用户名: 密码: 验证码:
玉米秸秆保质贮存及水热反应处理提高可生化性方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
秸秆规模化厌氧发酵制沼气是最为有效资源化利用方法之一。由于秸秆木质纤维素含量高,直接对其进行厌氧发酵,不仅发酵速度慢、产气量少,而且利用率低。因此,需要对其进行适当的预处理,以提高其可利用性。本文针对秸秆难水解的问题,从原料特性和预处理两方面,对改善秸秆性质的保质贮存(或称青贮)方法以及提高可生化性的可溶化方法进行了探讨。
     实验将鲜玉米秸秆切成1-3 cm的小段,通过添加硝酸、乙酸和氨水等添加剂对切段后秸秆进行青贮。此外,还利用家用榨汁机,对切段后的秸秆进行榨汁处理,并以乙酸作为添加剂对秸秆榨汁渣进行青贮。通过分析青贮期完成后秸秆组成的变化,对青贮效果进行了初步评价。结果表明,与风干杆相比,青贮秸秆的木质素含量降低了12.3-25.8%,结晶度指数降低了4.4-20.1%。
     对上述青贮秸秆进行高温热水预处理,并与风干秸秆在相同反应条件下的处理效果进行比较。结果发现,乙酸组青贮秸秆的总糖得率最大值是风干秸秆最大值的2.4倍。
     采用ZnCl_2, FeSO_4, Fe_2(SO_4)_3, FeCl_3和Fe(NO_3)_3作为催化剂对对照组(无添加剂)青贮秸秆进行催化水解,研究发现,硝酸铁对秸秆中半纤维素水解的催化效果最好。利用硝酸铁对氨水组(添加氨水)青贮秸秆进行处理,并对硝酸铁浓度、反应时间和反应温度进行了优化。结果表明,硝酸铁为0.05 M,在150℃下,处理10 min时,水解液中的木糖产率达到91.8%理论木糖值,水解液中总糖浓度为33.48 g/L,糠醛浓度仅为0.03 g/L。
     为了进一步提高秸秆水解效率,降低催化剂用量,本研究还探索了秸秆经不同溶液低温浸泡,再对浸泡后的渣进行高温硝酸铁催化水解的两步处理法。结果表明,Tween-80溶液和去离子水作为低温浸泡液的两步处理法的总糖得率比直接硝酸铁处理法分别提高了17.5%和12.1%,硝酸铁用量分别减少了31.9和28.3%,而氨水作为浸泡液的两步处理法总糖得率小于直接处理法。虽然Tween-80浸泡处理效果比去离子水稍好,但考虑到Tween-80的添加会增加试剂成本,因此,去离子水是比较适宜的低温浸泡液。此外,还利用去离子水作为低温浸泡液的两步处理法对不同的秸秆进行了处理,均取得了较好的水解效果。
     本文还对硝酸铁催化对照组和硝酸组(添加硝酸)青贮秸秆中的半纤维素水解动力学进行了研究。采用Seaman模型对实验数据进行分析,得到木糖的生成速率和降解速率。结果表明,Saeman模型能够很好的预测硝酸铁催化青贮玉米秸秆中半纤维素的水解反应。并应用阿累尼乌斯方程计算出对照组和硝酸组青贮秸秆的半纤维素水解活化能分别为44.4和3.1 kJ/mol。
Using corn stalk to produce biogas by anaerobic fermentation in large-scale is one of the most effective and promising utilization methods for agricultural wastes. While the lignocelluse content in corn stalk is very high, it will lead low efficieny, low biogas production and low utilization rate if corn stalk was used to produce biogas by anaerobic fermentation without pretreatment. Therefore, suitable pretreatment to corn stalk is very necessary for good utilization and biogas production. In this thesis, the ensiling methods and pretreatment methods were investigated to improve corn stalk and enhance anaerobic digestion process.
