of metalloproteinase(TIMP)-3 mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix[J]. Matrix Biol. 2002, 21(1):75-88.
    [136] Brew K, Dinakarpandian D, Nagases H. Tissue inhibitors of metalloproteinases: evolution, structure and function[J]. Biochem Bio-phys Acta. 2000, 1477(1):267.
    [137]白玉贤,易继林,李剑峰. BAG1和TIMP3在结肠癌中的表达及临床病理意义[J].中国肿瘤, 2008, 17(1):66-70.
    [138]沈建军,胡世莲,沈干,等. RUNX3?DAPK基因甲基化及其蛋白表达与胃癌病情的研究[J].安徽医科大学学报. 2010, 45(5):613-617.
    [139]刘晓婉,玛依努尔.尼亚孜,阿布力孜.阿布杜拉,等.新疆维吾尔族妇女宫颈病变中的DAPK表达的研究[J].中国肿瘤. 2010, 19(3):203-206.
    [140]王振宝,潘晓琳,陈少泽,等.抑癌基因DAPK在肿瘤中的发生?转移?复发?预后中的作用[J].生命的化学. 2008, 28(3):295-298.
    [141]李春生.甲状腺乳头状癌组织E-cadherin蛋白表达及其与颈部淋巴结转移相关性研究[J].中华肿瘤防治杂志. 2011, 18(3):102-104.
    [142] Maha R, Kallel I, Charfeddine S, et al. Association of polymorphisms in estrogen and thyroid hormone receptors with thyroid cancer risk[J]. J Recept Signal Trans- duct Res. 2009, 29(2):113-118.
    [143] Jakob Lovéna, Nikolay Zinina, Therese Wahlstr?ma, et al. MYCN-regulated microRNAs repress estrogen receptor-α(ESR1)expression and neuronal differentia- tion in human neuroblastoma[J]. medical sciences. 2010, 107(4):1553-1558.
    [144] Chun AW, Chan MW, Lee TL, et al. Promoter hypermethylation of death-associated protein-kinase gene associated with advance stage gastric cancer[J]. OncolRep. 2005, 13(5):937-941.
    [145] Elisei R, Vivaldi A, Agate L, et al. All-trans-retinoic acid treatment inhibits the growth of retinoic acid receptor beta messenger ribonucleic acid expressing thyroid cancer cell lines but does not reinduce the expression of thyroid-specific genes[J]. Clin Endocrinol Metab. 2005, 90(4):2403-2411.
    [146] Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973-2002[J]. JAMA. 2006, 295(18):2164.
    [147] Loh KC, Greenspan FS, Gee L, et al. Pathologieal tumor-node-metastasis (pTNM) staging for papillary and follicular thyroid carcinomas:a retrospective analysis of700 patients[J]. J Clin Endocrinol Metab. 1997, 82:3553-3562.
    [148] Partha M, Rakesh S. DNA methylation and cancer[J]. J Clin Oncol. 2004,22(22): 4632-42.
    [149] Knudson AG Jr. Hereditary cancer, oncogenes, and antioncogenes[J]. Cancer Research. 1985, 45(4):1437.
    [150] Toulouse A, Loubeau M, Morin J, et al. RARβeta involvement in enhancement of lung tumor cell immunogenicity revealed by array analysis[J]. FASEB. 200,14: 1224-1232.
    [151] Laco J, Ryska A. The use of Immunohistochemistry in the differential diagnosis of thyroid gland tumors with follicular growth pattern[J]. CeskPatol, 2006,42(3):120- 124.
    [152] Castrilli G, Fabiano A, La Torre G, et al. Expression of hMSH2 and hMLH1 proteins of the human mismatch repair system in salivary gland tumors[J]. J Oral Pathol Med, 2002, 31(4):234-238.
    [1]杨爱红.彩色多普勒超声对甲状腺肿块的诊断价值(附76例报告)[J].福建医药杂志. 2010, 32(3):97-99.
    [2] Burch HB. Evaluation and management of the solid thyroid nodule[J]. En-docrinology and Metabolism Clinics ofNorth America. 1995, 24:663.
