用户名: 密码: 验证码:
夜温升高对热带地区水稻产量和农艺性状影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的快速发展和人类的频繁活动,在大气中二氧化碳的浓度持续上升的同时,地球表面的温度不断升高,预计到本世纪末地球将表面温度将再上升1.4-5.8℃,而夜间温度上升的速度是白天温度的3倍。水稻是全世界最重要的粮食作物之一,夜间温度的升高对全球的水稻生产构成严重威胁。因此,明确夜间高温对水稻生长的影响和筛选耐高温的品种是应对未来气候变化的重要手段。本研究收集了亚洲各国广泛种植的36个水稻品种,于2009年雨季(2009WS)、2010年旱季(2010DS)和雨季(2010WS)和2011年旱季(2011DS)在国际水稻所(IRRI)的大田条件下,以自然温度为对照,以自行设计的大田生长温室进行夜间高温(HNT)和夜间低温(LNT)处理的研究,温度处理分别是从2009WS、2010DS、2010WS和2011DS的移栽后43天、40天、41天和36天进行,直到收获。温度处理的时间为每天的1900-0600,夜间高温和低温的平均温度差为4.1℃,3.9℃,4.0℃和3.8℃。主要研究结果如下:
     1大田生长温室的设计建造与效果检测
     自行设计建造了以空调作为控温设施,排气扇为通风装置,钢管结构作为骨架,保温膜覆盖的大田生长温室系统,白天温室揭开,晚上盖膜。对移栽前3天和移栽后36天大田温室功能各项指标的检测结果表明,温室内外大气湿度、C02、同一温室的不同分布点、不同高度和方位的温度和湿度差异不明显,高温和低温处理之间VPD、水温差异较大。本研究中使用的排气扇对控制湿度、CO2浓度效果良好,闭通风扇后高温处理的湿度比常温处理下降近30%。空调设施属于渐进式加热或降温,在移栽前3天需要5h温度趋于平稳,在移栽后36天需要3h温度稳定,这与外界的大气温度高低有关。大田生长温室的整体控温低温比高温效果好,温室各项检测指标均趋于正常状态。2夜间高温处理对产量及产量构成的影响
     夜间低温和高温处理下产量差异显著,品种之间差异明显,温度和品种之间的互作效应不明显。四个试验季节夜前低温(LNT)平均产量为455.6 g.m-2、681.3 g.m-2、487.6 g.m-2和579.0 g.m-2,夜间高温(HNT)平均产量分别为379.3 g.m-2、619.2 g.m-2、440.7 g.m-2和532.9 g.m-2, HNT比LNT产量分别下降16.7%、9.1%、9.6%和8.0%。从产量构成因子来看,夜间高温处理对四个试验季节千粒重的影响差异显著,HNT比LNT千粒重分别下降0.7 g、0.3 g、0.5g和0.4 g,对2009年雨季结实率的影响差异显著,HNT(69.7%)比LNT(73.8%)下降了4.1%;对2010DS和2011DS每穗粒数的影响差异显著,HN比LNT分别下降了7.2%和7.8%;夜间高温处理对有效穗数影响不显著。
     3夜间高温处理对生长发育和干物质积累的影响
     夜间高温对地上部分干物质积累量、收获指数、生长速率的影响差异显著。四个季节试验干物质积累量HNT比LNT分别下降了9.2%、5.3%、5.5%和7.9%,收获指数分别下降了8.8%、4.0%、4.8%和4.4%,表明夜间高温导致产量降低主要是由于干物质积累量和收获指数的下降;生长速率分别下降了0.8 g.m2.d-1、0.4g.m2.d-1、0.5 g.m2.d-1和0.4 g.m2.d-1,表明夜间高温处理引起生物产量降低主要在于其生长速率降低。除2011DS外,夜间高温处理对其它三个季节试验的株高影响显著,株高分别增长了5.9cm、2.2cm和2.5cm。夜间高温处理对生育期和有效穗数影响不显著。
     4水稻品种对夜间高温的敏感性和耐热性筛选
     水稻品种对夜间高温的敏感性可以依据产量下降幅度、结实率下降幅度和每穗粒数下降幅度进行分类和耐热性筛选。供试36个品种的分类和筛选结果如下:(1)根据产量下降幅度分类:Ciherang、Sambha Mahsuri、IR72等23个品种的产量下降幅度在10%以上,属于对夜间高温敏感性品种,其中Ciherang、Sambha Mahsuri、X21、IR6、PSBRc18等5个品种的产量下降幅度在20%以上,可以划分为对夜间高温高度敏感的品种;其余13个品种的产量下降幅度均在10%以下,属于对夜间高温轻度敏感型的品种,其中7个品种属于在高产量水平下低敏感型,有6个品种属于低水平下低敏感型。(2)根据结实率下降的幅度分类:Saunfi、Gharib、Swarna、Sambha Mahsuri、PSBRc4等12个品种的结实率下降幅度在5.0-15.5%,属于夜间高温敏感型品种,其中Saunfi、Gharib、Swarna、Sambha Mahsuri、PSBRc4结实率下降幅度在10%以上,可以划分为高度敏感型品种;N22、IR26、IR8、IR22、NSICRc112等24个品种的结实率下降幅度在5%以下,属于对夜间高温轻度敏感型品种,其中16个品种属于高结实率水平下的低敏感型,8个品种属于低结实率水平下的低敏感型。(3)按每穗粒数的下降幅度进行分类:Ciherang、PSBRcl8、IR22、IR60、Sambha Mahsuri等20个品种的每穗粒数下降幅度在5.8%-17.4%,属于对温敏感型的品种,其中Ciherang、PSBRc18等12个品种的下降度在10%以上,属于高度敏感型品种;N22、PSBRc4、Saunfi等16个品种的下降幅度均在5%以下,属于对温度反应轻度敏感的品种,其中3个品种属于高每穗粒数水平下的低敏感型,13个品种属于低每穗粒数水平下的低敏感型。
     综合评定,本试验供试品种中PSBRC82、IR24、IR8、OM2517、IR64、IR56、IR20和N22等品种耐夜间高温的能力相对较强,可以作为耐夜间高温的基础材料利用。供试品种按结实率、每穗粒数下降幅度的分类结果和依产量分类的结果基本一致。由于结实率测定相对简易,在生产上更合适做耐夜间高温鉴定的指标。
     5老品种和新品种耐夜间高温的差异
     基因型之间对夜间高温的敏感性的差异显著,不同品种对温度的敏感程度不同。通过对近50年来的品种按育成年代进行分析发现,2000S的品种比1960S的品种产量提高了49.9%,但新品种比老品种在耐夜间高温上并没有优势。现代品种产量潜力大幅度提高,从产量构成因子来看主要在于每穗粒数、生物产量、收获指数和生长速率的提高和改良。
With rapid industry development and frequent human activities, atmospheric carbon dioxide concentration remains rising, as well as the earth surface temperature. It is estimated that the earth surface temperature will have increased by 1.4-5.8℃by the end of this century, while rising speed of night temperature will be 3 times than that of daytime. Rice (Oryza sativa L.) is one of the important food crops grown across the world. Most of the rice is being grown in regions where current temperatures are already close to optimum for its productive. Therefore, any further during increase in mean temperature or period of short episodes of high temperatures during sensitive stages may decrease yields. Thus, identifying and developing high temperature tolerant cultivars will be important to meet the demand for food production in persent and future climate. Field experiments were conducted at IRRI, in the 2009WS,2010DS and WS and 2011DS to determine genotypic variation in sensitivity to warm nighttime temperature.36 varieties originating from and widely grown in different countries were selected according to their sensitivity to heat stress for the four consecutive seasons. These varieties were grown in temperature-controlled field chambers. An increase of 4.1,3.9,4.0 and 3.8℃in night temperature was imposed on the plants from 40 to 120 days after transplanting, starting from 1900h until 0600h. The main results of the study are listed below:
     1. The examination result of field chamber system on the 3 days before transplanting and 36 days after transplanting shows that, the difference of atmosphere humidity, CO2, VPD, and water temperature inside and outside of the chamber is slight; the difference of temperature and humidity is not significant, even in different distribution, different height and different locations of the same chamber. The exhaust funs applied in this study have a good effect on controlling humidity and CO2 concentration.The humidity of high temperature treatment after shutting the exhaust funs decreased by nearly 30% than normal temperature treatment. The air conditioner equipments work to heat or cool down progressively. Keeping temperature stable last for 5h on the 3 days before transplanting and 3h on 36 days after transplanting, respectively, that connects with the atmosphere temperature. The effect of field chamber's comprehensive low-temperature-controlling is better than high temperature. The index of the field chamber system tends to be normal under low temperature controlling.
     2. Significant differences in grain yield between the LNT and HNT treatments were observed in the all experiments, Varietal differences in grain yield were significant in the all three experiments, but there were no statistically significant temperature×variety interactions. Average yield of LNT was 455.6 g m-2,681.3 g m-2,487.6 g and 579.0 g m-2 in 2009WS,2010DS,2010WS and 201 IDS, respectively. Average yield of HNT was 379.3 g m-2,619.2 g m-2,440.7 g m-2 and 532.9 g m-2 in 2009WS,2010DS,2010WS and 2011DS, respectively. Grain yield decreased by 16.7%,9.1%,9.6% and 8.0% than LNT in the four consecutive seasons, respectively. Grain weight and harvest index was significantly higher in LNT than HNT in the all four experiments.Significant difference in grain filling between the LNT and HNT treatments was observed in 2009WS, with values of 73.8% and 69.7% in LNT and HNT, respectively. Significant difference in spikelets per panicle was observed between LNT and HNT in 2010DS and 201 IDS.
     3. Significant differences in total dry weight between the LNT and HNT treatments were observed in the all experiments. Total dry weight decreased by 9.2%,5.3%,5.5% and 7.9% than HNT for the four consecutive seasons, respectively. Varietal differences in growth duration were significant in all four experiments. There are no significant interaction effects on variety and temperature in all four experiments. There were significant effects of temperature on crop growth rate (CGR), CGR decreased by 0.8 g.m2.d-1,0.4 g.m2.d-1,0.5 g.m2.d-1 and 0.4 g.m2.d-1 than HNT for the four consecutive seasons, respectively. Plants in the LNT achieved higher total dry weight because of it's with higher CGR than HNT. Plant height was significantly different between LNT and HNT in the three experiments expect 201 IDS. NT Plants were shorted than HNT by 5.9, 2.2, and 2.5cm for the three consecutive seasons, respectively. Significant differences in panicles number per m2 between HNT and LNT treatments was only observed in 201 IDS, There were no significant effects of temperature on crop phenology.
     4. Classify the 36 varieties by three methods determine genotypic variation in sensitivity to warm nighttime temperature. (1) Classify the varieties by yield decrease range. The yield of experimental varieties decreased -0.8%-26.8%. Ciherang, Sambha Mahsuri, X21, IR6, PSBRc18 and other 18 varieties are sensitive to hight night temperature, their yield decrease range is 10.4%-26.8%. N22, IR20 and other 11 varieties are insensitive to hight night temperature. Among which,7 are insensitive at high-yielding level,6 are insensitive at low-yielding level. (2) Classify the experimental varieties by decrease range of grain filling rate. The grain filling percentage of Saunfi, Gharib, Swarna, Sambha Mahsuri, PSBRc4 and other 7 varieties which are sensitive to high night temperature decreased 5.0-15.5%. N22, IR26, IR8, IR22, NSICRc112 and other 19 varieties are insensitive to high night temperature. Among the 24,16 are insensitive to high-grain filling rate percentage,8 are insensitive to low-grain filling percentage level. (3) Classify by decrease range of spikelets/panicle. The spikelets/panicle of Ciherang, PSBRc18, IR22, IR60, Sambha Mahsuri and other 15 varieties, which are sensitive to temperature, decreased by 5.8%-17.4%. N22, PSBRc4, Saunfi and other 13 varieties are insensitive to high night temperature. Among the 16,3 are insentive at high spikelets/panicle level,13 are insentive at low high spikelets/panicle level. Comprehensively considering yield and yield components, PSBRC82, IR24, IR8, OM2517, IR64, IR56, IR20 and N22 have the ability to resist high night temperature. Screening of breeding materials with more tolerance to high night temperature is an efficient way to the development of new varieties for a warmer world.