     Corn stalk was cut to pieces with length of 1-3 cm, and some additives of nitric acid, acetic acid and ammonium hydroxide were added to make corn silages. Moreover, some corn stalk was compressed by extractor and acetic acid was added to the residues after compressed to make silage. The quality of the silages were evaluated by determining the varieties of chemical compostion in corn stalk after silage period. The results showed that the content of Klason lignin and crystallinity index for corn stalk silage decreased 12.3-25.8% and 4.4-20.1% compared to air-dried corn stalk.
     Corn stalk silage and air-dried corn stalk were treated with liquid hot water. The pretreatment results showed that the maximum soluble sugar yield of corn stalk silage was 2.4 times compared with that of air-dried corn stalk.
     Five inorganic salts, ZnCl_2, FeSO_4, Fe_2(SO_4)_3, FeCl_3 and Fe(NO_3)_3 were chosen as catalysts to determine their effects on hemicellulose hydrolysis in control silage (no silage additive). The results indicated that Fe(NO_3)_3 was the most efficient catalyst for hemicellulose hydrolysis. The effects of Fe(NO_3)_3 pretreatment conditions on sugar yields were investigated for corn stalk silage. Optimum pretreatment condition was obtained at 150 oC for 10 min with 0.05 M Fe(NO_3)_3, at which the yields of xylose in liquid achieved 91.8% of initial xylose, and the concentration of total sugar achieved 33.48 g/l,while the inhibitor concentration was only 0.03 g/l.
     In order to improve the hydrolysis efficiency of corn stalk and decrease the dosage of catalyst, the study introduced two-stage method to pretreat corn stalk. First, corn stalk was immersed by different solution at low temperature, and then the residues after immersion were pretreated by Fe(NO_3)_3 at high temperature. The results showed that compared with pretreated by only Fe(NO_3)_3, the total sugar yield improved 17.5% and 12.1%, while the dosage of Fe(NO_3)_3 reduced 31.9% and 28.3%, respectively, when Tween-80 and deionized water used as immersed solution. When ammonia water was used as immersed solution, the total sugar yield was lower than that pretreated by only ferric nitrate. Though the effect of Tween-80 is a little bit better than deionized water, while it can increase the cost of the process, so deionized water was recommended to be used as immersion solution. Moreover, the two-stage method was used to pretreat different types of corn stalk when deionized water was used as immersion solution, and all the experiments got good results.
     The kinetics of Fe(NO_3)_3 catalyzed hydrolysis for control silage and acid silage (treatment with HNO_3) were investigated at various pretreatment conditions. The results demonstrated that Saeman model was well consistent with Fe(NO_3)_3 catalyzed hydrolysis reaction for corn stalk silage, and kinetic parameters for this model were developed by the Arrhenius equation. The activation energies for hemicellulose hydrolysis in control and acid silage were 44.3 kJ/mol and 3.1 kJ/mol, respectively.
引文
[1] Petersen J E. Energy production with agricultural biomass: environmental implications and analytical challenges[J]. European Review of Agricultural Economics, 2008, 35(3): 385~408.
    [2]中华人民共和国国家统计局编.中国统计年鉴[J]. 2010,北京:中国统计出版社.
    [3]王珏,寇巍,卞永存.秸秆资源现状及秸秆沼气效益分析[J].环境保护与循环经济,2009,29(12): 39~41.
    [4]王激清,张宝英,刘社平,等.我国作物秸秆综合利用现状及问题分析[J].江西农业学报,2008,20(8): 126~128,132.
    [5]杨淑蕙主编.植物纤维化学[M].北京:中国轻工业出版社,2001. 8~10.
    [6]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [7]庞云芝.基于提高麦秸厌氧消化性能的碱预处理方法研究及工程应用[D].北京:中国农业大学机电工程学院,2010.
    [8]宋春莲.微流注放电玉米秸秆水解制备糖类化合物[D].大连:大连海事大学环境科学与工程学院,2010.