    [3] Mackenzie EJ, Mortimer RH. Thyroid nodule and thyroid cancer[J]. MJA. 2004, 180:242-247.
    [4]方海飞,沈美萍,徐银峰.甲状腺乳头状癌TGF-B1, CD31表达与肿瘤转移的关系[J].南京医科大学学报(自然科学版). 2007, 27(5):472-475.
    [5] Davies L, Welch H G. Increasing incidence of thyroid cancer in the United States, 1973-2002[J]. JAMA. 2006, 295(18):2164.
    [6] Mackenzie EJ, Mortimer RH. Thyroid nodule and thyroid cancer[J]. MJA. 2004, 180:242-247.
    [7] Hodgson NC, Button J, Solorzano CC. Thyroid cancer:is the incidence still increasing[J]. Ann Surg Oncol. 2004, 11(12):1093-1097.
    [8] Reis EM, Ojopi EP, Alberto FL, et al. Large-scale transcriptome analyses reveal new genetic marker candidates of head neck, and thyroid cancer[J]. Cancer Res. 2005, 65:1693-1699.
    [9]敖小凤,高志红.甲状腺癌流行现状研究进展[J].中国慢性病预防与控制. 2008, 16(2):217-219.
    [10] Hundahl SA, Fleming ID, Fremgen AM, et al. A National Cancer Data Base report on 53, 856 cases of thyroid carcinoma treated in the U. S1985-1995[J]. Cancer. 1998, 83:2638-2648.
    [11]余红梅,陈世清,朱大菊等.甲状腺肿瘤相关基因的研究进展[J].临床外科杂志. 2006, 14(9):597-599.
    [12] Kroll TG, Sarraf P, Pecciarini L, et al. PAX82PPARγ-1 fusion oncogene in human thyroid carcinoma[J]. Science. 2000, 289(5483):1357-1360.
    [13] Roque L, Clode A, Belge G, et al. Follicular thyroid carcinoma:chromosome analysis of 19 cases[J]. Genes Chromosomes Cancer. 1998, 21(3):250-255.
    [14] Kitamura Y, Shim izu K, Tto K, et al. A llelotyp ing of follicular thyroid carcinoma:frequent allelic losses in chromosome arm s 7q, 11p, and 22q[J]. J Clin Endocrinol Metab. 2001, 86(9):4268-4272.
    [15] Umbricht CB, Saji M, W estra WH, et al. Telometase activity:a marker todistinguish follicular thyroid adenoma from carcinoma[J]. Cancer Res. 1997, 57(11):2144-2147.
    [16] Okayasu I, O sakabe T, Fujiwara M, et al. Significant correlation of telomerase activity in thyroid papillary carcinomas with cell differentiation, proliferation and extrathyroidal extension[J]. Jpn J Cancer Res. 1997, 88(10):965-970.
    [17]黄菊,程夏楷,杨彬,等. E-钙黏蛋白复合体及其对肿瘤细胞的作用[J]. Chemistry of Life. 2005, 25(3):247-250.
    [18] Laco J, Ryska A. The use of Immunohistochemistry in the differential diagnosis of thyroid gland tumors with follicular growth pattern[J]. CeskPatol, 2006, 42(3):120-124.
    [19] Dunlop MG, Farrington SM, Carothers AD, et al. Cancer risk associated with germline DNA mismatch repair gene mutations[J]. Hum Mol Genet. 1997,6(1):105- 110.
    [20]何云,庄志雄. DNA错配修复的分子机制[J].卫生毒理学杂志. 2001,15(4):246- 249.
    [21]卫军霞,李琳琳.参与膜泡运输的蛋白家族及其运行机制的研究进展[J].国外医学·生理?病理科学与临床分册. 2002, 22(4):404-406.
    [22] Apte SS, Mattei MG, Olsen BR. Cloning of the cDNA encoding human tissue inhibitor of metalloproteinase-3(TIMP-3)and mapping of the TIMP-3 gene to chromosome 22[J]. Genomics, 1994, 19(1):86-90.
