用户名: 密码: 验证码:
茶树(Camellia sinensis L.)对铅的吸收累积及耐性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类的大量开采和使用导致Pb成为环境中广泛存在的重金属污染物,对自然环境和人体健康构成严重威胁。茶作为消耗量仅次于水的无酒精型饮料,由于具有较高的营养价值及保健功效颇受世界各国人民的喜爱。Pb因其独特的特性已经作为茶叶中主要的重金属污染物而成为研究热点。因此开展茶树Pb的吸收、累积及耐性机制研究,对控制成品茶Pb污染加剧的趋势、促进我国茶产业良性发展和保障消费者身体健康都具有十分重要的意义。
     本研究通过茶园实际调查和试验室模拟水培试验深入探讨茶树对Pb的吸收和耐性机制,揭示茶树Pb毒害效应的品种差异,根系对Pb的吸收、累积、分布机理,Pb在茶树体内的化学形态及亚细胞分布的品种差异,根细胞壁在Pb累积中的作用,Pb及其他元素在茶树不同器官组织的微区分布特征,主要研究结果如下:
     (1)明确了不同品种茶树铅吸收累积的品种差异及影响因素。同一生长环境中不同品种茶树对Pb的累积、分布表现出差异,其分布存在三种规律。茶树根际土中的Pb主要以残渣态和铁/锰氧化物结合态为主,碳酸盐结合态次之,根际土中可交换态Pb与碳酸盐结合态Pb是茶树可利用Pb的主要形态。不同品种茶树根际土Pb形态、pH值、有机质含量存在显著差异,是影响茶树Pb吸收、累积的重要因子。不同品种茶树成熟叶片对Pb的吸附能力存在一定差异。
     (2)两个品种茶树在Pb的耐性方面存在强弱之分。在同一铅胁迫条件下,龙井43(LJ)和迎霜(YS)根系形貌、植株生长,叶片净光合速率大小,根系活力、根系质膜透性均表现出一定的差异。Pb胁迫导致根细胞细胞核溶解消失,线粒体脊突部分膨胀,细胞膜内陷,细胞壁增厚;导致茎细胞内叶绿体变形,基粒片层消失,类囊体紊乱,出现大的脂质颗粒;导致叶细胞叶绿体结构发生明显劣变,出现叶绿体双层膜破裂,基粒片层结构排列紊乱、基质类囊体肿胀等现象。但Pb胁迫对两个品种茶树叶细胞结构的影响存在差异,Pb不溶沉积物在根组织细胞中的形态也存在差异。YS品种植株对Pb毒害的耐受能力要强于LJ品种。
     (3)两个品种茶树根细胞壁对Pb的吸附具有不同特征。傅里叶红外光谱研究表明Pb主要与细胞壁纤维素、半纤维素和木质素的羧基官能团发生结合作用,同时根细胞壁上的蛋白质和果胶质也可能参与了Pb的结合。LJ根细胞壁中羧基在Pb吸附中的贡献作用较大,YS根细胞壁中氨基在Pb吸附中的贡献作用较大,果胶质在两个品种茶树根细胞壁Pb吸附中的作用相当。两个品种茶树根细胞壁上羧基(-COOH)、氨基基团(-NH2)和蛋白质百分含量存在差异。
     (4)两个品种茶树对Pb的吸收及定位分布存在一定差异。LJ和YS不同器官组织中Pb含量的分布表现出相同规律:根>茎>新叶>老叶,但两个品种新叶Pb含量的变化存在差异,新根和主根对Pb的吸收能力也存在差异。根系对Pb不存在主动吸收过程,但根系对Pb的吸收与Ca离子通道密切相关,Ca离子的介入对LJ和YS根系Pb的吸收产生了抑制作用。两个品种茶树根组织中的表皮层和内皮层区域Pb浓度较高,而皮层与维管束区域Pb含量较低,但在内皮层和表皮层区域Pb含量的高低分布上两个品种存在差异。两个茶树品种根组织Pb的亚细胞百分含量分布表现出相同规律:细胞壁组分>细胞器组分>可溶物质组分>细胞膜组分,但不同亚细胞组分Pb的百分含量在品种间存在差异。根组织中Pb的化学结合形态主要以FNaCl提取态、FHAc提取态为主,但各形态Pb的百分含量水平同样在两个品种间存在差异。透射电镜加能谱分析结果表明在LJ和YS根细胞壁、细胞间隙上的大量黑色物质除含Pb外还含有较多的P、O,推测这些沉积物可能是磷酸盐沉淀,如Pb5(PO4)3OH, Pb3(PO4)2, Pb(H2PO4)2等。
     (5)Pb胁迫影响了根组织对其它元素的吸收。与对照处理相比Pb胁迫显著促进了LJ和YS根系组织对Cu和Fe元素的吸收,但却显著抑制了Mn和Mg元素的吸收,对Ca、Zn元素的吸收两个品种则表现出差异。Fe在YS根表皮层的含量相对明显高于根部的其他部位,而Ca在内皮层和维管柱的交界处含量最高。LJ根横切面上Ca、Fe的分布则无明显规律。正常水培条件下,LJ和YS新叶中Fe、K、Mn元素含量最高的区域为靠近近轴面表皮的叶肉组织(栅栏组织),而Pb胁迫下,这种分布现象遭到弱化。
Lead has been regarded as one of the widespread heavy metal pollutants in the environment because of its large-scale exploitation and use, which poses a serious threat to both the natural environment and human health. High in nutritional value and beneficial to human health, tea has won the great popularity all over the world. As a non-alcoholic beverage, tea consumption is only second to water. Pb, with its unique characteristics, has become a research hotspot as the main heavy metal pollutant in the tea. Therefore, the research about the mechanisms of lead uptake/accumulation and tolerance in tea plants is of great significance for controlling the tea Pb pollution, promoting the healthy development of the tea industry as well as guaranteeing the consumers'health.
