用户名: 密码: 验证码:
小菜蛾对Bt毒素Cry1Ac抗性的生化与分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学农药的广泛使用对农业发展和粮食安全起了重要作用,但是由于害虫抗药性的发展,防治抗药性害虫正变得越来越困难。苏云金芽孢杆菌Bacillus thuringiensis (Bt)由于其杀虫晶体蛋白(ICPs)具有高度专一性,对人畜和非靶标昆虫非常安全而被广泛用于防治小菜蛾等鳞翅目害虫。小菜蛾Plutella xvlostella是一种全球性分布的蔬菜害虫,早在1990年就有田间小菜蛾种群对Bt制剂产生抗性的报道,但迄今为止,小菜蛾对Bt抗性的分子机理还是没有研究清楚。为了研究我国小菜蛾对Cry1Ac的抗性机理,首先在室内筛选获得一个高抗品系(SZBT),并用F1筛选法检测了3个小菜蛾田间种群Cry1Ac抗性基因的频率;通过蛋白组学方法,对小菜蛾CryAc抗性和敏感品系幼虫中肠毒素结合蛋白进行分离和鉴定,发现一种Bt毒素受体—氨肽酶N蛋白(PxAPN2)在抗性品系中表达量明显低于敏感品系;然后,克隆了小菜蛾PxAPN2基因,并采用RNAi技术明确了PxAPN2基因在小菜蛾对Cry1Ac抗性产生中的作用。明确小菜蛾对Bt毒素Cry1Ac抗性的生化和分子机理对于小菜蛾Bt抗性治理具有重要意义。
     1.小菜蛾Cry1Ac抗性遗传互补与田间种群Cry1Ac抗性基因频率检测
     由于Bt制剂的大量使用,我国小菜蛾田间种群对Cry1Ac已产生了不同程度的抗性。由于小菜蛾对Cry1Ac抗性为不完全隐性遗传,检测抗性基因频率对于制定抗性治理措施尤为重要。通过室内筛选获得对Cry1Ac抗性达2000倍左右的SZBT品系,该品系对CrylAc的抗性表现为Ⅰ型(Mode 1)。抗性遗传互补试验表明,SZBT品系与来自美国的Cry1Ac-R抗性品系对Cry1Ac的抗性由相同遗传位点控制。将2008年采自广东广州、惠州及云南玉溪的田间小菜蛾分别于SZBT进行单对杂交,通过检测120个单对杂交后代(F1)在CrylAc区分剂量(2μg/mL)下的死亡率,测得这3个田间种群Cry1Ac抗性基因频率分别为0.375、0.472和0.156。广州、惠州和玉溪田间种群对Cry1Ac的抗性分别为73、117和13倍,抗性程度与其抗性基因频率相一致。
     2.小菜蛾中肠Cry1Ac结合蛋白的分离与鉴定
     用生物素标记的CrylAc分别与敏感品系ROTH、抗性品系SZBT和对照品系SZ小菜蛾4龄幼虫中肠BBMV(用传统的SDS-PAGE分离)进行配基结合试验,发现Cry1Ac结合蛋白有10条主带。小菜蛾SZBT抗性品系110 kDa结合蛋白表达量低于敏感品系,而其他结合蛋白表达量差异不明显。据此推测,110 kDa的Cry1Ac结合蛋白可能为Cry1Ac的功能受体,其表达量下降可能与SZBT品系对Cry1Ac抗性相关。
     为了进一步分离和鉴定Cry1Ac结合蛋白,用2-D电泳和配基结合方法对小菜蛾抗性品系(SZBT)和敏感品系(ROTH)中肠BBMV中Cry1Ac结合蛋白进行分离,并通过肽质量指纹图谱(peptide mass fingerprinting, PMF)对主要结合蛋白进行鉴定。鉴定的小菜蛾Cry1Ac结合蛋白包括氨肽酶N(PxAPN2)、储存蛋白(storage protein)、肌动蛋白(actin)、硫酸酯酶(glucosinolate sulfatase)、V-ATPase亚基B (vacuolar ATPase B subunit)等。小菜蛾SZBT抗性品系中PxAPN2表达量明显低于敏感品系的相应结合蛋白,该PxAPN2(分子量为110 kDa)可能即为1-D电泳所发现的在抗性品系中表达量降低的110 kDa结合蛋白。氨肽酶N是鳞翅目昆虫中肠BBMV上Cry1Ac毒素的重要受体,小菜蛾PxAPN2蛋白的表达量降低可能与抗性品系Cry1Ac抗性相关。
     3.小菜蛾PxAPN2基因沉默后对Cry1Ac敏感性的影响
     采用RT-PCR技术分别克隆了抗性(SZBT)和敏感(ROTH)品系中编码110kDaCry1Ac结合蛋白的氨肽酶N基因(PxAPN2)。抗性和敏感品系PxAPN2基因间有多个位点的氨基酸发生替换。用实时定量PCR比较PxAPN2基因在小菜蛾SZBT和ROTH品系四龄幼虫中肠中的mRNA表达量,发现SZBT抗性品系PxAPN2 mRNA表达量下降为ROTH敏感品系的33.9%。
     为了证明小菜蛾PxAPN2在CryAc抗性形成中的作用,采用RNAi技术使PxAPN2基因mRNA表达下调,研究PxAPN2下调能否使小菜蛾敏感品系对Cry1Ac获得抗性。通过喂食体外合成的PxAPN2 dsRNA干扰小菜蛾ROTH敏感品系PxAPN2基因的表达,结果表明喂食PxAPN2 dsRNA最高可以使PxAPN2基因mRNA表达量下降53%,而另一种氨肽酶N基因(APNA) mRNA表达量则没有明显变化。小菜蛾PxAPN2基因被沉默后使ROTH敏感品系幼虫对Cry1Ac产生4-14倍抗性。上述结果表明,小菜蛾PxAPN2是Cry1Ac的功能受体,其表达量降低导致小菜蛾对CryAc产生抗性。
     本研究运用蛋白组学、配基结合、基因克隆和基因沉默等技术,系统研究了小菜蛾对Bt毒素Cry1Ac抗性的生化和分子机理,证明了PxAPN2为小菜蛾幼虫中肠中Cry1Ac的功能受体,该受体mRNA和蛋白表达量下降能够导致小菜蛾对Cry1Ac产生高水平抗性。由于该基因位点与Cry1Ac抗性基因并不位于同一连锁群,PxAPN2 mRNA表达下调可能与反式作用因子有关,PxAPN2蛋白表达量下降也可能与转录后调控有关,确切原因还有待进一步研究。
The widespread use of chemical pesticides has played a very important role in agriculture and food security. Due to the development of pesticide resistance, pest prevention and control is becoming more and more difficult. Bacillus thuringiensis (Bt) based its crystal protein (ICPs) are highly friendly for humans and non-target insects and are widely used control diamondback moth and other Lepidoptera. Diamondback moth (Plutella xylostella) is a worldwide pest of cruciferous vegetables. As early as 1990, cases of resistance to Bt formulations were documented in open-field populations of diamondback moth. But, the precise mechanism of diamondback moth resistance to Bt toxin Cry1Ac is poorly understood. A Cry1Ac-resistant strain (SZBT) was selected in the laboratory in order to investigate resistance mechanisms. Resistance allele frequency of three field populations was detected with an F1 screen (single pair crossing between field-derived insects and SZBT insects). Using proteomic analysis, Cry1Ac binding proteins in midgut membranes from both CrylAc-resistant and susceptible strains of P. xylostella were compared and identified. An aminopeptidase N (PxAPN2) with reduced expression in the resistant strain was identified. PxAPN2 was demonstrated as a functional receptor of Cry1Ac by using RNAi technique. Understanding of biochemical and molecular mechanisms of CrylAc resistance is crucial for designing rational resistance management strategy in P. xylostella.