    [23] Lee MH, Dodds P, Verma V, et al. Tailoring tissue inhibitor of metalloproteinase (TIMP)-3 to overcome the weakening effects of the cysteine-rich domains of tumor necrosis factor-a converting enzyme(TACE)[J]. Biochem J. 2003, 37(3):378-382.
    [24] Yeow KW, Kishnani NS, Hutton M, et al. Sorsby' s fundus dystrophy tissue inhibitor of metalloproteinase(TIMP)-3 mutants have unimpaired matrix metalloproteinase inhibitory activities, but affect cell adhesion to the extracellular matrix[J]. Matrix Biol. 2002, 21(1):75-88.
    [25] Brew K, Dinakarpandian D, Nagases H. Tissue inhibitors of metalloproteinases: evolution, structure and function[J]. Biochem Bio-phys Acta. 2000, 1477(1):267.
    [26] Feng H, Cheung AN, Xue WC, et al. Down-regulation and promoter methylation of tissue inhibitor of metalloproteinase 3 in choriocarcinoma[J]. Gynecol Oncol. 2004, 94:375-382.
    [27] Brueckl WM, Grombach J, Wein A, et al. Alterations in the tissue inhibitor of metalloproteinase-3(TIMP-3)are found frequently in human colorectal tumorsdisplaying either microsatellite stability(MSS)or instability(MSI)[J]. Cancer Lett. 2005, 223:137-142.
    [28] Darnton SJ, Hardie LJ, Muc RS, et al. Tissue inhibitor of metalloproteinase-3 (TIMP-3) gene is methylated in the development of esophageal adenocarcinoma: loss of expression correlates with poor prognosis[J]. Cancer. 2005, 115:351-358.
    [29] Dalla Valle L, Ramina A, Vianello S, et al. Potential for estrogen synthesis and action in human normal and neoplastic thyroid tissues[J]. J Clin Endocrinol Metab, 1998, 83(10):3702-3709.
    [30] Banu SK, Gov Indarajulu P, Arulds MM. Testosterone and estradiol up regulate and rogen and estrogen receptors in immature and adult rat thyroid glands in vivo[J]. Steroids. 2002, 67(1314):1007-1014.
    [31]陈玮莹,沈忠英.甲基鸟嘌呤甲基转移酶表达调节在肿瘤发生和治疗中的作用[J].生物化学与生物物理进展. 2002, 29(1):26-29.
    [32] EadsCA, Lord RV, Wickramasinghe K, et al. Epigenetic patterns in the progression of esophageal adenocarcinoma[J]. Cancer Res. 2001, 61(8):3410-3418.
    [33] Virmani AK, Muller C, Rathi A, et al. Aberrantmethylation during cervical carcinogenesis[J]. Clin Cancer Res. 2001, 7(3):584-589.
    [34] Park TJ, Han SU, Cho YK, et al. Methylation of O6-methylguanine-DNA methyl-transferase gene is associated significantly with Kras mutation, lymph node invasion, tumor staging, and disease free survival in patients with gastric carcinoma [J]. Cancer, 2001, 92(11):2760-2768.
    [35] Esteller M, Garcia-Foncillas J, Andion E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents[J]. N Engl J Med. 2000, 343(19):1350-1354.
    [36] Cohen O, Feinstein E, Kimchi A. DAP kinase is a Ca2+/calmed ulin-dependent, cytoskeletal-associated protein kinase with cell death-inducing functions that depend on its catalytic activity[J]. Embo J. 2000, 16:998-1008.
    [37] Cohen O, lnbal B, Kissil JL, et a1. DAP-kinase participates in I F-alpha-and Fas-induced apoptosis and its function requires the death domain[J]. J Cell Biol. 2000, 146:141-148.
    [38] Raveh T, Droguett G, Horwitz MS, eta1. DAP kinase activates a pI9ARF/053- mediated apoptotic checkpoint to suppress oncogenic transformation[J]. Natl Cell Biol. 2001, 3:1-7.
    [39] Yamanaka M, Watanabe M, Yamada Y, e ta1. Altered methylation of multiplegenes in carcinogenesis of the prostate[J]. Int J Cancer. 2003, 106:(3):382-387.