     In this study, we made a further probe into the mechanisms of Pb uptake and tolerance in tea plants, with the aim to reveal the variety differences in the Pb toxic effect and Pb chemical forms and subcellular distribution in tea plant, the mechanism of Pb absorption, distribution and accumulation in different tea plant organs, and the role of root cell walls in Pb accumulation and the micro-distribution of both Pb and other elements in different tea plant organs. The main results are as follows:
     (1) It was made clear for characteristics of lead accumulation in differernt tea plant varieties and the factors influencing lead absorption. Different varieties of tea plants growing in the same environment showed some differences in Pb accumulation and distribution. There were three patterns of Pb distribution in different organs among the eight varieties. The rhizosphere speciation of Pb was similar for all tea plant varieties, with Pb being predominantly in the residual and oxide-bound forms, followed by carbonate-bound forms. Analyses indicate that exchangeable and carbonate-bound Pb fractions appeared to be readily bioavilable for tea plants. There were significant differences in lead chemical speciation, soil pH, organica matter content between different tea plant varieties, which were important factors influencing lead uptake and accumulaton by tea plant. Some certain differences were also found in Pb absorption capacitiy of mature leaves in different tea plant varieties.
     (2) Under the same treatment, there appeared to be differences between LJ and YS in root morphology, plant growth, net photosynthetic rate, root acivity and membrane permeability. We found the following Pb toxic effects on the ultrastructure of root cells including disappearance of nuclear, mitochondrial swelling or disappearance of cristae, membrane invagination and cell wall thickening; the Pb toxic effects on the ultrastructure of shoot cells including chloroplast deformation, disappearance of grana lamellae, thylakoid disorder and appearance of large lipid particles; the Pb toxic effects on the ultrastructure of leaf cells including chloroplast damage, mitochondrial swelling and so on. Our comparative study indicated that there were some differences in the leaf cell structure of the two varieties under Pb stress. Besides, the forms of Pb sediments in root cells were also different. The Pb tolerance ability of YS was relatively stronger than LJ.
     (3) Fourier transform infrared spectroscopy studies show that Pb was found to be mainly bound with the carboxyl group in the root cell walls. At the same time, the protein and pectin might also be involved in binding Pb. Carboxyl group played a greater role in binding Pb for LJ, while amino group played a greater role for YS. And pectin in root cell walls of the two varieties showed the same effect on binding Pb. Some differences existsed in the carboxyl group, amino group and protein percentage between the two tea plant varieties.
     (4) Roots played a significant role in fixing the Pb by tea plants. Pb content in different tea plant organs showed the same distribution order:roots> stems> young leaves> mature leaves. But the analysis found that there was a difference in Pb content variation in the leaves of two tea plant vareities and also Pb absorption capacity between fine roots and coarse roots. Compared with the control, Pb stress promoted the absorption of Cu and Fe, but inhibited the absorption of Mn and Mg by roots of two tea plant varieties. Besides, the two varieties showed different characteristics in the absorption of Ca and Zn. The results proved that the absorption of Pb in tea plants might not be an active process. LaCl3, an ion(Ca) channel inhibitor, significantly inhibited the absorption of Pb by roots, which indicated that the Pb absorption had a close relationship with ion(Ca) channels. Synchrotron radiation X-ray fluorescence scan results also showed that, to some extent, the Ca ions inhibited the absorption of Pb by roots.
     (5) Pb stress affected the uptake of other elements by tea plants. Compared with the control, Pb stress promoted the absorption of Cu and Fe, but inhibited the absorption of Mn and Mg by roots of two tea plant varieties. Besides, the two tea plant varieties showed different characteristics in the absorption of Ca and Zn. The Fe content in the YS root epidermis was relatively higher than other parts of the root, but Ca content was higher in the interface of YS root endodermis and vascular cylinder. No remarkable distribution rules were found about Ca and Fe in LJ root cross section under Pb stress. Under normal conditions of hydroponic culture, the highest content of elements such as Fe, K and Mn was found in the region close to the adaxial epidermis of LJ and YS leaf (palisade tissue). While under the Pb stress, the distribution rule, i.e., the element content appears higer in leaf edges (upper and lower epidermis) was weakened.
引文
Abreu CA de, Abreu MF de, Andrade JC de. Distribution of lead in the soil profile evaluated by DTPA and Mehlich-3solution. Bragantia,1998,57(1),185-192.
    Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Lead. US Department of Health and Human Services, Public Health Service, Atlanta, GA,1999.
    Ager FJ, Ynsa MD, Dominguez-solis JR, et al. Cadmium localization and quantification in the plant Arabidopsis thaliana using micro-PIXE. Nuclear Instruments and Methods in Physics Research Section B,2002,189(1-4):494-498.
    Allan DL, Jarrell WM. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiology,1989,89:823-832.
    Allen PD, Shokouhian M, Ni S. Loading estimates of lead,copper,cadmium,and zinc in urban run off from specific sources. Chemosphere,2001,44(5):997-1009.
    Alonso-Simon A, Encina AE, Garcia-Angulo P, et al. FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil. Plant Science,2004,167(6):1273-1281.
    Al-Oud SS. Heavy metal contents in tea and herb leaves. Pakistan Journal of Biological Sciences, 2003,6(3):208-212.
    Angelone M, Bini C. Trace elements concentrations in soils and plants of Western Europe edn. Lewis Publishers, Boca Raton (USA),1992.
    Arazi T, Sunkar R, Kaplan B, et al. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitive in transgenic plants. The Plant Journal,1999, 20(2):171-182.
    Asada K. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology,1999,50:601-639.
    Blay lock MJ, Salt DE, Dushenkov S, et al. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology,1997,31(3),860-865.
    Boonyapookana B, Parkplan P, Techapinyawat S, et al. Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides). Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances& Environmental Engineering,2005,40(1),117-137.
    Bosque MA, Schuhmacher M, Domingo JL, et al. Concentrations of lead and cadmium in edible vegetables from Tarragona province,Spain. Science of the Total Environment,1990,95: 61-70.
    Brain GES, Martin SW. Ultrastructure and the biology of plant cells. New York:Edward Arnold, 1975
    Bringezu K, Lichtenberger O, Leopold I, et al. Heavy metal tolerance of Silene vulgaris. Journal of Plant Physiology,1999,154(4):536-546.
    Brune A, Urbach W, Dietz KJ. Compartmentation and transport of zinc in barley primary leaves as basic mechanism involved in zinc tolerance. Plant, Cell and Environment,1994,17(2): 153-162.
    Burzynski M. The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedling. Acta Physiologiae Plantarum,1987,53, 77-86.
    Cakmak I, Hengeler C, Marschner H. Partition of shoot and root dry matter and carbohydrates in bean plants suffering from phosphrus, potassium and magnesium deficiency.Journal of Experimental Botany,1994,45(9):1245-1250.
    Colangelo EP, Guerinot ML. Put the metal to the petal:metal uptake and transport throughout plants. Current opinion in plant biology,2006,9(3):322-330.
    Chen YX, Lin Q, Luo YM, et al. The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere,2003,50(6):807-811.
    Chen YX, Xu J, Yu MG, et al. Lead contamination in different varieties of tea plant(Camellia sinensis L.) and factors affecting lead bioavailability. Journal of the Science of Food and Agriculture,2010,90(9):1501-1507.
    Cobbett C. Heavy metals and plants-model systems and hyperaccumulators. New Phytologist, 2003,159(2):289-293.
    Cohen CK, Fox TC, Garvin DF, et al. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiology,1998,116(3):1063-1072.
    Colleen MH, Matthew JLF, Scott F, et al. Spatial and temporal association of As and Fe species on aquatic plant roots. Environmental Science & Technology,2002,36(9):1988-1994.
    Crist RH, Martin JR, Crist DR. Heavy metal uptake by lignin:comparison of biotic ligand models with an ion exchange process. Environmental Science&Technology,2002,36(7): 1485-1490.
    Cui YS, Wang QR, Dong YT, et al. Elemental sulfur effects on Pb and Zn uptake by Indian mustard and winter wheat. Journal of Environmental Sciences-China,2003,15:836-840.
    Davies BE, Lead, in Heavy Metals in Soils, ed. by Alloway BJ. Blackie Academic and Professional, London,1995.
    Davies MS, Effect of toxic concentrations of metals on root growth and development, in:Atkinson D (Eds.), Plant Root Growth:An Ecological Perspective, Blackwell Sci. Publ., Oxford,1991, pp.211-227.
    Devi SR, Prasad MNV. Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte:responses of antioxidant enzymes and antioxidants. PlantnScience,1998,138(2): 157-165.
    Ding SM, Liang T, Yan JC, et al. Fractionations of rare earth elements in plants and their conceptive model. Science in China Series C,2007,50(1):47-55.
    do Nascimento CWA, Amarasiriwardena D, Xing BS. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil. Environmental Pollution,2006,140(1):114-123.
    Donald ERM, Graeme JA, Richard IW, et al. Uptake and localization of lead in the root system of Brassica juncea. Environmental Pollution,2008,153(2):323-332
    Drazkiewicz M. Chlorophyll-occurrence, functions, mechanism of action, effects of internal and external factors. Photosynthetica,1994,30:321-331.
    Ernst WHO, Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry,1996,11:163-167.