     5. Varieties show different sensibilities are sensitive to high nighttime temperature. The analysis of classifying varieties by cultivar years based on recent 50years'research showed, the yield of 2000S' variety improved 49.9% than 1960S. However, the new variety has no advantage in resisting high nighttime temperature over the old variety. Yield potential of the new variety improved greatly in the way of yield components, including spikelets panicle-1, totoal dry weight, harvest index and crop growth rate.
引文
[1]戴云云,丁艳锋,刘正辉等.花后水稻穗部夜间远红外增温处理对稻米品质的影响.中国水稻科学.2009,23(4):414-420.
    [2]白莉萍.C02浓度升高与气候变化对农业的影响研究进展.中国生态农业学报2003,11(2):132-134.
    [3]崔读昌.气候变暖对我国农业生产的影响与对策.中国农业气象.1992,13(2):16-20.
    [4]朱德锋,程式华,张玉屏,等.全球水稻生产现状与制约因素分析.中国农业科学.2010,43(3):474-479.
    [5]黄金英,张小牛,刘陆生等.优质早籼稻新品种农大228耐高温逼熟生理研究初探.植物遗传资源科学.2001,2(4):8-11.
    [6]郭培国,李荣华.夜间高温胁迫对水稻叶片光合机构的影响.植物学报2000,42(7):673-678.
    [7]李木英,熊伟,石庆华,等.高温胁迫对早稻不同品种灌浆结实和稻米品质的影响.江西农业大学学报.2006,28(4):483-487.
    [8]李艳丽.全球气候变化研究初探.灾害学,2004,19(2):87-91.
    [9]李训贞,梁满中.水稻开花时的环境条件对花粉活力和结实的影响.作物学报,2002,28(3):417-420.
    [10]李淑华.气候变暖对病虫害的影响及防治对策.中国农业气象.1993,1:271-283.
    [11]陈国燕,葛幼松.全球气候变暖背景下的农业可持续发展.安徽农业科学.2007,35(9):2764-2766.
    [12]凌启鸿,张洪程,苏祖芳,等.水稻高产群体质量及其优化控制技术探讨,中国农业科学,1993,6:1-12.
    [13]颜振德.杂交水稻高产群体的干物质生产与分配的研究.作物学报,1981,7(1):11-17.
    [14]杨晓光,刘志娟,陈阜.球气候变暖对中国种植制度可能影响.Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析.中国农业科学.2010,43(2):329-336.
    [15]王建源,薛德强,邹树峰.气候变化对山东省农业的影响.资源科学.2006,28(1):163-168.
    [16]王馥棠.近十年来我国气候变暖影响研究的若干进展.应用气象学报.2002,6: 116-127.
    [17]魏金连,潘晓华.不同生育阶段夜温升高对双季水稻物质生产与养分吸收的影响.生态学杂志,2009,28(12):2521-2525.
    [18]魏金连,潘晓华.夜间温度升高对双季水稻秧苗素质的影响.中国农学通报.2009,14:134-137.
    [19]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响.江西农业大学学报.2008,30(3):427-432.
    [20]魏金连,潘晓华,强辉.夜间温度升高对双季早晚稻产量的影响.生态学报.2010,30(10):2793-2798.
    [21]魏金连,潘晓华,邓强辉.不同生育阶段夜温升高对双季水稻产量的影响.应用生态学报.2010,2(21):331-337.
    [22]张志强.国际科学界跨世纪的重大研究主题-国际全球变化研究实施十年进展与现状.地学前缘.1997,4(1-2):255-262.
    [23]张桂莲,陈立云,张顺堂等.抽穗开花期高温对水稻剑叶理化特性的影响.中国农业科学2007,40(7):1345-1352.
    [24]郑小林,董任瑞.水稻热激反应的研究:高温对晚稻幼苗叶片叶绿体Hill反应及超微结构的影响.湖南农业大学学报.1998,24(5):351-354.
    [25]Abdui Razack Mohammed, Lee Tarpley. Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European journal of agronmy.2010,33:117-123.
    [26]Alberto AMP,Ziska LH.Cervancia CR,Manalo PA.The Influence of Increasing Carbon Dioxide and Temperature on Competitive Interactions Between a C3 Crop,Rice (Oryza sativa) and a C4 Weed (Echinochloa glabrescens).Australian Journal of Plant Physiology.1996,23:795-802.
    [27]Albritton, D.L., et al., of Book:Climate Change 2001:The Scientific basis. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.2001:Cambridge University Press.
    [28]Allen LH, Carbon dioxide increase:Direct impacts on crops and indirect effects mediated through anticipated climatic changes, Physiology and Determination of Crop Yield. ASA,1993.
    [29]Allen Jr, L.H., et al., Field techniques for exposure of plants and ecosystems to elevated CO2 and other trace gases.Critical reviews in plant sciences (USA),1992.
    [30]Alward R.D., Detling J.k., Milchunas, D, G. Grassland vegetation changes and nocturnal global warming. Science.1999,283:229-231.