    [40] Lei M, de The H. Retinoids and retinoic acid receptor in cancer[J]. EJC Supple- ments. 2003, 1(2):13-18.
    [41] Axel DI, Frigge A, Dittmann J, et al. All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells[J]. Cardiovasc Res. 2001, 49(4):851-862.
    [42] Elisei R, Vivaldi A, Agate L, et al. All-trans-retinoic acid treatment inhibits the growth of retinoic acid receptor beta messenger ribonucleic acid expressing thyroid cancer cell lines but does not reinduce the expression of thyroid-specific genes[J]. Clin Endocrinol M etab. 2005, 90(4):2403-2411.
    [43] Wirtanen L, Seguin C. Cloning of cDNAs encoding retinoic acid receptors RARγ1, RARγ2, and a new splicing variant, RARγ3, from Ambystoma mexicanum and characterization of their expression duringearly development[J]. Biochim Biophys Acta. 2000, 1492:81-93.
    [44] Toulouse A, LoubeauM, Morin J, et al. RARbeta involvement in enhancement of lung tumor cell immunogenicity revealed by array analysis[J]. FASEB. 2000, 14:1224-1232.
    [45]肖忠盛,梁庆模. APC的结构和功能的研究进展[J].现代医药卫生. 2010, 26(4):535-537.
    [46] Galiatsatos P, Foulkes D. Familial adenomatous polyposis[J]. Am J Gastroenterol. 2006, 101(2):385.
    [47] Behrens J. The role of the Wnt signaling pathway in colorectal tumorgenesis[J]. Biochem Soc Trans. 2005, 33(Pt 4):672-673.
    [48]戴文斌. Wnt通路成员APC?β-catenin?c-myc及黏附分子E-cadherin与大肠癌的关系[J].中国肿瘤临床与康复. 2007, 14:73-75.
    [49] Qian J, Sarnaik AA, Bonney TM, et al. The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus[J]. Gastroenterology. 2008, 135(1):152.
    [50] Wang Y, Azuma Y, Moore D, et al. Interaction between Tumor Suppressor Adeno- matous Polyposis Coli and TopoisomeraseⅡ:Implication for the G2/M Transition. Mol[J]. Biol. Cell. 2008, 19:4076.
    [51] Rizos H, Puig S, Badenas C, et a1. A melanoma-associated germline mutation in exon 1βinactivates p14ARF[J]. Oncogene. 2001, 20:5543-5547.
    [52] Tannapfel A, Busse C, Weinans L, et a1. INK4a-ARF alterations and p53 mutationsin hepatocellular carcinomas[J]. Oncogene. 2001, 20:7104-7109.
    [53] Stott FJ, Bates S, JamesMC, et al. The alternative p r oduct fr om the human CDKN2A l ocus, p14(ARF), participates in a regulatoryfeedback loop with p53 andMDM2[J]. EMBO J. 1998, 17:5001-5014.
    [54] Pineau P, Marchi o A, Cordina E, et al. Homozygous deletions scanning in tumor cell lines detects p revi ously unsus pected loci[J]. Int J Cancer. 2003, 106:216-223.
    [55] Matsuda Y, Ichida T, Matsuzawa J, et al. P16(INK4)is inactivated by extensive CpG methylation in human hepatocellular carcinoma[J]. Gastroenterology. 1999, 116(2):394-400.
    [56] Pineau P, MarchioA, CordinaE, et al. Homozygous deletions scanning in tumor cell lines detects previously unsuspected loci[J]. Int J Cancer. 2003, 106:216-23.
    [57]田桂红,马金龙,王家耀,等.甲状腺肿瘤组织中p14~(ARF)基因纯合性缺失及其产物表达状况的研究[J].肿瘤防治杂志. 2005,(17):1292-4.
    [58]田桂红.甲状腺肿瘤p14ARF和FHIT基因的变异及其产物表达状况的研究[D]:[硕士学位论文].山东:山东大学. 2005. 1-2.