     1. Genetic complementation test for CrylAc resistance and detection of CrylAc resistance allele frequency in field populations of P. xylostella
     Bacillus thuringiensis (Bt) formulations have been widely used in China against the diamondback moth, P. xylostella, and different levels of resistance to Cry1Ac have been evolved in field populations of P. xylostella. Because Cry1Ac resistance is generally incompletely recessive in P. xylostella, detection of resistance allele frequency is very important for resistance management. A resistant strain (SZBT) selected under laboratory developed about 2000-fold resistance to Cry1Ac. Cry1Ac resistance in the SZBT strain was characterized as "Mole 1" resistance. Allelic complementation tests showed that Cry1Ac resistance in the SZBT strain and the Cry1Ac-R strain (originated from Florida of the USA) share a common locus. An F1 screen of 120 single-pair families between the SZBT strain and three field populations collected in 2008 was carried out. Based on this approach, the estimated frequencies of CrylAc resistance alleles were 0.156 in the Yuxi population from Yunnan province, and 0.375 and 0.472 respectively in the Guangzhou and Huizhou populations from Guangdong province. Cry1Ac resistance levels in Guangzhou. Huizhou and Yuxi populations were 73-,117- and 13-fold respectively, which is correlated with the resistance frequencies detected by thescreen.
     2. Idientification of CrylAc binding proteins in midgut membranes from P. xylostella
     Midgut membranes of 4th instar larvae from the susceptible strain ROTH, the resistant strain SZBT and the reference strain SZ were separated by the traditional SDS-PAGE and blotted with biotin-labeled Cry1A toxins (Cry1Aa, Cry1Ab and Cry1Ac). About ten major Cry1Ac-binding bands were revealed in the ligand blotting. Pattern and darkness of the toxin-binding protein bands were similar between the resistant SZBT and the susceptible ROTH strains, except a 110 kDa protein band was significantly lighter in the resistant SZBT strain than in the ROTH strain. It is suggested that reduced expression of this 110 kDa Cry1Ac-binding protein may be associated with Cry1Ac resistance in the SZBT strain.
     Two-dimensional electrophoresis (2-DE) combined with ligand blotting assay were employed to separate and identify Cry1Ac-bingding proteins from both the resistant SZBT and the susceptible ROTH strains, and peptidase mass fingerprints were generated for several spots identified as Cry1Ac- binding proteins. The results showed that, in addition to the reported receptor aminopeptidase (PxAPN2), the storage protein, actin, glucosinolate sulfatase, V-ATPase subunit B were also identified as novel binding proteins in P. xylostella. As found in the 1-DE experiments, an 110 kDa Cry1Ac-binding protein was significantly reduced in the resistant SZBT strain. This 110 kDa protein was identified as an aminopeptidase N (PxAPN2). Aminopeptidase N is an important class of Bt toxin receptors in lepidopteran insects. Lower expression of PxAPN2 may relate to Cry1Ac resistance in the SZBT strain.
     3. Effect of RNAi-mediated gene silencing of PxAPN2 on Cry1Ac toxicity to the susceptible P. xylostella
     PxAPN2 gene encoding the 110 kDa toxin binding protein was cloned from both SZBT and ROTH strains using RT-PCR. Amino acid substitutions at several sites of PxAPN2 were present in both strains. Using quantitative real-time PCR, mRNA expression levels of PxAPN2 were compared between the resistant and the susceptible strains, and it showed that expression of PxAPN2 in the fourth instar larval midgut from the resistant SZBT strain was reduced to 33.9% of the susceptible ROTH strain.
     In order to verify the role of PxAPN2 on Cry1Ac resistance, PxAPN2 was down-regulated through RNAi to see whether it can make the susceptible strain obtain CrylAc resistance. Expression of PxAPN2 was reduced by as high as 53% when fed with PxAPN2 dsRNA. The third instar larvae from the ROTH fed with dsRNA of PxAPN2 obtained 4- to 14-fold resistance to Cry1Ac compare with the control larvae. This demonstrated that PxAPN2 is a functional receptor of Cry1Ac, and lower expression of PxAPN2 can result in resistance to Cry1Ac in P. xylostella.
     In the present study, biochemical and molecular mechanisms of resistance to CrylAc in the SZBT strain were extensively characterized through a combination of proteomic analysis, ligand blotting, gene cloning and RNA interference. PxAPN2 was confirmed as a functional receptor for CrylAc, and down-regulation of this receptor is associated with a high level resistance to CrylAc in the SZBT strain. PxAPN2 locus does not locate in the same linkage group as the CrylAc resistance gene. Therefore, lower mRNA expression of PxAPN2 may relate to changes of cis-acting factors, and lower expression of PxAPN2 protein may also be caused by post-transcriptional regulation in the resistant SZBT strain of P. xvlostella.
引文
1. 蔡峻,王飞,任改新.快速筛选苏云金杆菌高毒力菌株的有效方法[J].中国生物防治,2003,04,185-188
    2. 陈海燕,杨亦桦,武淑文等.棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算[J].昆虫学报,2007,50(1):25-30
    3. 陈利珍,梁革梅,吴孔明等.蛋白质组学技术的发展及其在昆虫中的应用[J].昆虫学报.2008,51(8).868-875
    4. 冯夏,陈焕瑜,帅应恒等.广东小菜蛾对苏云金杆菌的抗性研究[J].昆虫学报,1996,39(3),238-244
    5. 顾勇.缺血缺氧损伤相关的血脑屏障差异蛋白质组学研究—基于两种内皮细胞系ECV304和bEnd.3的研究[D].中国人民解放军军事医学科学院(硕士论文),2007
    6. 郭世俭,林文彩,章金明.浙江省主要菜区小菜蛾抗药性的研究[J].浙江农业学报,2003(]),19-22
    7. 何丹军,沈晋良,周威君等.应用单雌系F2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率[J].棉花学报,2001,13(2):105-108
    8. 黄大防,林敏.农业微生物基因工程[M].2001,北京:科学出版社
    9. 姜铮,王芳,何湘等.蛋白质磷酸化修饰的研究进展[J].2009,20(2):233-237
    10.赖云松,王亚,涂巨民.1CP蛋白和VIP蛋白杀虫机理和毒性专一性的分子基础[J].华中农业大学学报,2008,27(5):680-690
    11.李海涛,王洪成,刘志洋等.Bt杀虫晶体蛋白的研究概述[J].黑龙江农业科学,2004,5:37-39
    12.李建友.盐胁迫诱导水稻根尖细胞程序性死亡及相关线粒体蛋白质组学研究[D].南京农业大学(博士论文),2007
    13.李赛男.昆虫中肠Bt毒素受体氨肽酶N的研究进展[J].安徽农业科学,2007,35(9):2 523-2525
    14.梁革梅,谭维嘉,郭予元等.棉铃虫Bt抗感种群间数种解毒酶和中肠蛋白酶活性的比较[J].植物保护学报.2001,28(2):133-138
    15.梁革梅.棉铃虫Bt毒素受体蛋白生化特性、基因克隆及其与抗性的关系[D].北京:中国农业科学院(博士学位论文),2002.