    Estrella-Gomez N, Mendoza-Cozatl D, Moreno-Sanchez R, et al. The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquatic Toxicology, 2009,91(4):320-328.
    Eun SO, Youn HS, Lee YS. Lead disturbs microtubule organization in the root meristem of Zea mays. Physiologia Plantarum,2000,110(3):357-365.
    Frankel DG, Middeton C. Effects of lead acetate on DNA and RNA synthesis by intact HeLa cells, isolated nuclei and purified polymerases. Biochemical Pharmacology,1987,36(2):265-268.
    Fritioff A, Greger M. Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere,2006,63(2):220-227.
    Gaelle U, Sophie S, Geraldine S, et al. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environmental Science of Technology,2010,44(3):1036-1042.
    Gajewska E, Sklodowska M, Slaba M, et al. Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia Plantarum,2006,50(4):653-659.
    Garcia G, Faz A, Conesa HM. Selection of autochthonous plant species from SE Spain for soil lead phytoremediation purposes. Water, Air and Soil Pollution,2003,3(3):243-250.
    Gardea-Torresdey JL, Becher-Hapak MK, Hosea JM, et al. Effect of chemical modification of algal carboxyl groups on metal ion binding. Environmental Science and Technology,1990, 24(9):1372-1378.
    Gardea-Torresdey JL, Tiemann KJ, Parsons JG, et al. XAS investigations into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass. Microchemical Journal,2002,71(2-3): 193-204.
    Geebelen W, Vangronsveld J, Adriano DC, et al. Amendment-induced immobilization of lead in a lead-spiked soil:evidence from phytotoxicity studies. Water Air Soil Pollution,2002,140: 261-277.
    Godbold DL, Kettner C. Lead influences root growth and mineral nutrition of Picea abies seedlings. Journal of Plant Physiology,1991,139(1):95-99.
    Gopal R, Rizvi AH. Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere,2008,70(9):1539-1544.
    Grases F, Ruiz J, Costa-Bauza A. Studies on lead oxalate crystalline growth. Journal of Colloid and Interface Science,1993,155(2):265-270.
    Grcman H, Velikonja-Bolta S, Vodnik D, et al. EDTA enhanced heavy metal phytoextraction:metal accumulation, leaching, and toxicity. Plant and Soil,2001,235(1): 105-114.
    Gupta M, Rai NU, Tripathi DR, et al. Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (L.f.) Royle. Chemosphere,1995,30(10):2011-2020.
    Gupta SC, Goldsbrough PB. Phytochelatin accumulation and cadmium tolerance in selected tomato cell lines. Plant Physiol,1991,97(1):306-312.
    Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany,2002,53(366):1-11.
    Hall JL. Electron microscopy and cytochemistry of plant cells. New York:North-Holland Biomedical press,1978.
    Han WY, Zhao FJ, Shi YZ, et al. Scale and cause of lead contamination in Chinese tea. Environmental Pollution,2006,139(1):125-132.
    Han WY, Shi YZ, Ma LF, et al. Effect of liming and seasonal variation on lead concentration of tea plant(Camellia sinensis (L.) O.Kuntze). Chemosphere,2007,66:84-90.
    Hardiman R, Jacoby B, Banin A. Factors affecting the distribution of cadmium.copper and lead and their effect upon yield and zinc content in bush beans (Phasseolus vulgaris L.). Plant and Soil,1984,81(1):17-27.
    Howe JA, Loeppert RH, Derose VJ, et al. Localization and speciation of Chromium in subterranean clover using XRF, XANES, and EPR spectroscopy. Environmental Science Technology,2003,37(18):4091-4097.
    Huang B, Duncan RR, Carrow RN. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying:Ⅱ. Root aspects. Crop Science,1997,37:1863-1869.
    Huang JW, Cunningham SD. Lead Phytoextraction:species variation in lead uptake and translocation. New Phytologist,1996,134(1):75-84.
    Hussain I, Khan F, Iqbal Y, et al. Investigation of heavy metals in commercial tea brands. Journal of the Chemical Society of Pakistan,2006,28(3):246-251.
    Iqbal J, Mushtaq S. Effect of lead on germination, early seedling growth, soluble protein and acid phosphatase content in Zea mays L. Pakistan Journal of Scientific and Industrial Research, 1987,30(11):853-856.
    Islam E, Yang XE, Li TQ, et al. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials,2007, 147(3),806-816.
    Jarvris MD, Leung DWM. Chelated lead transport in Chamaecytisus proliferus(Lf) link ssp.proliferus var.palmensis(H.Christ):an ultrastrutural study. Plant Seienee,2001,161(3): 433-441.
    Jiang MY, Yang WY, Xu J. Active oxygen damage effect of chlorophyll degration in rice seedlings under osmotic stress. Acta Botanica Sinica,1994,36(4):289-295.
    Jin CW, He YF, Zhang K, et al. Lead contamination in tea leaves and non-edaphic factors affecting it. Chemosphere,2005,61(5):726-732.
    Jones RGW, Lunt OR. The function of calcium in plants. Biomedical and Life Science,1967, 33(4):407-426.
    Kabala C, Singh BR. Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality,2001,30(2):485-492.