    [31]Amthor JS. Plant respiratory responses to elevated CO2 partial pressure, American Society of Agronomy,1997.
    [32]Amthor S.Jeffrey. Perspective on the relative insignificance of increasing atmospheric CO2 concentration to crop yield. Field crops research.1998,58 (2):109-127.
    [33]Andaya V. and Mackill D. QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross.Theoretical and Applied Genetics.2003,106(6):1084-1090.
    [34]Andaya V.C, Mackill D.J. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J. Exp.Bot.2003,54 (392):2579-2585.
    [35]Annamalai P, Yanaghiara S. Identification and characterization of a heat stress induced gene in cabbage encodes a kunitz type protease inhibitor. J Plant Physiol 1999,155:226-233.
    [36]Arft A.M. Response patterns of tundra plant species to experimental warming:a meta-analysis of the International tundra experiment. Ecological Monographs.1999, 69:491-512.
    [37]Arun Kumar Tewari, Baishnab Charan Tripathy. Temperature-stress-induced impairment of Chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology.1998,117:851-858.
    [38]Baker.T.Jeffrey. Yield responses of southern US rice cultivars to CO2 and temperature. Agricultural and forest meteorology.2004,122:129-137.
    [39]Beier Claus, Emmett Bridget, Gundersen Per.Novel approaches to study climate change effects on terrestrial ecosystems in the Field:drought and passive nighttime warming. Ecosystems.2004,7:583-597.
    [40]Baker J.T, Allen L.H, Boote K.J, et al. Growth and yield responses of rice to carbon dioxide concentration. J.Agric.Sci.1990,115:313-320.
    [41]Baker J.T., Allen Jr L.H. and Boote K.J., Temperature effects on rice at elevated CO2 concentration, J. Exp. Botany.1992 (43):959-964.
    [42]Baker.T. Jeffrey Yield responses of southern US rice cultivars to CO2 and temperature.Agricultural and Forest Meteorology.2004,122:129-137.
    [43]Battistil S.David, Naylor L.Rosamond.Historical Warnings of Future Food Insecurity with unprecedented Seasonal Heat. Science.2009,323:240-244.
    [44]Bowes GGrowth at elevated CO2:photosynthetic responses mediated through Rubisco, Plant, Cell & Environment.1991,14(8):795-806.
    [45]Cassman K.G.Ecological intensification of cereal production systems:yield potential, soil quality, and precision agriculture. Proc National Acad Sci (USA).1999,96: 5952-5959.
    [46]Chapin FS III, Shaver GR, Giblin AE,Nadelhoffer KJ,Laundre JA.Responses of arctic tundra to experimental and observed changes in climate. Ecology.1995,76:694-711.
    [47]Chang T.T, Loresto.GC, T oole C.O.Strategy and methodology of breeding rice for drought-prone areas.IRRI.1982,217-244.
    [48]Cheng Weiguo,Sakai Hidemitsu,Yagi Kazuyuki et al.Combined effects of elevated [CO2] and high temperature on carbon assimilation,nitrogen absorption,and the allocations of C and N by rice (Oryza sativa L.). Agricultural and forest meteorology. 2010,150:1174-1181.
    [49]Cheng Weiguo, Sakai Hidemitsu, Yagi Kazuyuki et al. Interactions of elevated [CO2] and night temperature on rice growth and yield. Agricultural and Forest Meteorology. 2009,149,1:51-58.
    [50]Cooper N.T.W, Siebenmorgen T.J, Counce P.A. et al. Explaining rice milling quality variation using historical weather data analysis.Cereal Chem.2006,83(4):447-450.
    [51]Counce P.A, Bryant R.J, Bergman C.J.et al.Rice milling quality, grain dimensions, and starch branchingas affected by high night temperatures. Cereal Chem.2005,82(6): 645-648.
    [52]Cutler JM, Steponkus PL, Wach MJ, Shahan KW. Dynamic aspects and enhancement of leaf elongation in rice. Plant Physiol.1980,66:147-152.
    [53]Dat J.F, Foyer C.H, Scott I.M.Changes in salicylic acid and antioxidants during induction of thermotolerance in mustard seedlings. Plant Physiol.1998,118: 1455-1461.
    [54]Dunne, Jennifer A., Scott R.Saleska, Marc L.Fischer et al.Integrating experimental and gradient methods in ecological climate change research. Ecology.2004, 85:904-916.
    [55]Easterling R David.,Briony Horton,Philip D.Jones,et al.Maximum and Minimum Temperature Trends for the Globe.Science.1997,277:364-367.
    [56]Easterling R.David, Wallis W.R.Trevor, Lawrimore H.Jay. Effects of temperature and precipitation trends on U.S.drought.Geophysical Research letters.2007,34.
    [57]Elizabeth A.Ainsworth, Donald R.Ort.How do we improve crop production in a warming world? Plant physiology.2010,154:526-530.
    [58]Evansn L.T, Fischer R.A.Yield potential:its definition, measurement, and significance. Crop Science.1999,39:1544-1551.
    [59]Ewert.Frank. Modelling Plant Responses to Elevated CO2:How Important is Leaf Area Index? Annals of botany.2004,93(6):619-627.
    [60]Faferia N.K,Baligar V.C,Jones C.A,et al.Growth and mineral nutrition of field corp.Marcel Dekker, Inc.New York:NY.1991,159-197.
    [61]Fangmeier, A., J.Gnittke, and L.Steubing, Transportable open-tops for discontinuous fumigations.Microclimate and plant growth in open-top chambers, Air Pollution Research Report.5:102-112.
    [62]Fischer K.S.Foreword.In:Balasubramanian V et al. eds., Resource Management in Rice System:Nutrients.P.ix.Dordrecht:Kluwer Academic Publishers.1999.