    16.刘凤沂,朱玉成,沈晋良.F1代法监测田间棉铃虫对转Bt基因棉的抗性[J].昆虫学报,2008,51(9):938-945
    17.刘卓明,谢柳,叶大维.苏云金芽孢杆菌Cry1Ac杀虫晶体蛋白及其分子设计[J].基因组学与应用生物学.2009,28(2):356-364
    18.鲁松清,孙明.苏云金芽胞杆菌杀虫晶体蛋白基因的分类[J].生物工程进展,1998,05:57-63
    19.卢美光,赵建周,范贤林等.华北地区棉铃虫对Bt杀虫蛋白的抗性监测[J].棉花学报,2000,12(4):180-183
    20.罗雁婕,吴文伟,杨祚斌等.小菜蛾抗药性及治理的研究进展[J].云南大学学报(自然科学版),2008,30(S1):178-182。
    21.马彩霞,刘惠霞,沙忠利等.昆虫体内储存蛋白的研究进展[J].昆虫知识,2002,(39)6:416-420
    22.苏建亚,周晓梅,张天翼等.抗转Bt基因棉棉铃虫幼虫中肠氨肽酶基因的克隆与序列特征[J].棉花学报,2004,]6(1):13-20
    23.谭声江,陈晓峰,李典谟.昆虫对Bt毒素的抗性机理研究进展.昆虫知识,2001,38(1),12-17
    24.王崇利,武淑文,杨亦桦等.东南沿海地区小菜蛾对Bt 6-内毒素和Bt制剂的抗性检测[J].昆虫学报,49(1):70-73
    25.王桂荣,梁革梅,吴孔明等.棉铃虫中肠氨基氨肽酶N基因的克隆及序列分析[J].中国农业科学,2003,36(11):1293-1300.
    26.王志珍,邹承鲁.后基因组——蛋白质组研究[J].生物化学与生物物理学报,1998,30(6)533-539
    27.吴庆知,黄开勋,徐辉碧等.双向凝胶电泳技术进展[J].生物技术通讯,2002,13(2):28-31
    28.杨峰山.抗Bt小菜蛾的选育、受体基因克隆及PTD对Cry1Ac的增效作用[D].中国农业大学博士论文,2004。
    29.杨中侠,吴青君,王少丽等.利用RNAi技术沉默小菜蛾类钙粘蛋白基因[J].昆虫学报,2009,52(8):832-837
    30.闫艳春,乔传令,钱传范.小菜蛾抗药性研究进展[J].昆虫知识,1997,34(5):310-314.
    31.赵新民,夏立秋,王发祥等.杀蚊苏云金芽孢杆菌及其晶体蛋白研究进展[J].昆虫知识,2007,44(3):336-342
    32. Agrawal N, Malhotra P, Bhatnagar RK. Interaction of gene-cloned and insect cell-expressed Aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C[J]. Appl Environ Microbiol 2002,68,4583-4592.
    33. Akhurst R J, James W, Bird L J, et al. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera(Lepidoptera:Noctuidae) [J]. J. Econ. Entomol, 2003,96,1290-1299.
    34. Araujo R.N., Santos A., Pinto F.S., et al. RNA interference of the salivary gland nitrophorin 2 in triatomine bug Rhodnius prolixus (Hemiptera Reduviidae) by dsRNA ingestion or injection[J]. Insect Biochem. Mol. Biol.2006,36,683-693.
    35. Asano S, Maruyanma T, Iwasa T A, et al. Evaluation of biological activity of Bacillus thuringiensis test samples using a diet incorporation method with diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera:Yponomentidae) [J]. Appl Entomol Zool,1993,28,513-524
    36. Andow DA, Alstad DN, Pang YH, et al. Using an F2 screen to search for resistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera:Crambidae) [J]. J.Econ.Entomol., 1998,91.579-584.
    37. Andow DA, Olson DM, Hellmich RL, et al. Frequency of resistance to Bacillus thuringiensis toxin CrylAb in an Iowa population of European corn borer (Lepidoptera:Crambidae) [J]. J Econ Entomol.2000,93,26-30.
    38. Andow DA, Alstad DN. F2 screen for rare resistance alleles[J] J Econ. Entomol,1998,3,572-578.
    39. Anilkumar K.J. et al. Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie) [J].Appl. Environ. Microbiol.2008,74,462-469
    40. Ankersmit GW. DDT resistance in Plullella maculipennis(CutisLep.)in Java[J]. Bull.Ent- imol. Res.1953,44,421-425.
    41. Ballester V., Granero F., Tabashnik B., et al. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella) [J]. Appl. Environ. Microbiol.1999,65,1413-1419.
    42. Bayyareddy K,Andacht T.M, Abdullah M.A. et al.Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae[J].Insect Biochem. Mol. Biol.2009,39,279-286
    43. Banks D J, Jurat-fuentes J L, Dean D H, et al. Bacillus thuringiensis Cry1Ac and Cry1Fa δ-endotoxin binding to a novel 110 kDa aminopeptidase in Heliothis virescens is not N-acetylgalactosamine mediated[J]. Insect Bioch. Mol. Biol,2001,31,909-918
    44. Barrows B D, Haslam S M, Bischof L J, et al. Resistance to Bacillus thuringiensis toxin in Caenorhabditis elegans from loss of fucose[J]. J Biol Chem 2007; 282,3302-3311.
    45. Barrows B D, Joel S. Griffitts, et al, Resistance is non-futile:Resistance to Cry5B in the nematode Caenorhabditis elegans[J]. Journal of Invertebrate Pathology,2007,95,198-200.
    46. Baum J.A. et al. Control of coleopteran insect pests through RNA interference [J]. Nat. Biotechnol. 2007,25,1322-1326
    47. Bautista M, Miyata T, Miura K, et al.RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin[J]. Insect Biochem Mol Biol.2009,39,38-46.
    48. Baxter S.W., Zhao J.Z., Gahan, L.J., et al. Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella[J]. Insect Mol. Biol.2005.14.327-334.
    49. Baxter S.W. et al. Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella[J]. Insect Biochem. Mol. Biol.2008,38,125-135
    50. Beeker A. Reith A, Napiwotzki J, et al. A quantitative method of determining Initial amounts of DNA by Polymerase chain reaction cyele titration using digital Imaging and a novel DNA stain[J]. Anal Bioehem,1996,237.204-207.
    51. Bentur JS, Andow DA, Cohen MB, et al. Frequency of alleles conferring resistance to a Bacillus thuringiensis toxin in a Philippine population of Scirpophaga incertulas (Lepidoptera:Pyralidae) [J]. JEcon Entomol.:2000,93,1515-1521
    52. Beyer T A, Sadler J E, Rearick J I, et al. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships[J]. Adv Enzymol Relat Areas Mol Biol 1981; 52,23-175.
    53. Birkle S. Zeng G, Gao L, et al. Role of tumor-associaed gangliosides in cancer progression[J]. Biochimie,2003,85,455-463.
    54. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal. Biochem.1976.72,248-254
    55. Bravo A, Gomez I, Conde J. et al. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains[J]. Biochim. Biophys. Acta,2004,1667,38-46.
    56. Bravo, A. et al. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control [J]. Toxicon.2007,49,423-435
    57. Bravo A,Soberon M. How to cope with insect resistance to Bt toxins? [J] Trends in biotechnology, 2008.26,573-579
    58. Broderick, N.A., Raffa, K.F., Handelsman J, et al. Midgut bacteria required for Bacillus thuringiensis insecticidal activity[J]. Proc. Natl.Acad. Sci. USA,2006,103,15196-15199.