    [59]汤绍辉,杨冬华,罗和生等. CDKN2A位点p16 INK4a?p14ARF基因变异与胃癌发生的关系[J].中国流行病学杂志. 2004, 25(6):517-521.
    [60] Jarmalaite S, Kannio A, Anttila S, et al. Aberrant p16 promoter methylation in smokers and former smokers with nonsmall cell lung cancer[J]. Int J Cancer. 2003, 106(6):913-918.
    [61] Lamy A, Sesboue R, Bourguignon, et al. Aberrant methylation of the CDKN2a/ p16INK4a gene promoter region in preinvasive bronchial lesions:a prospective study in high2risk patients without invasive cancer[J]. Int J Cancer. 2002, 100(2):189-193.
    [62] Sasaki S, Kitagawa Y, Sekido Y, et al. Molecular processes of chromosome 9p21 deletions in human cancers[J]. Oncogene. 2003, 22(24):3792-3798.
    [63] Tang S, Luo H, Yu J, et al. Relationship between alterations of p16(INK4a)and p14(ARF)genes of CDKN2A locus and gast ric carcinogenesis[J]. Chin Med J(Engl). 2003, 116(7):1083-1087.
    [64] Maeda K, Kawakami K, Ishida Y, et al. Hypermethylation of the CDKN2A gene in colorectal cancer is associated with shorter survival[J]. Oncol Rep. 2003, 10(4):935-938.
    [65] De vos tot Nederveen Cappel WH, Offerhaus G J, van Puijenbroek M, et al. Pancreatic carcinoma in carriers of a specific 19 base pair deletion of CDKN2A/p16(p162leiden)[J]. Clin Cancer Res. 2003, 9(10Pt1):3598-3605.
    [66] Burri N, Shaw P, Bouzourene H, et a1. Methylation silencing and mutations of the P14AFP and p16INK4a genes in colon cancer[J]. Lab Invest. 2001,81(3):217-229.
    [67] Shen L, Kondo Y, Hamilton SR, et al. P14 methylation in human colon cancer is associated with microsatellite instabilit y and wild-type p53[J]. Gastroenterology. 2003, 124(3):626-633.
    [68] Berggren P, Kumar R, Sakano S, et al. Detecting homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF))gene in urinary bladder cancer using realtime quantitative PCR[J]. Clin Cancer Res. 2003, 9(1):235-242.
    [69] Ghimenti C, Fiano V, Chiado Piat L, et al. Deregulation of the p14ARF/ Mdm2/ p53 pathway and G1/ S t ransition in two glioblastoma sets. J Neurooncol. 2003, 61(2):95-102.
    [70] Watanabe T, Katayama Y, Yoshino A, et al. Deregulation of the TP53/ p14ARF tumor suppressor pathway in low2grade diffuse as trocytomas and its influence on clinical course[J]. Clin Cancer Res. 2003, 9(13):4884-4890.
    [71] Lin J, Zhu MH. Interactive pathway of ARF2mdm22p53[J]. AiZheng, 2003, 22(3):328-330.
    [72] David Pfeuty T, Nouvian Dooghe Y. Human p14(Arf):an exquisite sensor of morphological changes and of short 2 lived perturbations in cell cycle and in nucleolar function[J]. Oncogene. 2002, 21(44):6779-6790.
    [73] Saadatmandi N, Tyler T, Huang Y, et al. Growth suppression by a p14(ARF)exon 1beta adenovirus in human tumor cell lines of varying p53 and Rb status[J]. Cancer Gene Ther. 2002, 9(10):830-839.
    [74] Gingras H, Cases O, Krasilnikova M, et al. Biochemical Characterization of the mammalian Cux2 protein[J]. Gene. 2005, 344(1):273-285.
    [75] Grier DG, Thompson A, Kwasniewska A, et al. The pathophysiology of HOX genes and their role in cancer[J]. J Pathol. 2005, 205(2):154-171.
    [76] Gingras H, Cases O, Krasilnikova M, et al. Biochemical Characterization of the mammalian Cux2 protein[J]. Gene. 2005, 344(1):273-285.