    Kabata-Pendias A, Trace Elements in Soils and Plants (3rd edn). CRC Press, Boca Raton, Florida. 2001.
    Kang SX, Sun X, Ju X, et al. Measurement and calculation fo escape peak intensities in synchrotron radiation X-ray fluorescence analysis. Nuclear Instruments and Methods in Physics Research Section B,2002,192(4):365-369.
    Kapoor A, Viraraghavan T. Heavy metal biosorption sites in Aspergillus niger. Bioresource Technology,1997,61(3):221-227.
    Ke WS, Xiong ZT, Xie MJ, et al. Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations. Plant and Soil,2007, 292(1-2):291-304.
    Kennedy VH, Sanchez AL, Oughton DH, et al. Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst,1997, 122(8):89-100.
    Kenward PA, Fowle DA, Yee N. Microbial Selenate Sorption and Reduction in Nutrient Limited Systems. Environmental Science and Technology,2006,40(12):3782-3786.
    Khokhar S, Magnusdottir SGM. Total phenol, catechin and caffeine contents of teas commonly consumed in the United Kingdom. Journal of Agricultural and Food Chemistry,2002,50(3): 565-570.
    Knight B, Zhao FJ, McGrath SP, et al. Zinc and cadmium uptake by the hyperaccumulator Thlaspi Caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution. Plant and Soil,1997,197(1),71-78.
    Kodera H, Nishioka H, Muramatsu Y, et al. Distribution of Lead in Lead-accumulating Pteridophyte Blechnum niponicum, Measured by Synchrotron Radiation Micro X-ray Fluorescence. Analytical Sciences,2008,24(12):1545-1549.
    Kopittke PM, Asher CJ, Blarney FPC, et al. Localization and chemical speciation of Pb in roots of signal grass(Brachiaria decumbens) and rhodes grass(Chloris gayana). Environmental Science Technology,2008,42(12):4595-4599.
    Kopittke PM, Asher CJ, Kopittke RA, et al. Toxic effects of Pb2+ on growth of cowpea(Vigna unguiculata). Environmental Pollution,2007,150(2):280-287.
    Kosobrukhov A, Knyazeva I, Mudrik V.Plantago major plants responses to increase content of lead in soil:Growth and photosynthesis. Plant Growth Regulation,2004,42(2):145-151.
    Kramer U, Pickering IJ, Prince RC, et al. Subcellurlar localization and speciation of nickel in hyperaccumulator and nomacculator Thlaspispecies. Plant physiology,2000,122(4): 1343-1353.
    Kuffner M, Puschenreiter M, Wieshammer G, et al. Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil,2008,304(1-2):35-44.
    Kupper H, Kupper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. Journal of Experimental Botany,1996,47(2),259-266.
    Kupper H, Lombi E, Zhao FJ, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta,2000,212(1):75-84.
    Lasat MM, Baker AJM, Kochian LV. Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi, Plant Physiology,1996,112(4):1715-1722.
    Lei M, Chen TB, Huang ZC, et al. Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola principis H. de Boiss.:An application of SRXRF microprobe. Chemosphere,2008,72(10):1491-1496.
    Leita L, De Nobili M, Cesco S, et al. Analysis of intercellular cadmium forms in roots and leaves of bush bean. Journal of Plant Nutrition,1996,19(3-4):527-533.
    Levina EN. Obshchaya tosikologiya metallov (General metal toxicology). edn., Meditsyna Leningrad,1972.
    Li JX, Yang XE, He ZL, et al. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma,2007,141:174-180.
    Li TQ, Yang XE, Jin XF, et al. Root responses and metal accumulation in two contrasting ecotypes of Sedum alfredii Hance under lead and zinc toxic stress. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2005, 40(5):1081-1096.
    Li WC, Ye ZH, Wong MH. Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant and Soil,2010,326(1-2):453-467.
    Liu JG, Li KQ, Xu JK, et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Research,2003,83(3): 271-281.
    Llugany M, Lombini A, Poschenrieder C, et al. Different mechanisms account for enhanced copper resistance in Silene armeria populations from mine spoil and serpentine sites. Plant and Soil,2003,251(1):55-63.
    Lombi E, Zhao FJ, Fuhrmann M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist,2002,156(2):195-203.
    Lopez ML, Peralta-Videa JR, Benitez T, et al. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promotor. Chemosphere,2005,61(4):595-598.
    Lozano-Rodriguez E, Hernandez LE, Bonay P, et al. Distribution of cadmium in shoot and root tissues of maize and pea plants:physiological disturbances. Journal of Experimental Botany, 1997,48(1):123-128.
    Lux A, Martinka M, Vaculik M, et al. Root responses to cadmium in the rhizosphere:a review. Journal of Experimental Botany,2011,62(1):21-37.
    Maiz L, Esnaola MV, Millan E. Evaluation of heavy metal availability in contaminated soils by a short sequential extraction procedure. Science of the Total Environment,1997,206(2-3): 107-115.
    Malkowski E, Kita A, Galas W, et al. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regulation, 2002,37(1),69-76.