    [9] Saha B C. Hemicellulose bioconversion[J]. Journal of Industrial Microbiology and Biotechnology, 2003,30(5): 279~291.
    [10] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: A Review[J]. Bioresource Technology, 2002, 83(1): 1~11.
    [11] Vega J L, Clausen E C, Gaddy J L. Biofilm reactors for ethanol production[J]. Enzyme and Microbial Technology, 1988,10(7): 390~402.
    [12] Garrote G, Dominguez H, Parajo J C. Hydrothermal processing of lignocellulosic materials[J]. Holz Als Roh-Und Werkstoff, 1999 , 57(3): 191~202.
    [13] Saha B C, Iten L B, Cotta M A, et al. Dilute Acid Pretreatment, enzymatic saccharification and fermentation of rice hulls to ethanol[J]. Biotechnology Progress, 2005, 21(3): 816~822.
    [14] Nagle N, Ibsen K, Jennings E. A process economic approach to develop a dilute-acid cellulose hydrolysis process to produce ethanol from biomass[J]. Applied Biochemistry and Biotechnology, 1999, 79(1-3): 595~607.
    [15] Jacobsen S E, Wyman C E. Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes[J]. Applied Biochemistry and Biotechnology, 2000, 84-86(1-9): 81~96.
    [16]宋杰,侯永法.微晶纤维素性质与应用[J].纤维素科学与技术, 1995, 3(3): 1~10.
    [17]吕学斌.木质纤维素转化为生物乙醇过程中关键问题的研究[D].天津:天津大学化工学院,2009.
    [18] Dadi A P, Varanasi S, Schall C A. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step[J]. Biotechnology and Bioengineering, 2006, 95(5): 904~910.
    [19] Yu Z S, Zhang H X. Pretreatments of cellulose pyrolysate for ethanol production by saccharomyces cerevisiae, Pichia sp YZ-1 and Zymomonas mobilis[J]. Biomass and Bioenergy, 2003, 24(3): 257~262.
    [20] Varga E, Schmidt A S, Reczey K, et al. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility[J]. Applied Biochemistry and Biotechnology, 2003, 104(1): 37~50.
    [21] Kurakake M, Kisaka W, Ouchi K, et al. Pretreatment with ammonia water for enzymatic hydrolysis of corn husk, bagasse, and switchgrass[J], Applied Biochemistry and Biotechnology, 2001, 90(3): 251~259.
    [22] Schmidt A S, Thomsen A B. Optimization of wet oxidation pretreatment of wheat straw[J], Bioresource Technology, 1998, 64(2): 139~151.
    [23]朱道飞.生物质在超临界水中液化转化的实验研究[D].昆明:昆明理工大学电力工程学院,2004.
    [24] Gunnarsson S, Marstorp H, Dahlin A S, et al. Influence of non-cellulose structural carbohydrate composition on plant material decomposition in soil[J]. Biology and Fertility of Soils, 2008, 45(1): 27~36.
    [25] Kuyper M, Hartog M M P, Toirkens M J, et al. Metabolic engineering of a xylose-isomerase-expressing saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation[J]. Fems Yeast Research, 2005, 5(4-5): 399~409.
    [26] Parajo J C, Dominguez H, Dominguez J M. Biotechnological production of xylitol part 3: Operation in culture media made from lignocellulose hydrolysates[J]. Bioresource Technology, 1998, 66(1): 25~40.
    [27]蒋挺大编著.木质素[M].北京:化学工业出版社,2008,12.
    [28]黄军军,黄程鹏,董军.秸秆发电技术的现状和展望[J].能源与环境, 2006(5): 95~96.
    [29]刘首元.我国秸秆发电产业化发展前景[J].水力电力机械, 2007,29(12): 207-210.
    [30]张卫杰,关海滨,姜建国,等.我国秸秆发电技术的应用及前景[J].农机化研究,2009,31(5): 10~13.
    [31]汪海波,章瑞春.中国农作物秸秆资源分布特点与开发策略[J].山东省农业管理干部学院学报, 2007,23(2): 164~165.