    [63]Foyer C.H, Lopez-Delgado H, Dat J.F, Scott I.M.Hydrogen peroxide and glutathione associated mechanisms of acclimatory stress tolerance and signalling. Physiol Plant 1997,100:241-254.
    [64]Francesco N.Tubiello and Frank Ewert.Simulating the effects of elevated CO2 on crops:approaches and applications for climate change.European Journal of Agronomy. 2002,18(1-2):57-74.
    [65]Gaius R.Shaver, Josep Canadell, F.S.Chapin III, et al. Terrestrial ecosystems:a conceptual framework for Analysis. BioScience.2000,50(10):871-883.
    [66]Garrett K.A, Dendy S.P, Frank E.E, Rouse M.N, and Travers S.E.Climate Change Effects on Plant Disease:Genomes to Ecosystems Annual Review of Phytopathology. 2006,44:489-509.
    [67]Grist D.H.The origin and history of rice.1986, In D.H.Girst (ed) Rice Longman, Singapore.
    [68]Gurley WB.HSP101:a key component for the acquisition of thermotolerance in plants.Plant Cell.2000,12:457-459
    [69]Harte J, Torn MS, Chang F.R et al. Global warming and soil microclimate:Results from a meadow-warming experiment. Ecological Applications.1995,5:132-150.
    [70]Hartley A.E, Neill C, Melillo J.M, Crabtree R et al. Plant performance and soil nitrogen mineralization in response to simulated climate change in subarctic dwarf shrub heath.Oikos.1999,86:331-343.
    [71]Harte J, Shaw R. Shifting dominance within a montane vegetation community: Results of a climate-warming experiment. Science.1995,267:876-880.
    [72]Horie T, Baker J.T, Nakagawa H, Matsui T and Kim H.Y. Crop ecosystem responses to climate change:rice.In:K.R.Reddy and H.F. Hodges,Editors, Climate Change and Global Crop Productivity, CAB International, Wallingford,Oxon, UK.2000,81-106.
    [73]Horie,T, Matsui,T., Nakagawa,H., and Omasa,K. Effect of elevated CO2 and global climate change on rice yield in Japan.In:Omasa, K.,Kai,K.,Toda,H.,Uchijima,Z.,and Yoshino,M.,eds. Climate Change And Plants In East Asia.Tokyo:Springer-Verlag. 1996,39-56.
    [74]Houghton J.T.et al. (eds) in Climate Change 2001:The Science of Climate Change.2001, Cambridge Univ. Press, New York.
    [75]Howarth CJ, Ougham HJ.Gene expression under temperature stress. New Phytol. 1993,125:1-26.
    [76]IPCC.Climate change 2007:the physical science basis:contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge:Cambridge University Press.2007.
    [77]IPCC. IPCC (Intergovernmental Panel on Climate Change),2001. Climate Change 2001:The Scientific Basis. Cambridge Univ. Press, Cambridge.
    [78]Inouchi N,Ando H,Asaoka M,Okuno,et al.The effect of environmental temperature on distribution of unit chains of rice amylopectin.Starch.2000,52:8-12.
    [79]Ineson P, Benham DG, Poskitt J,et al. Effects of climate change on nitrogen dynamics in upland soils.2.A soil warming study. Global Change Biol.1998,4:153-61.
    [80]Ineson P.Taylor K,Harrison AF,et al.Effects of climate change on nitrogen dynamics in upland soils.1.A transplant approach.Global Change Biol 1998,4:143-152.
    [81]IRRI.World rice statistics 1985. IRRI, Manila, Philippines,1986.
    [82]IRRI.Rice almanac.2nd ed.Manila:International Rice Research Institute.1997, 187-196.
    [83]Ismail, A.M.and A.E.Hall.Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop science.1999.39:1762-1768.
    [84]Jackson M.B, Colmer T.D.Response and Adaptation by Plants to Flooding Stress. Annals of botany.2005,96(4):501-505.
    [85]Jagadish S.V.K, Craufurd P.Q and Wheeler T.R.High temperature stress and spikelet fertility in rice (Oryza sativa L.).J.Exp.Botany.2007,58:1627-1635.
    [86]Jay M.Cutler, Peter L.Steponkus, Michael J.Wach et al. Dynamic Aspects and Enhancement of Leaf Elongation in Rice. Plant Physiology.1980,66:147-152.
    [87]Jeffrey S.Dukes, Jennifer Pontius, David Orwig et al.Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America:What can we predict? Canadian journal of forest research.2009, 39(2):231-248.
    [88]Jennings P.R., Coffman W.R and Kauffman H.E. Rice Improvement. IRRI, Los Banos, Philippines.1979.
    [89]Jodari F, Linscombe S.D.Grain fissuring and milling yields of rice cultivars as influenced by environmental conditionals. Crop science.1996,36:1496-1502.
    [90]John T.Kliejunas,Brian W.Geils,Jessie Micales et al.Review of literature on climate change and forest diseases of western north America.. United states department of agriculture, pacific southwest research station, General technical report,2009.
    [91]Jonasson S, Michelsen A, Schmidt IK et al. Responses in microbes and plants to changed temperature, nutrient and light regimes in the arctic. Ecology.1999,80: 1828-1843.
    [92]Jurivich D.A, Sistonen L, Kroes R.A, Morimoto RI. Effect of sodium salicylate on the human HS response. Science.1992,255:1243-1245.
    [93]Kanno Keiichi., Mae Tadahiko, Makino Amane. High night temperature stimulates photosynthesis, biomass production and growth during the vegetative stage of rice plants.2009,55:124-431.
    [94]Kanno Keiichi and Makino Amane.Increased grain yield and biomass allocation in rice under cool night temperature. Soil Science and Plant Nutrition.2010,56:412-417.
    [95]Karl R Thomas, George Kukla, Vyacheslav N.Razuvayev, et al.Global warming: Evidence for asymmetric diurnal temperature change.Geophysical Research Letters. 1991,18(12):2253-2256.