    59. Boonserm P., Davis P., Ellar DJ., and J. Li. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications[J]. J. Mol.Biol.2005,348,363-382.
    60. Boonserm P., Mo M.,Angsuthanasombat C. et al. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution[J]. J. Bacteriol. 2006.188,3391-3401.
    61. Bourne Y, Henrissat B. Glycoside hydrolases and glycosyltransferases:families and functional modules[J]. Curr Opin Struct Biol,2001; 11,593-600.
    62. Campbell M, Cao T,Hines R, et al. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera[J]. Insect Biochem. Mol. Biol.,2008,38,950-958.
    63. Carriere Y., Ellers-Kirk, C., Biggs, R.W., et al. Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm:fitness costs and incomplete resistance[J]. J. Econ. Entomol.2006,99,1925-1935.
    64. Chen J. Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin[J]. Proc. Natl. Acad. Sci. U. S. A.2007,104,13901-13906
    65. Chen L.Z.Liang G.M,Zhang J, et al. Proteomic analysis of novel CrylAc binding proteins in Helicoverpa armigera (Hubner) [J], Arch. Insect Biochem. Physiol.2009,73,61-73.
    66. Chen X.J., Curtiss A., Alcantara E., et al. Mutations in domain I of Bacillus thuringiensis delta-endotoxin CrylAb reduce the irreversible binding of toxin to manduca sexta brush border membrane vesicles[J]. J. Biol. Chem.,1995,270,6412-6419
    67. Cheng EY. Problems of control of insecticide-resistant Plutella xylostella[J]. Pestic. Sci.,1988, 23,177-188
    68. Chitkowski R.L. et al. Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests[J]. J. Econ. Entomol,2003,96,755-762
    69. Crickmore N., Zeigler D. R., Feitelson J., et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins[J]. Microbiol Mol Biol Rev,1998,62,807-813.
    70. Derbyshire D.J., Ellar DJ., and Li J. Crystallization of the Bacillus thuringiensis toxin CrylAc and its complex with the receptor ligand Naceryl-D-galactosamine[J]. Acta Crystallogr. Sect. D,2001,57,1938-1944.
    71. Dorsch J.A., Candas M., Griko N.B., et al. CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane proximal extracellular domain of BT-R-1 in Manduca sexta: involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis[J].Insect Biochem. Mol. Biol, 2002,32,1025-1036.
    72. Estada U, Ferre J. Binding of insecticidal crystal proteins of B acillus thuringiensis to t he midgut brush border of the cabbage looper, Trichoplusia ni (Hubner) (Lepidoptera:Noctuidae), and selection for resistance to one of the crystal proteins[J]. Appl Environ Microbiol,1994,60,3840-3846.
    73. Fernandez L.E. et al. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cryl lAa toxin in Aedes aegypti larvae[J].Biochem. J.2006,394,77-84
    74. Ferre J.,Real M.D., van Rie J., et al. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor[J]. Proc. Natl. Acad. Sci. USA 1991,88,5119-5123.
    75. Ferre J, van Rie J. Biochemistry and genetics of insect resistance to Bacillus thuringiensis[J]. Annu Rev Entomol, 2002,47,501-533.
    76. Feyereisen R, Koener JF, Farnsworth DE, et al. Isolation and sequence of cDNA encoding a cytochrome P450 from an insecticide-resistant strain of the housefly, Musca domestica[J]. Proc. Natl. Acad. Sci, USA,1989,86,1465-1469
    77. Ficarro S B, McCleland M L, Stukenberg P T, et al.,Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae[J].Nat Biotechnol,2002,20, 301-305.
    78. Francis F, Gerkens P, Harmel N, et al. Proteomics in Myzus persicae:effect of aphid host plant switch[J]. Insect Biochem. Mol. Biol.2006,36,219-227.
    79. Forcada C., E. Alcacer M. D. Garcera et al. Differences in The midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus Thuringiensis toxins[J]. Arch Insect Biochem Physiol,1996.31.257-272
    80. Gahan L.J. Gould F, Heckel DG. Identification of a gene associated with Bt resistance in Heliothis virescens[J]. Science,2001 293,857-860
    81. Gahan L.J., Ma Y.T., Coble M.L.M., et al. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera:Noctuidae) [J]. J. Econ. Entomol.2005,98,1357-1368.
    82. Gahan LJ, Gould F, Lopez JD,et al. Apolymerase chain reaction screen of field populations of Heliothis virescens for retrotransposon insertion conferring resistance to Bacillus thuringiensis toxin[J]. J.Econ. Entomol.,2007,100,187-194
    83. Galitsky N., Cody V., Wojtczak A., et al. Structure of the insecticidal bacterial δ-endotoxin Cry3BbI of Bacillus thuringiensis[J]. Acta Crystallogr. Sect. D 2001,57,1101-1109.
    84. Gatehouse J.A. Biotechnological prospects for engineering insect-resistant plants[J]. Plant Physiol. 2008,146,881-887
    85. Gavin A.C., Aloy P., Grandi P. et al., Proteome survey reveals modularity of the yeast cell machinery[J]. Nature.2006,440,631-636
    86. Georghiou G.P. and Wirth M.C. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus(Diptera:Culicidae) [J].Appl. Environ. Microbiol.1997,63,1095-1101
    87. Georghoiu and Lagunes-Tejeda. The occurrent of resistance to pesticides in arthropodos[J]. FAO of the United Nations. Rome,1991,318
    88. Giot L, Bader JS, Brouwer C, et al.A protein interaction map of Drosophila melanogaster[J]. Science.2003,302 (5 651),1727-1736
    89. Griffitts JS, Aroian RV. Many roads to resistance:how invertebrates adapt to Bt toxins[J]. Bio Essays,2005,27,614-624.
    90. Griffitts J.S., Whitacre J.L., Stevens D.E., et al. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme[J].Science 2001,293,860-864.
    91. Griffitts J.S., Huffman D.L., Whitacre J.L., et al. Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions[J].J. Biol. Chem. 2003,278,45594-45602.
    92. Griffitts J.S., Haslam S.M., Yang T.L., et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin[J]. Science,2005.307,922-925.
    93. Griffitts J.S. and Aroian R.V. Many roads to resistance:how invertebrates adapt to Bt toxins[J]. Bioessays 2005,27,614-624.
    94. Grochulski PL. Masson S. Borisova M. et al. Bacillus thuringiensis Cry1A(a) insecticidal toxin: crystal structure and channel formation[J]. J. Mol. Biol.1995.254,447-464.
    95. Gomez I. et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix a-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin[J]. FEBS Lett.2002.513, 242-246
    96. Gomez 1, Pardo-Lopez L, et al. A. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis[J]. Peptides,2007,28,169-173.
    97. Gould F, Anderson A, Jones A, et al..Initial frequency of alleles for resistance to Bacillus thuringiensis toxin in field population of Heliothis virescens[J].Proc. Natl. Acad. Sci. USA, 1997,94,3519-3523.
    98. Gould F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology[J]Annu.Rev.Entomol.,1998,43,701-726
    99. Gould F., Anderson A., Reynolds A., et al. Selection and genetic analysis of a Heliothis virescens (Lepidoptera:Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins[J]. J. Econ. Entomol.1995,88,1545-1559.
    100. Guerchicoff A. et al. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis[J]. Appl. Environ. Microbiol.1997,63,2716-2721
    101. Gunning R.V., Dang H.T., Kemp F.C., et al. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis CrylAc toxin[J]. Appl.Environ. Microbiol.2005,71.2558-2563.