    [32]张文斌.秸秆气化技术研究现状与对策分析[J].中国农机化, 2009(6): 90~93.
    [33] Sakar S, Yetilmezsoy K, Kocak E. Anaerobic digestion technology in poultry and livestock waste treatment-a literature review[J]. Waste Management and Research, 2009, 27(1): 3~18.
    [34] Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production[J]. Biofuels, 2007, 108(1): 41~65.
    [35] Katahira S, Mizuike A, Fukuda H, et al. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose and cellooligosaccharide-assimilating yeast strain[J]. Applied Microbiology and Biotechnology, 2006, 72(6): 1136~1143.
    [36] Groenestijn V, Hazewinkel O, Bakker R. Pretreatment of lignocellulose with biological acid recycling [J]. Zuckerindustrie, 2006, 131(9): 639~641.
    [37]廉洁,任万青.我国农业秸秆综合利用的现状与发展趋势[J].科技创业,2008(8): 86~87.
    [38] Oleskowicz-Popiel P, Lisiecki P,Holm-Nielsen J B, et al. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure[J]. Bioresource Technology, 2008, 99(13): 5327~5334.
    [39]官巧燕,廖福霖,罗栋.国内外生物质能发展综述[J].农机化研究, 2007(11): 20~24.
    [40]石卫国.生物复合菌剂处理秸秆产沼气研究[J].农业工程学报, 2006,22(增刊1): 93~95.
    [41] Bruni E, Jensen A P, Pedersen E S, et al. Anaerobic digestion of maize focusing on variety, harvest time and pretreatment[J]. Applied Energy, 2010, 87(7): 2212-2217.
    [42]王许涛,刘丽莎,张百良.蒸汽爆破预处理技术应用于秸秆厌氧发酵的技术经济分析[J].可再生能源,2010,28(2): 123~126.
    [43]李秀金.固体废物工程[M].北京:高等教育出版社,2003.
    [44]何荣玉,闫志英,刘晓风.秸秆干发酵沼气增产研究[J].应用与环境生物学报, 2007,13(4): 583~585.
    [45]李东,马隆龙,袁振宏.华南地区稻秸常温干式厌氧发酵试验研究[J].农业工程学报, 2006,22(12): 176~179.
    [46]张望,李秀金,庞云芝.稻草中温干式厌氧发酵产甲烷的中试研究[J].农业环境科学学报,2008,27(5): 2075~2079.
    [47] Mcmillan J D. Pretreatment of lignocellulosic biomass[M]. ACS Symposium Series, 1994. 292~324.
    [48] Wyman C E. Biomass ethanol: technical progress, opportunities, and commercial challenges[J],Annual Review of Energy and the Environment, 1999, 24(1): 189~226.
    [49] Mosier N, Wyman C E, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6): 673~686.
    [50] Palmowski L, Muller J. Influence of the size reduction of organic waste on their anaerobic digestion[C]. In: II International Symposium on Anaerobic Digestion of Solid Waste, 1999, Barcelona, 15–17 June, 137~144.
    [51] Delgenés J P, Penaud V, Moletta R. Pretreatments for the enhancement of anaerobic digestion of solid wastes Chapter 8[M]. In: Biomethanization of the Organic Fraction of Municipal Solid Wastes, IWA Publishing, 2002, 201~228.
    [52] Zhang R. Anaerobic phased solids digester system for biogasification of agriculturaland food wastes[D]. Davis: Ph.D dissertation of University of California, 2000.
    [53]张强,陆军.玉米秸秆发酵法生产燃料酒精的研究进展[J].饲料工业, 2005,26(9): 20~23.
    [54] Gunaseelan N. Effect of inoculumlubstrate ratio and pretreatments on methane yield from parthenium[J]. Biomass & Bioenergy, 1995, 8(1): 39~44.