    Manousaki E, Kokkali F, Kalogerakis N. Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). Journal of Chemical Technology and Biotechnology,2009,84(6):877-883.
    Margui E, Queralt I, Hidalgo M. Application of X-ray fluorescence spectrometry to determination and quantitation of metals in vegetal material. Trends in Analytical Chemistry,2009, 28(3):362-372.
    Marschner H, Romheld V. Root-induced changes in the availability of micronutrients in the rhizosphere, in Plant Roots-theHiddenHalf (2nd edn), ed. by Waisel Y, Eshel A, Kafkafi U, Marcel Dekker. New York, NY,1996
    Marschner P, Godbold DL, Jentschke G. Dynamics of lead accumulation in mycorrhizal and non-mycorrhizal Norway sprue (Picea abies (L.) karst). Plant and Soil,1996,178(2): 239-245.
    Memon AR. Yatazawa M. Chemical nature of manganese in the leaves of manganese accumulator plants, Soil Science of Plant Nutrtion,1982,28:401-412.
    Merry RH, Tiller KG, Alston AM. The effects of contamination of soil with copper, lead and arsenic on the growth and composition of plants. Plant and Soil,1986,91(1):115-128.
    Michalak E, Wierzbicka M. Differences in lead tolerance between Album cepa plants developing from seeds and bulbs. Plant and Soil,1998,199(2):251-260.
    Miller RJ, Koeppe DE. Accumulation and physiological effects of lead in corn. In:Proceedings of University of Missouri, Columbia,1971.
    Mondal TK, Bhattacharya A, Laxmikumaran M, et al. Recent advances of tea(Camellia sinensis) biotechnology. Plant Cell, Tissue and Organ Culture,2004,76(3):195-254.
    Monni S, Bucking H, Kottke I. Ultrastructural element localization by EDXS in Empetrum nigrum. Micron,2002,33(4):339-351.
    Morel JL, Mench M, Guckert A. A measurement of Pb2+,Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biology and Fertility of Soils,1986,2(1):29-34.
    Narin I, Colak H, Turkoglu O, et al. Heavy Metals in Black Tea Samples Produced in Turkey. Bulletin of Environmental Contamination and Toxicology,2004,72(4):844-849.
    Nash WW, Poor BW, Jenkins KD. The uptake and subcellular distribution of lead in the developing sea urchin embryos. Comparative Biochemistry and Physiology Part:C,1981, 69(2):205-211.
    Nelson WO, Campbell PGC. The effects of acidification on the geochemistry of Al, Cd, Pb and Hg in freshwater environments:a literature review. Environmental Pollution,1991,71(2-4): 91-130.
    Neumann D, Zur NU, Schwieger W, et al. Heavy metal tolerance of Miuartia verna. Journal of Plant Physiology,1997,151(1):101-108.
    Nriagu JO, Pacyna JM. Quantitative assessment of worldwide contamination of air, water and soil by trace metals. Nature,1988,69(61):134-139.
    Nyitrai P, Boka K, Gaspar L. Characterization of the stimulating effect of low-dose stressorsin maize and bean Seedlings. Journal of Plant Physiology,2003,160(10):1175-1183.
    Olko A, Abratowska A, Zylkowska J, et al. Armeria maritima from a calamine heap- Initial studies on physiologic-metabolic adaptations to metal-enriched soil. Ecotoxicology and Environmental Safety,2008,69(2):209-218.
    Orlic I, Siegele R, Menon DD, et al. Heavy metal pathways and archives in biological tissue. Nuclear Instruments and Methods in Physics Research B,2002,190(1-4),439-444.
    Othieno CO. Soil, in Tea:Cultivation to Consumption, ed. by Willson KC, Clifford MN. Chapman and Hall, London,1992.
    Ouzounidou G, Eleftheriou EP, Karataglis S. Ecophysiological and ultrastructural effects of copper in Thlaspi Ochroleucum (cruciferae). Canndian Journal of Botany,1992,70:947-957.
    Owuor PO, Gone FO, Onchiri DB, et al. Levels of aluminium in green leaf of clonal teas, black tea and black tea liquors, and effects of rates of nitrogen fertilizers on the aluminium black tea contents. Food Chemistry,1990,35(1):59-68.
    Paivoke AEA. Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum. Environmental and Experimental Botany,2002,48(1):61-73.
    Patra M, Bhowmik N, Bandopadhyay B, et al. Comparison of mercury,lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environmental and Experimental Botany,2004,52(3):199-223.
    Peric-Grujic AA, Pocajt VV, Ristic MD. Determination of heavy metal concentrations in tea samples taken from blegrade market, Serbia. Hemijska Industrija,2009,63(5):433-436
    Peter MK, Colin JA, Rosemary AK. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution,2007,150(2):280-287.
    Pichtel J, Kuroiwa K, Sawyerr HT. Distrbution of Pb, Cd and Ba in soils and plants of two contanminated sites. Environmental Pollution,2000,110(1):171-178.
    Prasad DDK, Prasa ARK. Effect of lead and mercury on chlorophylls synthesis in mung bean seedlings. Phytochemistry,1987,26(4),881-883.