    102. Hama H, Suzuki K, Tanaka H. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xvlostella(Linnaeus) (Lepidoptera: Yponomeutidae) [J].Appl.Entomol.Zool.1992,27,355-362
    103. Harrison R L.Lynn D E.Genomic sequence analysis of a nucleopolyhedrovirus isolated from the diamondback moth. Plutella xylostella[J].Virus Genes,2007,35,857-873
    104. Heckel DG,Gahan LC.Gould F,et al. Identification of a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera: Noctuidae) [J].J Econ Entomol,1991,90,75-86
    105. Heckel DG, Gahan LJ,Liu YB, et al.Genetic mapping of resistance to Bacillus thuringiensis toxins in diamondback moth using biphasic linkage analysis[J]. Proc. Natl. Acad. Sci. USA,1999,96,8 373-8377
    106. Heckel D G, Gahan L J. Baxter S W, et al. The diversity of Bt resistance genes in species of Lepitoptera[J]. J. Invertebr. Pathol,2007,95,192-197.
    107. Heckel D G. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects[J]. Biocontrol Sci Tech,1994,4.405-417.
    108. Heckel D.G., Gahan L.C., Gould F., et al. Identificationof a linkage group with a major effect on resistance to Bacillus thuringiensis Cry1Ac endotoxin in the tobacco budworm (Lepidoptera:Noctuidae) [J].J. Econ. Entomol.1997,90,75-86.
    109. Herrero S., Gechev T., Bakker P.L., et al. Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes[J]. BMC Genomics,2005.6,96
    110. Herrero S, Gonzalez Cabrera J, Ferre J, et al. Mutations in the Bacillus thuringiensis Cry1Ca toxin demonstrate the role of domains Ⅱ and Ⅲ in specificity towards Spodoptera exigua larvae[J]. Biochem J 2004,384.507-513
    111. Herrero S, Ansems M, Van Oers MM, et al..A new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua[J]. Insect Biochem Mol Biol.2007,37,1109-1118
    112. Hofte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis[J]. Microbiol Rev, 1989.53.242-255.
    113. Horsch R.B, Rogers S.G, and Fraley R.T. Transgenic plants[J].Cold Spring Harb Symp Quant Biol 1985,50,433-437
    114. Hossain D.M., Shitomi Y., Nanjo Y., et al. Localization of a novel 252-kDa plasma membrane protein that binds Cry1A toxins in the midgut epithelia of Bombyx mori[J]. Appl. Entomol. Zool.2005,40,125-135.
    115. Hua G., Jurat-Fuentes, J.L., Adang, M.J. Bt-R-1a extracellular cadherin repeat 12 mediates Bacillus thuringiensis CrylAb binding and cytotoxicity[J]. J. Biol. Chem.2004,279,28051-28056.
    116. Hua G. et al. Anopheles gambiae cadherin AgCad1 binds Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCadl synergizes toxicity[J]. Biochemistry.2008,47,5101-5110.
    117. Huang F. et al. Sugarcane borer (Lepidoptera:Crambidae) resistance to transgenic Bacillus thuringiensis maize[J]. J. Econ.Entomol.2007,100,164-171
    118. Hughes C L, Kaufman T C. RNAi analysis of deformed proboscis pedia and sex combs reduced in the milkweedbug oncopeltus fasciatus:novel roles for Hoxgenes in the Hemipteran head[J]. Development,2000,127,3683.
    119.Hutchens TW,Yip Tai-Yung. New desorption strategies for the Mass Spectrometric analysis of macromolecules[J].Rapid Commun Mass Spectrom,1993,7,576-580
    120. Janmaat A.F. and Myers J.H. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers Tricoplusia ni[J]. Proc. Biol. Sci.2003,270,2263-2 270
    121. Jurat-Fuentes J.L. and Adang M.J. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae[J]. Eur. J. Biochem.2004,271,3127-3135
    122. Jurat-Fuentes J.L. and Adang M.J. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae[J]. J. Invertebr.Pathol 2006,92,166-171
    123. Jurat-Fuentes J.L. et al. Dual resistance to Bacillus thuringiensis CrylAc and Cry2Aa toxins in Heliothis virescens suggest multiple mechanisms of resistance[J]. Appl. Environ.Microbiol.2003, 69,5898-5906
    124. Jurat-Fuentes J.L., Gahan L.J., Gould F.L., et al. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens[J]. Biochemistry,2004,43, 14299-14305.
    125. Keewoo Lee. Gene Expression of Cotesia plutellae Bracovirus EP1-like Protein (CpBV-ELP1)in Parasitized Diamondback Moth, Plutellae xylostella [J] J. Asia-Pacific Entomol.2005,8,249-255
    126. Kleter. G.A. et al. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective[J]. Pest Manag. Sci.2007,63,1107-1115
    127. Knight P.J., Knowles B.H., Ellar D.J. Molecular cloning of an insect aminopeptidase N that serves as a receptor for Bacillus thuringiensis CrylAc toxin[J]. J. Biol. Chem.1995,270,17765-17770.
    128. Knight P. J., Carroll J., Ellar D. J. Analysis of glycan structures on the 120 kDa aminopeptidase N of Manduca sexta and their interactions with Bacillus thuringiensis CrylAc toxin[J]. Insect Biochem Mol Biol,2004,34,101-112.
    129. Knowles B.H. Mechanism of action of Bacillus thuringiensis insecticidal delta-endotoxins[J].Adv. Insect Physiol.1994 24,275-308.
    130. Knowles B.H., Ellar, D.J. Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis delta-endotoxins with different insect specificity[J]. Biochim. Biophys. Acta 1987,924.509-518.
    131. Krishnamoorthy M.,Jurat-Fuentes J.L..McnallR.J., et al.ldentification of novel CrylAc binding proteins in midgut membranes from Heliothis virescens using proteomic analyses[J], Insect Biochem. Mol. Biol.2007,37,189-201.
    132. Lambert B, Buysse L, Decock C, et al. A Bacillus thuringiensis insecticidal crystal protein with a high activity against members of the family Noctuidae[J]. Appl. Environ. Microbiol,1996,62, 80-86
    133. Lefevre T, Thomas F, Schwartz A,et al. Malaria Plasmodium agent induces alteration in the head proteome of their Anopheles mosquito host[J]. Proteomics,2001,7,1908-1915
    134. Li A., Yang Y., Wu S., et al. Investigation of resistance mechanisms to fipronil in the diamondback moth (Lepidoptera:Yponomeutidae) [J]. J. Econ. Entomol,2006,99,914-919.
    135. Li H., Gonzalez-Cabrera J., Oppert B., et al. Binding analyses of CrylAb and CrylAc with membrane vesicles from Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis[J]. Biochem Biophys Res Commun,2004,323,52-57.
    136. Li H., Oppert B., Higgins R. A., et al. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera:Crambidae) [J]. Insect Biochem Mol Biol,2004,34,753-762.
    137. Li J, Derbyshire D.J., Promdonkoy B., et al. Structural implications for the transformation of the Bacillus thuringiensis δ-endotoxins from water-soluble to membrane-inserted forms[J]. Biochem. Soc. Trans.2001,29,571-577
    138. Li J.,Koni P. A. and. Ellar D.J. Structure of the mosquitocidal σ-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane poreformation[J]. J. Mol. Biol. 1996.257,129-152.