    [55]Yang B, Wyman C E. Dilute acid and autohydrolysis pretreatment[J]. Biofuels: Methods and Protocols, 2010, 581(1): 103~114.
    [56]陈尚钘,勇强,徐勇,等.玉米秸秆稀酸预处理的研究[J].林产化学与工业, 2009,29(2):27~32.
    [57] Lu X B, Zhang Y M, Liang Y. Kinetic studies of hemicellulose hydrolysis of corn stover at atmospheric pressure[J]. Korean Journal of Chemical Engineering, 2008, 25(2): 302~307.
    [58] Chen X, Li Z H, Zhang X X. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds[J]. Applied Biochemistry and Biotechnology, 2009, 159(3): 591~604.
    [59] Luo C, Brink D L, Blanch H W. Identification of potential fermentation inhibitors in conversion of hybrid poplar hydrolyzate to ethanol[J]. Biomass and Bioenergy, 2002, 22(2): 125~138.
    [60] Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lingocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10~18.
    [61] Pang Y Z, Li X J,Wang K S, et al. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid pretreatment[J]. Energy and Fuels, 2008, 22(4): 2761~2766.
    [62] Zheng M, Li L, Yang X, et al. Enhancing anaerobic biogasification of corn stover through wet state NaOH pretreatment[J]. Bioresource Technology, 2009, 100(21): 5140~5145.
    [63]孙辰,刘荣厚.稻秆NaOH预处理及厌氧发酵产沼气的试验研究[J].农机化研究,2010,32(4): 127~129.
    [64] Eggeman T, Elander R T. Process and economic analysis of pretreatment technologies[J]. Bioresource Technology, 2005,96(18): 2019~2025.
    [65] Saha B C, Cotta M A. Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw[J]. Biotechnology Progress, 2006, 22(2): 449~453.
    [66] Saha B C, Cotta M A. Enzymatic hydrolysis and fermentation of lime pretreated wheat straw to ethanol[J]. Journal of Chemical Technology and Biotechnology, 2007,82(10): 913~919.
    [67] Kaar W E, Holtzapple M T. Effect of lime pre-treatment on the synergistic hydrolysis of sugarcane bagasse by hemicellulases[J]. Bioresource Technology, 2010, 101(12): 189-199.
    [68] Kaar W E, Holtzapple M T. Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover[J]. Biomass and Bioenergy, 2000, 18(3): 189~199.
    [69] Chang V S, Nagwani M. Holtzapple M T, Lime pretreatment of crop residues bagasse and wheat straw[J]. Applied Biochemistry and Biotechnology, 1998, 74(3): 135~159.
    [70] Zhong X, Wang Q, Jiang Z. Enzymatic hydrolysis of pretreated soybean straw[J]. Biomass and Bioenergy, 2007, 31(2-3): 162~167.
    [71] Kim T H, Kim J S, Sunwoo C. Pretreatment of corn stover by aqueous ammonia[J]. Bioresource Technology, 2003, 90(1): 39~47.
    [72] Ligero P, Villaverde J J, Vega A. Acetosolv delignifi-cation of depithed cardoon(Cynara cardunculus)stalks[J]. Industrial Crops and Products, 2007, 25(3): 294~300.
    [73] Ligero P, Villaverde J J, Vega A. Pulping cardoon (Cynara cardunculus)with peroxyformic acid (M ILOX)in one single stage[J]. Bioresource Technology, 2008, 99(13): 5687~5693.
    [74]朱世步,姜曼,王伟.水/有机溶剂混合体系去除秸秆木素的研究[J].材料导报, 2010, 24(9): 50~53.
    [75] Sahina H T, Youngb R A. Auto-catalyzed acetic acid pulping of jute[J]. Industrial Crops and Products, 2008,28(1): 24.
    [76] Sun F, Chen H Z. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw[J]. Bioresource Technology, 2008,99(13): 5474~5479.
    [77]钱玉婷,常志州,王世梅,等.有机溶剂对秸秆蜡质层溶解和生物降解率的影响[J].农业环境科学学报, 2009, 28(5): 1060~1064.