    Qin F, ChenW. Lead and copper levels in tea samplesmarketed in Beijing, China. Bulletin of Environmental Contamination and Toxicology,2007,79(3):247-250.
    Quereshi JA, Hardwick K, Collin HA. Intracellular localization of lead in a lead tolerant and sensitive clone of Anthoxanthum odoratum. Journal of plant physiology,1986,122(4): 357-364.
    Quevauviller P, Van Der Sloot HA, Ure A, et al. Conclusions of the workshop:harmonization of leaching/extraction tests for environmental risk assessment. Science of the Total Environment,1996,178(1-3):133-139.
    Ramakrishna RS, Palmakumbura S, Chatt A. Varietal variation and correlation of trace-metal levels with catechins and caffeine in Sri-lanka tea. Journal of the Science of Food and Agriculture,1987,38(4):31-339.
    Ramos I, Esteban E, Lucena JJ, et al. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Science,2002,162(5):761-767.
    Reddy AM, KumarSG, Jyothsnakumari G, et al. Lead induced changes in antioxidant metabolism of horsegram(Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram(Cicer arietinum L.). Chemosphere,2005,60(1):97-104.
    Romkens PFAM, Bouwman LA, Boon GT. Effect of plant growth on copper solubility and speciation in soil solution samples. Environmental Pollution,1999,106(3):315-321.
    Ruan JY, Wong MH. Accumulation of fluoride and aluminium related to different varieties of tea plant. Environmental Geochemistry and Health,2001,23(1):53-63.
    Rudakova EV, Karakis KD, Sidorshina ET. The role of plant cell walls in the uptake and accumulation of metal ions. Fiziol. Biochim. Kult. Rast.,,1988,20:3-12.
    Sadowski Z. Effect of biosorption of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) on the zeta potential and flocculation of Nocardia sp. Minerals Engineering,2001,14(5):547-552.
    Sahi SV, Bryant NL, Sharma NC, et al. Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environmental Science & Technology,2002,36(21):4676-4680.
    Saifullah EM, Qadir M, Caritat PD, et al. EDTA-assisted Pb phytoextraction. Chemosphere,2009, 74(10):1279-1291.
    Salim IA, Miller CJ, Howard JL. Sorption isotherm-sequential extraction analysis of heavy metal retention in landfill liner. Soil Science Society America Journal,1996,60(1):107-114
    Samardakiewicz S, Wozny A. The distribution of lead in duckweed(Lemna minor L.) root tip. Plant and Soil,2000,226(1),107-111.
    Sarvari E, Gaspar L, Fodor F, et al. Comparison of the effects of effects of Pb treatment on thylakoid development in poplar and cucumber plants. Acta Biologica Szegediensis,2002, 46(3-4):163-165.
    Schachtman DP. Molecular and functional characterization of a novel low-affinity cation transporter (Lct1) in higher plants. Pnas,1997,94(20):11079-11084.
    Schidknecht RHP A, Vidal BC. A role for the cell wall in Al3+ resistance and toxicity:crystallinity and availibity of negative charges. International Archives Biosciences,2002.1087-1095.
    Schmohl N, Horst WJ. Cell wall pectin content modulates aluminium sensitivity of Zea mays (L.) cell grown in suspension culture. Plant Cell and Environment,2000,23(7):735-742.
    Seenivasan S, Manikandan N, Muraleedharan NN, et al. Heavy metal content of black teas from south India. Food Control,2008,19(8):746-749.
    Seregin IV, Ivanov VB. Histochemical investigation of cadmium and lead distribution in plants. Russian Journal of Plant Physiology,1997,44(24):791-796.
    Seregin IV, Ivaniov VB. Histochemical of cadmium and lead distribution in plants. Russian Journal of Plant Physiology,1997,44(6):915-921.
    Seregin IV, Shpigun LK, Ivaniov VB. Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology,2004,51(4):525-533.
    Sharma NC, Gardea-Torresdey JL, Parsons J, et al. Chemical speciation and cellular deposition of lead in Sesbania drummondii. Environmental Toxicology and Chemistry,2004,23(9): 2068-2073.
    Sharma P, Dubey RS. Lead toxicity in plants. Brazilian Journal of Plant Physiology,2005,17(1): 35-52.
    Sharma RK, Agrawal M. Biological effects of heavy metals:an overview. Journal of Environmental Biology,2005,26(2 Suppl):301-313.
    Singh OV, Labana S, Pandey G, et al. Phytoremediation:an overview of metallic ion decontamination from soil. Applied Microbiology and Biotechnology,2003,61(5-6): 400-405.
    Stefanov K, Popova I, Kamburova E, et al. Lipid and sterol changes in Zea mays caused by lead ions. Phytochemistry,1993,33(1):47-51.
    Sun Q, Ye ZH, Wang XR, et al. Increase of glutathione in mine population of Sedum alfredii:A Zn hyperaccumulator and Pb accumulator. Phytochemistry,2005,66(21):2549-2556.
    Sunkar R, Kaplan B, Bouche N, et al. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. The Plant Journal,2000,24(4),533-542.
    Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry,1979,51(7):844-850.
    Tian SK, Lu LL, Yang XE, et al. Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytologist,2009,182(1):116-126.