    139. Li J.D. Carroll J.J., and Ellar D. J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 A resolution[J]. Nature,1991,353,815-821.
    140. Liao C.Trowell SC.Akhurst RJ. Purification and characterization of Cry1Ac toxin binding proteins from the brush border membrane of Helicoverpa armigera midgut[J].Curr. Microbiol.2005, 51,367-371.
    141. Liu Y B, Tabashnik B E et al., Visual determination of sex of diamondback moth larvae. The Canadian Entomologist,1997a,129,585-586
    142. Liu Y. B., Tabashnik B. E., Masson L., et al. Binding and toxicity of Bacillus thuringiensis protein CrylC to susceptible and resistant diamondback moth (Lepidoptera:Plutellidae) [J]. J Econ Entomol,2000,93,1-6.
    143. Liu Y B.Tabashnik B E,Meyer S K,et al.Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth[J].Applied and Environmental Microbiology, 2001,67,3216-3219.
    144. Liu, Y.B., Tabashnik, B.E., Pusztai-Carey, M. Field-evolved resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth (Lepidoptera:Plutellidae) [J]. J. Econ. Entomol.1996,89, 798-804.
    145. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method [J]. Methods,2001,25,402-408.
    146. Loeb M.J., Martin P.A.W., Hakim, R.S., et al. Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis[J]. J. Insect Physiol. 2001,47,599-606.
    147. Lognonne JL.2D-PAGE analysis:a oractical guide to principle critical parameters[J].Cell Mol Biol,1994,40,41
    148. Loseva O, Engstrom Y. Analysis of signal-dependent changes in the proteome of Drosophila blood cells during an immune response[J]. Mol.Cell. Proteomics,2004,3,796-808.
    149. Luo K, McLachlin JR, Brown MR, et al. Expression of a glycosyl phosphatidylinositol- linked Manduca sexta aminopeptidase N in insect cells[J]. Protein Expr Purif,1999,17,113-122.
    150. Luo K, Sangadala A S, Masson L, et al. The Heoliothes virescens 170 kDa aminopeptidase functions as "Receptor A" by mediation specific Bacillus thuringiensis Cry1A δ-endotoxins binding and pore formation [J]. Insect Biochem Mol Biol,1997,27,735-743.
    151. Luo K. Tabashnik B. Adang M J. Binding of Bacillus thuringiensis Cry1Ac toxin to aminopeptidase in susceptible and resistant diamondback moths (Plutella xylostella) [J].Appl Environ Microbiol,1997,63,1024-1027.
    152. Ma G., Roberts H., Sarjan M., et al. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reaction in the gut lumen of resistant, Helicoverpa armigera larvae? [J] Insect Biochem. Mol. Biol.2005,35,729-739.
    153.Maagd R A, Bravo A, Crickmore N. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world[J]. Trends Genet 2001; 17,193-199.
    154. Mahbubur Rahman, M. et al. Tolerance to Bacillus thuringiensis endotoxin in immune-suppressed larvae of the flour moth Ephestia kuehniella[J]. J. Invertebr. Pathol.2007,96,125-132
    155. Marroquin. L.D., Elyassnia. D., Griffitts, J.S., et al. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans[J]. Genetics.2000.155, 1693-1699.
    156. Manabe T. Combination of elect rophoretic techniques for comprehensive analysis of complex protein systems[J]. Elect rophoresis,2000,21,11-16.
    157. Mao Y.B, Cai W.J., Wang J.W., et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nat Biotechnol,2007,25:1307-1313.
    158. Masson L, Lu Y J, Mazza A, et al. The CrylA(c) receptor purified from Manduca sexta displays multiple specificities[J]. J. Biol Chem.1995,270,20309-20315.
    159. McNall RJ, Adang MJ. Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis[J]. Insect Biochem. Mol. Biol.2003,33,999-1 010
    160. Meyer S.K. et al. Cyt1A from Bacillus thuringiensis lacks toxicity to susceptible and resistant larvae of diamondback moth (Plutella xylostella) and pink bollworm(Pectinophora gossypiella) [J].Appl. Environ. Microbiol.2001,67.462-463
    161. Milne R., Wright T., Kaplan H., et al. Spruce budworm elastase precipitates Bacillus thuringiensis delta-endotoxin by specifically recognizing the C-terminal region[J]. Insect Biochem. Mol. Biol. 1998,28,1013-1023.
    162. Mitchell R.D Ⅲ, Ross E., Osgood C., et al, Molecular characterization, tissue-specific expression and RNAi knockdown of the first vitellogenin receptor from a tick[J]. Insect Biochem Mol Biol. 2007; 37,37-88
    163. Moar W.J., Pusztai-Carey M., Van Faassen H., et al. Development of Bacillus thuringiensis Cry1C resistance by Spodoptera exigua (Hubner) (Lepidoptera:Noctuidae) [J]. Appl. Environ. Microbiol. 1995,61,2086-2092.
    164. Mohan M and Gujar G.T. Characterization and comparison of midgut proteases of Bacillus thuringiensis susceptible and resistant diamondback moth (Plutellidae:Lepidoptera) [J]. Journal of Invertebrate Pathology,2003,82,1-11
    165. Morin, S., Biggs. R.W., Sisterson, M.S., et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm[J]. Proc. Natl. Acad. Sci. USA 2003,100,5004-5009.
    166. Morin S, Henderson S, Fabrick JA, et al. DNA-based detection of Bt resistance alleles in pink bollworm[J].Insect Biochem.Mol.Biol.,2004,34,1225-1233.
    167. Morse RJ, Yamamoto T, Stroud RM. Structure of Cry2Aa suggests an unexpected receptor binding epitope[J]. Structure,2001,9,409-417.
    168. Nagamatsu Y., Koike T., Sasaki K., et al. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CrylAa toxin[J]. FEBS Lett.1999,460,385-390.
    169.Naoki K, Yumi M, Atsushi K, et al. Vector-based in vivo RNA interference:dose- and time-dependent suppression of transgene[J]. JPharmacol Exp Ther,2004,308,688-693.
    170. Ochoa-Campuzano C, Real M.D, Amparo C, et al.An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor[J], Biochem. Biophys. Res. Commun.2007,362,437-442.
    171. Ohnishi A., Hull J. J., and Matsumoto S., Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway[J]. Proc. Natl. Acad. Sci.2006,103,4398-4403
    172. Oppert B. Protease interactions with Bacillus thuringiensis insecticidal toxins[J]. Arch. Insect Biochem. Physiol.1999,42,1-12.
    173. Oppert B., Kramer K.J., Beeman R.W., et al. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins[J]. J. Biol. Chem.1997,272,23473-23476.
    174. Oppert B, Kramer K J, Johnson D E, et al. Altered protoxin activation by midgut enzymes from a Bacillus thuringiensis resistant strain of Plodia interpunctella[J]. Biochem. Biophys. Res. Commun, 1994,198,940-947.
    175. Oppert B, Kramer K J, Johnson D E, et al. Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis Cry1Ac protoxin[J]. Insect.Biochem. Mol. Biol,1996.26, 571-583.
    176. Pardo-Lopez, L. et al. Structural changes of the Cry1Ac oligomeric pre-pore from Bacillus thuringiensis induced by Nacetylgalactosamine facilitates toxin membrane insertion[J]. Biochemistry,2006.45,10329-10336
    177. Parker MW, Feil SC. Pore-forming protein toxins:from structure to function[J]. Prog Biophys Mol Biol,2005,88,91-142
    178. Paskewitz SM, Shi L.The hemolymph proteome of Anopheles gambiae[J]. Insect Biochem Mol Biol. 2005,35.815-824.
    179. Perez CJ, Shelton AM. Resistance of Plutella xylostella (Lepidoptera:Plutellidae) to Bacillus thuringiensis Berliner in Central America[J]. J.Econ. Entomol,1997,90,87-93.