    [78]刘孝碧,曲敬序,李栋,等.秸在亚/超临界乙醇-水中液化的初步研究[J].农业工程学报, 2006, 22(5): 130~134.
    [79] Kristensen J B, Borjesson J, Bruun M H. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose[J]. Enzyme and Microbial Technology, 2007, 40(4): 888~895.
    [80] Helle S S, Duff S J B, Cooper D G. Effect of surfactants on cellulose hydrolysis[J]. Biotechnology and Bioengineering, 1993, 42(5): 611~617.
    [81] Ooshima H, Sakata M, Harano Y. Enhancement of enzymatic hydrolysis of cellulose by surfactant[J]. Biotechnology and Bioengineering, 1986, 28(11): 1727~1734.
    [82] Park J W, Takahata Y, Kajiuchi T. Effects of nonionic surfactant on enzymatic-hydrolysis of used newspaper[J]. Biotechnology and Bioengineering, 1992, 39(1): 117~120.
    [83] Kaar W E, Holtzapple M T. Benefits from Tween during enzymic hydrolysis of corn stover[J]. Biotechnology and Bioengineering, 1998, 59(4): 419~427.
    [84] Eriksson T, Borjesson J, Tjerneld F. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose[J]. Enzyme and Microbial Technology, 2002, 31(3): 353~364.
    [85]刘佳.表面活性剂在废木质纤维素制酒精中的应用基础研究[D].长沙:湖南大学环境科学与工程学院,2008.
    [86] Teixeira L C, Linden J C, Schroeder H A. Alkaline and peracetic acid pretreatments of biomass for ethanol production[J]. Applied Biochemistry and Biotechnology, 1999, 77(1-3): 19-34.
    [87]汪丹好,王海燕,薛国新.麦草浆臭氧漂白中戊糖含量的变化[J].纸和造纸,2004(5): 58-59.
    [88]刘睿,万楚筠,黄茜.秸秆预处理技术存在的问题与发展前景[J].环境科学与技术,2009,32(5): 88~91.
    [89]马英辉,王联结.秸秆预处理的最新研究进展[J].纤维素科学与技术, 2009,17(3): 71~78.
    [90] Weil J R, Sarikaya A, Rau S L. Pretreatment of corn fiber by pressure cooking in water[J]. Applied Biochemistry and Biotechnology, 1998, 73(1): 1~17.
    [91] Parajo J C, Garrote G, Dominguez H. Production of xylooligosaccharides by autohydrolysis of lignocellulosic materials[J]. Trends in Food Science and Technology, 2004, 15(3-4): 115~120.
    [92] Mosier N, Wyman, C E, Ho N. Optimization of pH controlled liquid hot water pretreatment of corn stover[J]. Bioresource Technology, 2005, 96(18): 1986~1993.
    [93] Weil J, Brewer M, Hendrickson R. Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water[J]. Applied Biochemistry and Biotechnology, 1998, 70-72(1): 99~111.
    [94] Liu C G, Wyman C E. Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose[J]. Bioresource Technology, 2005, 96(18): 1978~1985.
    [95] Chen H Z, Wang H, Zhang A. Biogasification of steamexplode wheat straw by a two-phased digestion system[J]. Transactions of the CSAE, 2005, 21(11): 116~120.
    [96]杨雪霞,陈洪章,李佐虎.玉米秸秆氨化汽爆处理及其固态发酵[J].过程工程学,2001,19(3): 3~8.
    [97] Schell D, Nguyen Q, Tucker M. Pretreatment of Softwood by Acid-catalyzed Steam Explosion Followed by Alkali Extraction[J]. Applied Biochemistry and Biotechnology, 1998, 70-72(1): 17~24.
    [98]宋永民,陈洪章.汽爆秸秆高温固态发酵沼气的研究[J].环境工程学报, 2008,2(11): 1564~1570.