    [96]Karl R Thomas., Philip D.Jones, Richard W.Knight, et al.A new perspective on recent global warming:Asymmetric trends of daily maximum and minimum temperature. Bulletin of the American Meteorological Society.1993,1007-1023.
    [97]Keeling, P.L., Banisadr,R., Barone, L.et al. Effect of temperature on enzymes in the pathway of starch biosynthesis in developing wheat and maize grain. Plant Physiology.1994,21:807-827.
    [98]Kerr A Richard..Millennium's hottest decade retains its title, for now. Science.2005, 307 (5711):828-829.
    [99]Khush S Gurdev.. What it will take to feed 5.0 Billion rice consumers in 2030. Plant Molecular Biology.2005,59:1-6.
    [100]Kimball B.A, Kobayashi K.and Bindi M. Responses of agricultural crops to free-air CO2 enrichment Advances in Agronomy.2002,77:293-368.
    [101]Kimball, B.A., et al., Infrared heater arrays for warming ecosystem field plots. Global Change Biology,2008.14(2):309-320.
    [102]Kimball,B.A.and M.M.Conley,Infrared heater arrays for warming field plots scaled up to 5-m diameter.agricultural and forest meteorology,2009.149(3-4):721-724.
    [103]Kim H.Y., Lieffering M., Kobayashi K., et al. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Res.2003, 83:261-270.
    [104]Knight H, Knight M.R Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 2000, 51:1679-1686.
    [105]Larkindale J, Knight MR. Prodection against heat stress induced oxidative damage in A rabi dopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol,2002,128:682-695.
    [106]Leopold AC, Kriedemann PE. Plant growth and development.2nd edn. McGraw-Hill: New York, London.1975,545.
    [107]Liu Hongjiang, Yang Lianxin, Wang Yulong, Huang Jianye. Yield formation of CO2-enriched hybrid rice cultivar Shanyou 63 under fully open-air field conditions. Field crops research.2008,108,1:93-100.
    [108]Lloyd T.Evans. Steps towards feeding the ten billion. Plant Production Science.1999, 2(1):3-9.
    [109]Lobell,D.B.,Ortiz-Monasterio,J,I.,Asner,G.P,Matson,P.A.,Naylor,R.L.,Falcon,W.P.An alysis of wheat yield and climatic trends in Mexico.Field crops Res.2005,94: 250-256.
    [110]Lobell B. David, Burke B. Marshall, Claudia Tebaldi, et al. Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science,2008,319:607-610.
    [111]Long S.P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations:Has its importance been underestimated? Plant, Cell & Environment,1991,14(8):729-739.
    [112]Lukewille A, Wright RF.Experimentally increased soil temperature causes release of nitrogen at a boreal forest catchment in southern Norway. Global Change Biol.1997, 3:13-21.
    [113]Luxmoore RJ, Hanson PJ, Beauchamp JJ,et al, Passive nighttime warming facility for forest ecosystem research. Tree physiology.1998,18:615-623.
    [114]Mackill D.J, Coffman W.R, Rutger J.N. Pollen shedding and combining ability for high temperature tolerance in rice. Crop Science.1982,22:730-733.
    [115]Maggs R, Ashmore M.R. Growth and yield responses of Pakistan rice (Oryza sativa L.) cultivars to O3 and NO2. Environ Pollut.1998,103:159-170.
    [116]Mark Peplow. Look forward to a darker world. Nature.2004.
    [117]Marion G.M, et al. Open-top designs for manipulating field temperatures in high-latitude ecosystems. Global Change Biology 3 (Supplement 1).1997,20-32.
    [118]Matsui,T., K.Omasa, and T. Horie, High temperature-induced spikelet sterility of Japonica rice at flowering in relation to air temperature,humidity and wind velocity conditions. Jpn.J. Crop Sci,1997.66(3):449-455.
    [119]Matsui Tsutomu, Ofelia S.Namuco, Lewis H.Ziska, et al. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Research.1998, 55(1-2):189-197.
    [120]Matsui Tsutomu, Omasa Kenji. Rice (Oryza sativa L.) Cultivars Tolerant to High Temperature at Flowering:Anther Characteristics Annals of botany,2002,89(6): 683-687.
    [121]Matsui T, Omasa K, and Horie T. The difference in sterility due to high temperatures during the flowering period among japonica rice varieties. Plant Production Science 2001,4:90-93.
    [122]Matsui T, Namuco O.S, Ziska L.H and Horie T. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res.1997,51:213-219.
    [123]Matthews R.B, Kropff M.J, Horie T, Bachelet. Simulating the impact of climate change on rice production in Asia and evaluating options for adaptation. Agricultural Systems.1997,54(3):399-425.
    [124]Mohammed A.R, Tarpley L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agricultural and Forest Meteorology.2009,14:999-1008.
    [125]Morita Satoshi, Yonemaru Jun-Ichi, Takanashi Jun-Ichi. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Annals of botany.2005,95(4):695-701.
    [126]Morita S, Shiratsuchi H, Takanashi J, Fujita K. Effects of high temperature on ripening in rice plants-analysis of the effects of high night and high day temperatures applied to the panicle and other parts of the plant. Jpn.J.Crop Science.2004,73:77-83.
    [127]Mackill D.J, Coffman W.R, Rutger J.N. Pollen shedding and combining ability for high temperature tolerance in rice. Crop Science.1982,22:730-733.
    [128]Newman J E. Climate Change Impact on the Growing Season of the North American Corn Belt. Biometeorology.1980,7 (2):128-1421.
    [129]Nguyen H.T, Chandra Babu R, lum A. Breeding for drought resistance in rice. Physiology and molecular genetics considerations. Crop cience.1997,5:1426-1434.
    [130]Nijs,F. Kockelbergh, H.Teughels.et al. Free air temperature increase (FATI):A new tool to study global warming effects on plants in the field. Plant, Cell and Environment.1996,19:495-502.