    180. Perez C. et al. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor[J]. Proc. Natl. Acad. Sci. U. S. A.2005,102,18303-18 308
    181. Pietrantonio P.V., Gill S.S. Bacillus thuringiensis toxins:action on the insect midgut. In:Lehane, M.J.. Billingsley. P.F. (Eds.) [J], Biology of the Insect Midgut. Chapman & Hall. London.1996. 345-372.
    182. Piggot and Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin.Microbiol[J]. Mol. Biol.Rev.2007,71,255-281.
    183. Promdonkoy B. and Ellar D.J. Investigation of the poreforming mechanism of a cytolytic d-endotoxin from Bacillus thuringiensis[J]. Biochem. J.2003,374,255-259
    184. Qaim M. and Zilberman D. Yield effects of genetically modified crops in developing countries[J]. Science 2003.299,900-902
    185. Quan GX., Kanda T., and Tamura T. Induction of the white egg 3 mutant phenotype by injection of the double-stranded RNA of the silkworm white gene[J]. Insect Mol Biol.2002,11,217-222
    186. Rahman M.M. et al. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephesia kuehniella[J]. Proc.Natl. Acad. Sci. U. S. A.2004,101,2696-2699
    187. Rajagopal R. Sivakumar S, Agrawal N. et al. Silencing of midgut Aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor[J]. The Journal Biological Chemistry,2002,277,46849-46851.
    188. Rajamohan F., Lee M.K., Dean D.H. Bacillus thuringiensis insecticidal proteins:molecular mode of action[J]. Prog. Nucleic Acid Res. Mol. Biol.1998,60,1-27.
    189. Ratzka A, Vogel H. Kliebenstein DJ. et al. Disarming the mustard oil bomb[J]. Proc.Natl. Acad. Sci. U. S. A.2002,99,11223-11228.
    190. Rincon-Castro M.C. et al. Antagonism between Cry1Ac and Cyt1A toxins of Bacillus thuringiensis[J].Appl Environ. Microbiol.1999,65,2049-2053
    191. Sangadala S., Walters F.S., English L.H., et al. A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis Insecticidal CrylA(c) toxin binding and (Rb+-K+)-Rb-86 efflux in vitro[J]. J. Biol. Chem.1994,269,10088-10092.
    192. Salvador H, Brenda O. Juan F.Different mechanisms of resistance to Bacillus thuringierrsis toxins in the Indianmeal moth[J].Appl Environ Microbiol,2001,67,1085-1089
    193. Sarauer B.L., Gillott C. Hegedus D, et al. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella[J]. Insect Mol. Biol.2003.12, 333-343.
    194. Sayyed A.H. et al. Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth. Plutella xylostella, and synergizes the activity of CrylAc towards a resistant strain[J]. Appl. Environ. Microbiol.2001.67.5859-5861
    195. Sayyed A H, Gatsi R, Kouskoura T, et al. Susceptibility of a field-derived, Bacillus thuringiensis- resistant strain of diamondback moth to in vitro-activated CrylAc toxin[J]. Applied and Environmental Microbiology,2001b,67,4372-4373
    196. Sayyed AH, Ferre J,Wright DJ,et al. Mode of inheritance and stability of resistance to Bacillus thuringiensis var kurstaki in a diamondback moth (Plutella xylostella) population from Malaysia[J].Pest Manag.Sci.2000,56,743-748
    197. Schnepf E., Crickmore N., Van Rie, J., et al,. Bacillus thuringiensis and its pesticidal crystal proteins[J]. Microbiol. Mol. Biol. Rev.1998,62,775-806.
    198. Shai Y. Molecular recognition within the membrane milieu:implications for the structure and function of membrane proteins[J]. J.Membr Biol.2001.182,91-104.
    199. Shao Z.Z., Cui. Y.L., Liu X.L., et al. Processing of delta-endotoxin of Bacillus thuringiensis subsp. Kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors[J]. J. Invert. Pathol.,1998,72,73-81.
    200. Shelton A.M., Robertson J.L., Tang J.D., et al. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field[J]. J. Econ. Entomol.,1993,86, 697-705.
    201. Smardon A, Spoerke J.M., Stacey S.C., et al. EGO-1 is related to RNA-directed RNA polymerise and functions in germline development and RNA interference in C. elegans[J]. Curr Biol.2000,10. 169-178
    202. Soberon M. et al. Engineering modified Bt toxins to counter insect resistance[J]. Science,2007, 318,1640-1642
    203. Tabashnik B.E., Liu Y.B., Malvar T., et al. Insect resistance to Bacillus thuringiensis:uniform or diverse? [J] Phil. Trans. R. Soc. Lond. Ser.B 1998,353,1751-1756.
    204. Tabashnik B.E., Finson N., Groeters F.R., et al. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella[J]. Proc. Natl. Acad. Sci. USA 1994,91,4120-4124.
    205. Tabashnik B.E., Liu Y.B., Malvar T., et al. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis[J]. Proc. Natl. Acad. Sci. USA 1997a,94, 12780-12785.
    206. Tabashnik B.T., Liu Y.B., Finson N., et al. One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins[J]. Proc. Natl. Acad. Sci. USA 1997b,94,1640-1644.
    207. Tabashnik, B.E. et al. Insect resistance to Bt crops:evidence versus theory[J]. Nat. Biotechnol. 2008.26,199-202
    208. Tabashnik B., Malvar T., Liu Y.B., et al, Cross-resistance of the diamondback moth indicates altered interactions with domain Ⅱ of Bacillus thuringiensis toxins[J]. Appl. Environ. Microbiol. 1996.62.2839-2844.
    209. Tabashnik BE, Cushing NL. Leaf residue vs. topical bioassays for assessing insecticide resistance in the diamondback moth. Plutella xylostella L[J]. FAO Plant Prot. Bull.1987.,35. 11-14.
    210. Tabashnik B.E., Cushing N.L., Finson N., et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae) [J]. J. Econ. Entomol.,1990,83,1 671-1676.
    211. Tabashnik BE, Finson N et al., Reversal of resistance to Bacillus thuringiensis in Plutella xylostella[J]. Proc. Natl. Acad. Sci. USA,1994a,91,4120-4124
    212. Tabashnik B.E..Liu Y.B..Finson N., et al.One gene in diamondback moth confers resistance to four Bacillus thuringiensist toxins[J]. Proc.Natl.Acad.Sci. USA.,1997,94,1640-1644
    213. Tabashnik B. E..Finson N.; Chilcutt C. F., et al. Increasing efficiency of bioassays:evaluating resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae) [J]. J.Econ. Entomol.,1993.86,635-644.
    214. Tabashnik BE, Fabrick JA, Henderson S, et al. DNA screening reveals pink bollworm resistance to Bt cotton remainsrare after a decade of exposure[J]. J.Econ.Entomol.,2006,99,1525-1530
    215. Tabashnik B.E. Evolution of resistance to Bacillus thuringiensis[J]. Annu. Rev. Entomol.1994,39, 47-79
    216. Tabashnik B.E. et al. Insect resistance to transgenic Bt crops:lessons from the laboratory and field[J]. J. Econ. Entomol.2003,96,1031-1038
    217. Talekar N S, Sheloten A M. Biology,cology and management of diamondback moth[J]. Ann Rev Ent.1993,38,275-301.
    218. Tang J D, Shelton A M. Van Rie J, et al. Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth(Plutella xylostella) [J]. Appl. Environ. Microbiol,1996,62,564-569
    219. Tang J. D., Gilboa S., Roush R. T., et al. Inheritance, Stability, and Lack-of-Fitness Costs of Field-Selected Resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera:Plutellidae) from Florida[J]. J. Econ. Entomol. 1997,90,732-741.