    [99] Cantarella M, Cantarella L, Gallifuoco A. Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF[J]. Process Biochemistry, 2004, 39(11): 1533~1542.
    [100]万楚筠,黄凤洪,刘睿,等.微生物预处理油菜秸秆对提高沼气产量的影响[J].农业工程学报,2010,26(6): 267~271.
    [101] Ghosh A, Bhattacharyya B C. Biomethanation of white rotted and brown rotted rice straw[J]. Bioprocess Engineering, 1999, 20(4): 97~302.
    [102] Muller H, Trosch W. Screening of white-rot fungi for biological pretreatment of wheat straw for biogas production[J]. Applied Biochemistry and Biotechnology, 1986, 24(2): 180~185.
    [103] Hatakka A I. Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose[J]. Applied Biochemistry and Biotechnology, 1983, 18(6): 350~357.
    [104]周玮,董保成,齐岳.不同处理秸秆中温厌氧发酵产气效果[J].中国沼气, 2010,28(3): 22~24.
    [105]张新慧.添加乙酸钠盐对青贮品质及有氧稳定性的影响[D].哈尔滨:东北农业大学动物科技学院,2006.
    [106]时建忠.国外青贮接种菌研究进展[J].中国草食动物, 2002,22(2): 34~36.
    [107] Muck R E. Effects of corn silage inoculants on aerobic stability[J]. American Society of Agricultural Engineers, 2004, 47(4): 1011~1016.
    [108] Filya I, Sucu E. The effect of bacterial inoculants and a chemical preservative on the fermentation and aerobic stability of whole-crop cereal silages[J]. Asian-Australasian Journal of Animal Sciences, 2007, 20(3): 378~384.
    [109] Kung L, Taylor C C, Lynch M P, et al. The effect of treating alfalfa with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for lactating dairy cows[J]. Journal of Dairy Science, 2003, 86(1): 336~343.
    [110]王建兵,范石军,张淑芳.细菌接种剂和酶制剂在秸秆类饲料青贮中的应用[J].饲料博览, 1999(4): 17~19.
    [111]赵长友,张国立,赵承宏.纤维素复合酶半干贮添加剂新技术研究[J].辽宁畜牧兽医, 1995(4): 1~3.
    [112]杨富裕,周禾,韩建国.添加甲酸对白化草木樨青贮品质的影响[J].草地学报, 2004,12(1): 12~16.
    [113]沈益新,杨志刚,刘信宝.凋萎和添加有机酸对多花黑麦草青贮品质的影响[J].江苏农业学报, 2004(2): 95~99.
    [114]席兴军,韩鲁佳,原慎一郎.添加己酸和盐酸对玉米秸秆青贮饲料质量的影响[J].中国农业大学学报, 2002,7(6): 54~60.
    [115]张德玉,李中秋,刘春龙.影响青贮饲料品质因素的研究进展[J].家畜生态学报, 2007,28(1): 109~112.
    [116]席兴军.添加剂对玉米秸秆青贮饲料质量影响的试验研究[D].北京:中国农业大学工学院,2002.
    [117] NREL. Biomass analysis technology team laboratory analytical procedures: determination of sugars, byproducts, and degradation products in liquid fraction process samples, Golden, CO[OL]. 2006: http://www.eere.energy.gov/biomass/analytical_procedures.html.
    [118] Jeoh T, Ishizawa C I, Davis M F, et al. Cellulase digestibility of pretreated biomass is limited by cellulose accessibility[J]. Biotechnology and Bioengineering, 2007, 98(1): 112~122.
    [119] Kobayashi T, Sakai Y. Hydrolysis rate of pentosan of hardwood in dilute sulfuric acid[J]. Bull of Agriculture Chemical Society of Japan, 1956, 20(1): 1~7.
    [120] Lu Y L, Mosier N S. Kinetic modeling analysis of maleic acid-catalyzed hemicellulose hydrolysis in corn stover[J]. Biotechnology and Bioengineering, 2008, 101(6): 1170~1181.