    [131]Norby R.J, Edwards N.T, Riggs J.S et al. Temperature-controlled open-top chambers for global change research. Global Change Biology.1997,3:359-367.
    [132]Normile D. Reinventing rice to feed the world.Science.2008,321:330-333.
    [133]Ohe I, saitoh K., Kuroda T. Effects of high temperature on growth, yield and dry matter production of rice grown in the paddy field. Plant production science.2007.10: 412-422.
    [134]Perry J S. Understanding Our Own Planet:An Overview of Major International Scientific Activities. ICSU Secretariat.1993.
    [135]Peng S, Khush G S, Cassman K G. Evaluation of a new plant ideotype for increased yield potential. In:Cassman, K.G. (Ed.). Breaking the Yield Barrier:Proceedings of a Workshop on Rice Yield Potential in Favourable Environments. International Rice Research Institute, Los Banos, Philippines,1994,5-20.
    [136]Peng S B, Yang J C. Current status of the research on high-yielding and high efficiency in resource use and improving grain quality in rice. Chinese Journal Rice Science,2003,17(3):275-280.
    [137]Peng S,Cassman K G, Virmani S S, Sheehy J E, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci.1999,39:1552-1559.
    [138]Peng S, Cassman K.G. Upper threshholds of nitrogen uptake rates and associated nitrogen fertilizer efficiencies in irrigated rice.Agronomy Journal.1998,90:178-185.
    [139]Peng S., Huang J, Sheehy J.E, Laza R.C, Visperas R.M, Zhong X. et al. Rice yields decline with higher night temperature from global warming, Proc. Nat. Acad. Sci. U.S.A.2004,101:9971-9975.
    [140]Peng S, Khush G S, Virk P,Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res.,2008,108:32-38.
    [141]Peterjohn WT, Mellillo JM, Bowles FP, et al. Soil warming and trace gas fluxes-experimental-design and preliminary flux results. Oecologia.1993,93:18-24.
    [142]Peterjohn W.T, Melillo J.M, Steudler PA et al. The response of trace gas fluxes and N availability to elevated soil temperatures. Ecological Applications.1994,4:617-625.
    [143]Polley.H W, Johnson.H B, Marino.B D. Mayeux.HS. Increase in C3 plant water-use efficiency and biomass over Glacial to present CO sub (2) concentrations. Nature. 1993,361(6407):61-64.
    [144]Prasad P.V.V, Boote K.J, Allen L.H, Sheehy J.E and Thomas J.M.G, Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research.2006,95(2-3):398-411.
    [145]Prasad Vara, P.V, K.J.Boote, Allen L, Sheehy J.E, and Thomas J.. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research.2006,95:398-411.
    [146]Qian Weihong, Zhu Yafen, Climate changes in china from 1980 to 1998 and it's impaction the environmental condition. Climate changes.2001,50 (4):419-444.
    [147]Rasmussen L, Beier C, Bergstedt A. Experimental manipulations of old pine forest ecosystems to predict the potential tree growth effects of increased CO2 and temperature in a future climate. For Ecol Manage.2002,158:179-88.
    [148]Reddy, K.R., et al., Soil-Plant-Atmosphere-Research (SPAR) facility:A tool for plant research and modeling. Biotronics,2001.30:27-50.
    [149]Roberts R. H. The role of night temperature in plant performance. Science.1943, 98(2542):265.
    [150]Rosenzweig C, Parry M.L.Potential Impact of Climate Change on World Food Supply. Nature.1994,367:133-138.
    [151]SAS Institute,2003. SAS Version 9.1.2 (?) 2002-2003.SAS Institute, Inc., Cary, NC.
    [152]Satake T. High temperature injury. In, Matsuo T, et al., eds. Science of the Rice Plant, Vol.2. Physiology. Food and Agricultural Policy Research Centre, Tokyo.1995, 805-812.
    [153]Sakai H, Hasegawa T. and Kobayashi K., Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration, New Phytol.2006,170:321-332.
    [154]Sakai Hidemitsu, Yagi Kazuyuki, Kobayashi Kazuhiko, et al. Rice carbon balance under elevated CO2. New Phytologist.2001,150 (2):241-249.
    [155]Sanders D, Brownlee C, Harper JF.Communicating with calcium. Plant Cell.1999, 22:691-706.
    [156]Sasaki H, Hara T, Ito S. et al. Effect of free-air CO2 enrichment on the storage of carbohydrate fixed at different stages in rice (Oryza sativa L.). Field Crops Res.2007, 100:24-31.
    [157]Satake T. High temperature injury. In, Matsuo T, et al., eds. Science of the Rice Plant, Vol.2. Physiology. Food and Agricultural Policy Research Centre, Tokyo.1995, 805-812.
    [158]Satake, T., and S.Yoshida.. High temperature induced sterility in indica rices at flowering. Japanese Journal of Crop Science.1978,47:6-17.
    [159]Sato K, Takahashi M. The development of rice grains under controlled environment.1.The effects of temperature, its daily range and photoperiod during ripening on grain development. Toboku J Agric Res.1971,22:57-68.
    [160]Seshu, DV, and FB Cady.Response of rice to solar radiation and temperature estimated from international yield trials. Crop Sci.1984,24:649-654.
    [161]Shaver GR, Johnson LC, Cades DH, Murray G et al. Biomass accumulation and CO2 flux in three Alaskan wet sedge tundras:Responses to nutrients, temperature and light.Ecological Monographs.1998,68:75-99.
    [162]Singeletary, G.W., Banisadr, R., and Keeling, P.L.Heat stress during grain filling in maize:Effects on carbohydrate storage and metabolism.Plant Physiology.1994,21: 829-841.