    220. Terra W.R. and Ferreira C. Insect digestive enzymes:properties, compartmentalization and function. Comp. Biochem. Physiol, 1994,109B,1-62.
    221. Turner CT, Davy MW,MacDiarmid RM, et al.RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding[J].Insect Mol Biol.2006, 15.383-391.
    222. Vadlamudi R., Weber E., Ji I., et al. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis[J]. J. Biol. Chem.1995,270,5490-5494.
    223. Valaitis A P, Lee M K, Rajamohan F, et al. Brush border membrane aminopeptidase N in the midgut of the gypsy moth serves as the receptor for the Cry1Ac delta endotoxin of Bacillus thuringiensis[J]. Insect Biochem Mol Biol,1995,25,1143-1151.
    224. Van Rie J., McGaughey W.H., Johnson, D.E., et al. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis[J]. Science,1990,247,72-74.
    225. Vadlamudi R.K. et al. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis[J]. J. Biol. Chem.1995,270,5490-5494
    226. Vierstraete E, Verleyen P, Baggerman G, et al.A proteomic approach for the analysis of instantly released wound and immune proteins in Drosophila melanogaster hemolymph[J]. Proc. Natl. Acad. Sci. U. S. A.,2004,101,4740-4751
    227. Wirth, M.C. et al. CytlA of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus[J].Appl. Environ. Microbiol.2005,71,185-189
    228. Wirth, M.C. et al. CytA enables CryⅣ endotoxins of Bacillus thuringiensis to overcome high levels of CryⅥ resistance in the mosquito, Culex quinquefasciatus[J]. Proc. Natl. Acad. Sci. U. S. A. 1997,94,10536-10540
    229. Wright DJ,Iqbal M,Granero F, et al. A change in a single midgut receptor in the diamondback moth (Plutella xylostella) is only in part responsible for field resistance to Bacillus thuringiensis subsp. Kurstaki and B.thuringiensis subsp. aizawai[J].Appl.Environ.Microbiol.1997,63,1814-1819
    230. Wu K.M.,Guo Y.Y.,Xu N. Geographic variation in susceptibility of Helicoverpa armigera to Bacillus thuringiensis insecticidal protein in China[J]. J.Econ.Entomol.,1999,92,273-278.
    231. Wu KM, Guo YY, Head G,2006.Resistance monitoring of Helicoverpa armigera(Lepidoptera: Noctuidae) to Bt insecticidal protein during 2001-2004 in China[J].J.Econ.Entomol.,99,893-896.
    232. Wu KM, Guo YY, Lv N, et al. Resistance monitoring of Helicoverpa armigera(Lepidoptera: Noctuidae) to Bt insecticidal protein in China[J]. J.Econ.Entomol.,2002,95,826-831.
    233. Wu KM. Guo YY, Lv N. et al. Efficacy of transgenic cotton containing a Cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera(Lepidoptera:Noctuidae) in northern China[J].J.Econ.Entomol0,2003,96,1322-1328.
    234. Xie RY., Zhuang MB., Ross L.S., et al,. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins[J]. J. Biol. Chem.2005,280,8 416-8425.
    235. Xu XJ., Yu LY., Wu YD. Disruption of a cadherin gene associated with resistance to CrylAc delta-endotoxin of Bacillus thuringiensis in Helicoverpa armigera[J]. Appl. Environ. Microbiol. 2005,71,948-954.
    236. Yang YJ. Chen HY, Wu YD. et al. Mutated cadherin alleles of Helicoverpa armigera conferring resistance to Bacillus thuringiensistoxin Cryl Ac detected in the field[J]. Appl.Environ. Microbiol., 2007,73,6939-6944.
    237. Yaoi K, Nakanishi K, Kadotani T, et al. cDNA cloning and expression of Bacillus thuringiensis CrylAa toxin binding 120 kDa aminopeptidase N from Bombyx mori[J]. Biochim.Biophys. Acta.1999a,1444,131-137.
    238. Yaoi K, Nakanishi K, Kadotani T, et al. Bacillus thuringiensis CrylAa toxin-binding region of Bombyx mori aminopeptidase N[J]. FEBS Letter,1999b,463,221-224.
    239. Zamore PD,Tuschl T,Shar PPA.et al. RNAi Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals[J].Cell,2000,101,25-33.
    240. Zdobnov EM, Mering C, Letunic I, et al.Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster[J].Science,2002.298,149-159
    241. Zhao J. Cao J., Li Y. X., et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution[J]. Nat. Biotech.2003,21,1493-1497.
    242. Zhao J.Z., Li Y. X., Collins H. L., et al. Different cross-resistance patterns in the diamondback moth (Lepidoptera:Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C[J]. J. Econ. Entomol. 2001,94,1547-1552.
    243. Zhao J.Z., Li Y.X., Collins H. L., et al. Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera:Plutellidae) [J]. J. Econ. Entomol.2002,95,14-21.
    244. Zhao J Z, Collins H L. Tang J D, et al. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1C[J]. Appl. Environ. Microbiol, 2000,66,3784-3789.
    245. Zhao, J.Z. et al. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants[J]. Proc. Natl. Acad. Sci.U. S. A. 2005,102,8426-8430
    246. Zhang X. Candas M, Griko N B, et al. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells[J].Cell Death Differ,2005,12,1407-1416.
    247. Zhang S P,Cheng H M,Wu K M. Mutation of an aminopeptidase N gene is associated with Helicover armigera resistance to Bacillus thuringiensis Cry1Ac toxin[J]. Insect Biochem Mol Biol, 2009,39,421-429.
    248. Zhang, X.B., Candas, M., Griko. N.B.,et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the CrylAb toxin of Bacillus thuringiensis[J]. Proc. Natl. Acad. Sci. USA,2006,103,9897-9902.
    249. Zhao J, Jin L, Yang YH, et al. Diverse cadherin mutations conferring resistance to Bacillus thuringiensis toxin Cry1Ac in Helicoverpa armigera[J]. Insect Biochem. Mol. Biol.,2010,40, 113-118
    250. Zhao XF, He HJ, Dong DJ, et al. Identification of differentially expressed proteins during larval molting of Helicoverpa armigera[J]. Journal ofproteome research,2006,5,164-169.
    251. Zhou X., Oi F. M., and Scharf M. E. Social exploitation of hexamerin, RNAi reveals a major caste-regulatory factor in termites[J]. Proc. Nat. Acad. Sci.2006,103,4499-4504.
    252. Zhu Y.C, Kramer K.J, Oppert B, et al. cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins[J]. Insect Biochem. Mol. Biol.2000,30,215-224.
    253. Zhuang M.B, Oltean D.I, Gill S.S. et al. Heliothis virescens and Manduca sexta lipid rafts are involved in CrylA toxin binding to the midgut epithelium and subsequent pore formation[J]. J. Biol. Chem.2002,277,13863-13872.
    254. Zhuang S, Kelo L, Nardi JB, et al. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system[J].Dev Comp Immunol.2008,32,365-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700