    [77] Grier DG, Thompson A, Kwasniewska A, et al. The pathophysiologyof HOX genes and their role in cancer[J]. J Pathol. 2005, 205(2):154-171.
    [78] MSX1在人类牙列发育不全中的作用.国外医学.口腔医学分册. 2004,(02).
    [79] Fux C, Lnager D, Fussenegger M. Dual-regulated myoD-and msx1-based interven- tions in C2C12-derived cells enable precise myogenic/osteogenic/adipogeniclineage control[J]. J Gene Med. 2004, 6(10):1159-1169.
    [80] Lina JB, Stein GS, Stein JLet al. The osteocalcin gene promoter provides a molecularblueprint for regulatory mechanis-ms controlling bone tissue formation: role of transcription factors involved in development[J]. Connect Tissue Res. 1996, 35(l):15-21.
    [81] HuG, Lee H, Price SM, Shen MM. Abate-Shen C. Msx homeobox genes Ihnibit differentiation through upregulation of cyclin Dl[J]. Development. 2001,128(12): 2373-2384.
    [82] Berg M, ShulkesA, Eaide M, et al. J AutoNer Sys. 1994, 50:189-192.
    [83] Seybold V, Galeazza M, Garry P, et al. Can J Physiol pharmacol. 1998:83(7): 10007-10014.
    [84] Gangula P, Wimalawansa S, Yallam palli C, et al. Am Jobst gyneco. 1998:184(4): 894-900
    [85] Goodman MT, Ferrell R, McDuffie K, et al. Calcitonin gene polymorphism CALCA-624(T/C)and ovarian caner[J]. Environ Mol Mutagen. 2005, 46(1):53-58.
    [86] Magana J, Gomez R, Cisneros B, et al. Association of the CTgene (CA) polylmorphism with BMD in osteoporotic mexican women[J]. Clin Genet. 2006, 70(5):402-408.
    [87] Buervenich S, Xiang F, Sydow O, et al. Identification of four novel polymorphisms in the calcitonin/a1pha-CGRP(CALCA)gene and aninvestigation of their possible associations with Parkinson disease, schizophrenia, and manic depression l[J]. Hum Mutat. 2001, 17(5):435-436.
    [88]罗新林.降钙素基因相关肽基因CALCA遗传多态性与高血压病易感性的相关性研究[D]:[硕士学位论文].湖南:中南大学. 2007.
    [89] Chattergoon NN, D Souza FM, Deng W, et al. Antiproliferative effeets of Calcitonin gene-related peptide in aortic and pulmonary artery smooth muscle cells[J]. Am J Physiol Lung Cell Mol Physiol. 2005, 288(l):L202-211.
    [90] Qin XP, Ye F, Hu CP, et al. Effect of calcitonin gene-related peptide onangiotensin11-induced proliferation of rat vascular smooth muscle cells[J]. Eur J Pharmacol. 2004, 488(l-3):45-9.
    [91]刘棣,蔡建春. DNA异常甲基化在肿瘤中的作用[J]. Medical Recapitulate. 2006, 12(10):598-600.
    [92] Jones PA, Martienssen R. A blueprint for a Human Epigenome Project the AACR Human Epigenome Worksho[J]. Cancer Res. 2005, 65:11241-11246.
    [93]薛京伦,主编.表观遗传学-原理?技术与实践[M].上海科学技术出版社. 2006年第一版:7-17.
    [94] [94]李波,乔振华. DNA甲基化研究及其检测方法的新进展[J].山西医科大学学报. 2006, 37(3):317-319.
    [95] Hoque MO, Rosenbaum E, Westra WH, et al. Quantitative assessment of promoter methylation profiles in thyroid neoplasms[J]. Clin Endocrinol Metab. 2006, 91(9):3278.
    [96] Turek_Plewa J, Jagodzinski P P. The role ofmammalian DNA methyltransferases in the regulation of gene exp ression[J]. CellMolBiol Lett. 2005, 10(4):631-647.
    [97]李树权,刘素香. DNA甲基化与肿瘤[J].中国城乡企业卫生. 2006,113(3):37-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700