    [163]Suzuki S, Moroyu H. Effect of high night-temperature treatment on the growth of rice plant with special reference to its nutritional condition. Bull cbugoku agric exp.stn.1962,8:269-290.
    [164]Tao Fulu,Yokozawa Masayuki,Xu Yinlong,et al,Climate changes and trends in phenology and yields of field crops in china,1981-2000.Agricultural and forest meteorology.2006,138:82-92.
    [165]Tao Fulu, Yokozawa Masayuki, Hayashi Yousay et al, Changes in agricultural water demands and soil moisture in china over the last half-century and their effects on agricultural production. Agric.For. Metorol.2006,118:251-261.
    [166]Tashiro T., and Wardlaw I. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice. Aust. J. Agric.Res.1991,22: 485-496.
    [167]Tashiro T and Wardlaw IF.The effect of high temperature on the accumulation of dry matter, carbon and nitrogen in the kernel of rice, Australian journal of plant physiology 18(3)259-265.
    [168]Tebaldi Claudia, Hayhoe Katharinec, Julie M.Arblaster, et al. Going to the extremes an intercomparison of model-simulated historical and future changes in extreme events.Climate change.2006,79(3-4):185-211.
    [169]Thomas, R.B. and B.R.Strain, Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. Plant Physiology, 1991.96(2):627.
    [170]Tian Xiaohai, Luo Haiwei, Zhou Hengduo et al. Research on Heat Stress of Rice in China:Progress and Prospect.
    [171]Tingey,D.T.,D.L.Phillips, and D.M.Olszyk, A versatile sun-lit controlled-environment facility for studying plant and soil processes. Journal of Environmental Quality,1996. 25(3).
    [172]Van Breemen N, Jenkins A, Wright RF, et al. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project). Ecosystems.1998, 1:345-51.
    [173]Van Oijen, M., et al., Do open-top chambers overestimate the effects of rising CO2 on plants? An analysis using spring wheat. Global Change Biology,1999.5(4): 411-421.
    [174]Vergara B.S, Jackson B, De Datta S.K.Deep water rice and its response to deep water stress. IRRI.1976,301-320.
    [175]Vose R.S., Easterling D.R., and Gleason B. Maximum and minimum temperature trend for the globe:An update through 2004. Geophysical Research Letters.2005, 32(23):Art. No. L23822.
    [176]Wan S, Luo Y, Wallace LL. Changes in microclimate induced by experimental warming and clipping in tallgrass prairie. Global Change Biol.2002,8:754-68.
    [177]Wassmann R, Dobermann A. Direct and indirect consequences of global warming on rice growing regions in Asia. Cool rice for a warming world. International workshop, Wuhan,2007,1-4.
    [178]Welch R.Jarrod, Vincent R.Jeffrey. Maximilian Auffhammer et al. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperature. Nat.Acad.Sci.U.S.A 2010,107(33):4562-14567.
    [179]Wilhelm E.P, Mullen R.E, Keeling P.L, et al. Heat stress during grain filling in maize:Effects on kernel growth and metabolism. Crop Science.1999,39(6): 1543-1635.
    [180]Yang Jianchang, Peng Shaobing, Zhang Zujian Grain and Dry Matter Yields and Partitioning of Assimilates in Japonica/Indica Hybrid Rice. Crop science.2002, 42(3):766-772.
    [181]Yang L.X, Huang J.Y, Yang H.J, et al. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Res.2006,98:12-19.
    [182]Yang W.H,. Kwak K S,. Choi K J, et al. Overview on the climate change and rice in Korea. Cool rice for a warming world.International workshop, Wuhan,2007,48-50.
    [183]Ying Jifeng, Peng Shaobing, Yang Gaoqun. Comparison of high-yield rice in tropical and subtropical environments:Ⅱ. Nitrogen accumulation and utilization efficiency. Field Crops Research.1998,57(1):85-93.
    [184]Yoshida S, and Hara T. Effects of air temperature and light on grain filling of an indica and a japonica rice (Oryza sativa L.) under controlled environmental conditions. Soil Science and plant Nutr.1997,23:93-107.
    [185]Yoshida S, Satake T, and Mackill D.J.High temperature stress in rice. IRRI, Los Banos, Philippines.1981, IRRI Res. Paper Series 67.
    [186]Yoshida S. Fundamentals of Rice Crop Science (International Rice Research Institute, Los Banos, Philippines.1981.
    [187]Yoshida S, Satake T, Mackill D.S. High-temperature stress in rice study conducted at IRRI, Philippines. IRRI Research Paper Series.67.
    [188]Yoshida S. Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment, Soil Sci. Plant Nutr.1973,19:299-310.
    [189]Yoshida S. Effects of CO2 enrichment at different stages of panicle development on yield components and yield of rice (Oryza sativa L.), Soil Sci. Plant Nutr.1973: 311-316.
    [190]Yun, S H, J.N.Im, Lee J.T., K.M.Shin, and Hwang K-H.. Climate change and coping with vulnerability of agricultural productivity. Korean Journal of Agricultural & Forestry Meteorology.2001,3(4):220-237.
    [191]Zhai Panmao, Sun Anjian, Ren Fumin, et al. Changes of climate extremes in china. Climate change.1999,42:203-218.
    [192]Ziska L.H., Manalo P.A. and Ordonez R.A. Intraspecific variation in the response of rice (Oryza sativa L.) to increased CO2 and temperature:growth and yield response of 17 cultivars, J.Exp. Botany.1996 (47):1353-1359.
    [193]Zhu Kezheng. A preliminary study on the climatic fluctuations during the last 5000 years in China, Scien-tia Sinica.1973,16:226-256.
    [194]Miah M N H, Yoshida T, Yamamoto Y, Nitta Y. Characteristics of dry matter production and partitioning of dry matter in high yielding semi-dwarf indica and japonica-indica hybrid rice varieties. Jpn.J.Crop. Sci.1996,65:672-685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700