    [121] Chum H L, Black S K, Baker J, et al. Organosolv pretreatment for enzymatic hydrolysis of poplar: I Enzyme hydrolysis of cellulosic residues[J]. Biotechnology and Bioengineering, 1988, 31(7): 643~649.
    [122] Chum H L, Black S K, Overend R P. Pretreatment-catalyst effects and the combined severity parameter[J]. Applied Biochemistry and Biotechnology, 1990, 24-25(1): 1~14.
    [123] Jensen J R, Gossen K R, Brodeur-Campbell M J et al. Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam, and switchgrass[J]. Bioresource Technology, 2010, 101(7): 2317~2325.
    [124] Lloyd T A, Wyman C E. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids[J]. Bioresource Technology, 2005, 96(18): 1967~1977.
    [125] Liu L, Cai C Y, Wang S H, et al. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation[J]. Bioresource Technology, 2009, 100(23): 5865~5871.
    [126] Schell D J, Farmer J, Newman M, et al. Dilute-sulfuric acid pretreatment of corn stover in pilot-scale reactor investigation of yields, kinetics, and enzymatic digestibilities of solids[J]. Applied Biochemistry and Biotechnology, 2003, 105(1-3): 69~86.
    [127] Qing Q, Yang B, Wyman C. Impact of surfactants on pretreatment of corn stover[J]. Bioresource Technology, 2010, 101(15): 5941~5951.
    [128] Sousa L D, Balan V, Dale B E.‘Cradle-to-grave’assessment of existing lignocellulose pretreatment technologies[J]. Current Opinion in Biotechnology, 2009, 20(3): 339~347.
    [129] Gupta R, Kim T H, Lee Y Y. Substrate dependency and effect of xylanase supplementation on enzymatic hydrolysis of ammonia-treated biomass[J]. Applied Biochemistry and Biotechnology, 2008, 148(1-3): 59~70.
    [130] Bak J S, Ko J K, Han Y H, et al. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment[J]. Bioresource Technology, 2009, 100(3): 1285~1290.
    [131] Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity[J]. Applied Biochemistry and Biotechnology, 2000, 84~86(1-9), 5~37.
    [132] Kim T H, Lee Y Y, Sunwoo C, et al. Pretreatment of corn stover by low liquid ammonia recycle percolation process[J]. Applied Biochemistry and Biotechnology, 2006, 133(1): 41~57.
    [133] Liu L, Li M, Wang S, et al. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment[J]. Bioresource Technology, 2009, 100(23): 5853~5858.
    [134] Juan E, Morinelly J R, Jensen M B, et al. Kinetic characterization of xylose monomer and oligomer concentrations during dilute acid pretreatment of lignocellulosic biomass from forests and switchgrass[J]. Industrial and Engineering Chemistry Research, 2009, 48(22): 9877~9884.
    [135] Zhuang X S, Yuan Z H, Ma L L. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water[J]. Biotechnology Advance, 2009, 27(5): 578~582.
    [136] Esteghlalian A H, Fenske J J, Penner M H. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass[J]. Bioresource Technology, 1997, 59(2-3): 129~136.
    [137] Yat S C, Berger A, Shonnard D R. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass[J]. Bioresource Technology, 2008, 99(9): 3855~3863.
    [138] Saeman J F. Kinetics of wood saccharification-hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J]. Industrial and Engineering Chemistry Research, 1945, 37(1): 43~52.
    [139] Maloney M T, Chapman T W, Baker A J. Dilute acid hydrolysis of paper birch: Kinetic study of xylan and acetyl-group hydrolysis[J]. Biotechnology and Bioengineering, 1985, 27(3), 355~358.
    [140] Bhandari N, Macdonald D G, Bakhshi N N. Kinetic-studies of corn stover saccharification using sulfuric-acid[J]. Biotechnology and Bioengineering 1984, 26(4), 320~327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700