    Tiller KG. Heavy metals in soil and their significance. Advances in Soil Science,1989,9: 113-142.
    Tomsig JL, Suszkiw JB. Permeation of Pb through calcium channels:fura-2 measurements of voltage-and dihydropyridine-sensitive Pb entry in isolated bovine chromaffin cells. Biochimica et Biophysica Acta,1991,1069(2):197-200.
    Trvedi S, Erdei L. Effects of cadmium and lead on the accumulation of Ca2+ and K+ and on the influx and translocation of K+ in wheat of low and high K+ status. Physiolgia Plantarum, 1992,84(1):94-100.
    Tu C, Zheng CR, Chen HM. Effect of applying chemical fertilizers on forms of lead and cadmium in red soil. Chemosphere,2000,41(1-2):133-138.
    Vallee BL. Biochemical effects of Mercury, Cadmium and Lead. Annual Review of Biochemistry, 1972,41:91-98.
    Verma S, Dubey RS. Lead toxicity induces lipid perxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant science,2003,164(4):645-655
    Vesk PA, Nockolds CE, Allaway WG. Metal localization in water hyacinth root from an urban wetland. Plant Cell and Environment,1999,22(2):149-158.
    Wallance A, Frolich E, Lunt OR. Calcium requirements of higher plants.Nature,1966,209:634.
    Wang B, Liu CQ, Wu Y. Effect of heavy metals on the activity of external carbonic anhydrase of microalga chlamydomonas reinhardtii and microalgae from Karst Lakes. Bulletin of Environmental Contamination and Toxicology,2005,74(2):227-233
    Wierzbicka M. Comparison of lead tolerance in Allium cepa with other plant species. Environmental Pollution,1999,104(1):41-52.
    Wierzbicka M. Lead in the apoplast of Allium cepa. L. root tips-ultrastructural studies. Plant Science,1998,133(1):105-119.
    Wierzbicka M. Lead accumulation and its translocation barriers in roots of Album cepa L.-autoradiographic and ultrastructural studies. Plant Cell and Environmental,1987,10(1): 17-26.
    Wierzbicka M. Resumption of mitotic activity in Allium cepa L. root tips during treatment with lead salts. Environmental and Experimental Botany,1994,34(2):173-180
    Wierzbicka M, Antosiewicz D. How lead can easily enter the food chain-a study of plant roots. Science of the total environment,1993,134(1):423-429.
    Wong MH, Fung KF, Carr HP. Aluminium and fluoride contents of tea, with emphasis on brick tea and their health implications. Toxicology Letters,2003,137(1-2):111-120.
    Wozny A, Schneider J, Goozdz EA. The effects of lead and kinetin on greening barley leaves. Biology Plantarum.1995,37(4):541-552.
    Wu FB, Dong J, Qian QQ, et al. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere,2005,60(10):1437-1446.
    Xie ZQ, Sun LG, Long NY, et al. Analysis of the distribution of chemical elements in Adelie penguin bone using synchrotron radiation X-ray fluorescence. Polar Biology,2003,26(3): 171-177.
    Xu XH, Shi JY, Chen YX, et al. Distribution and mobility of manganese in the hyperaccumulator plant Phytolacca acinosa Roxb.(Phytolaccaceae). Plant and Soil,2006,285(1):323-331.
    Yang JR, Bao ZP, Zhang SQ. The distribution and binding of Cd and Pb in plant cell. China Environmental Science,1993,13(4):263-268.
    Yang YY, Jung JY, Song WY, et al. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiology, 2000,124(3):1019-1026.
    Yun YS, Volesky B. Modeling of Lithium Interference in Cadmium Biosorption. Environmental Science and Technology,2003,37(16):3601-3608.
    Zhang MK, Fang LP. Tea plantation-induced activation of soil heavymetals. Communications in Soil Science and Plant analysis,2007,38:1467-1478.
    Zhang SZ, Shan XQ. Is the bioavailability index applicable for trace elements in different types of soil? Chemcal Speciation and Bioavailability,2000,12(4):117-123.
    Zheng SJ, Lin XY, Yang JL, et al. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant wheat (Triticum aestivum L.) cultivar. Plant and Soil, 2004,261(1-2):85-90.
    鲍士旦.土壤农化分析.北京:中国农业出版社,2000.
    蔡佳亮,黄艺,礼晓.生物吸附剂对污染物吸附的细胞学机理.生态学杂志,2008,27(6):1005-1011.
    陈利燕,鲁成银,刘汀.茶叶中铅在茶汤中的溶解动态研究.中国茶叶,2004,(3):16-17.
    陈苏,孙丽娜,孙铁珩,等.施用尿素对土壤中Cd、Pb形态分布及植物有效性的影响.生态学杂志,2010,29(10):2003-2009.
    陈同斌,黄泽春,黄宇营,等.砷超富集植物中元素的微区分布及其与砷富集的关系.科学通报,2003,48(11):1163-1168.
    陈英旭.环境学.北京:中国环境科学出版社,2001.
    陈宗懋,吴洵.关于茶叶中的铅含量问题.中国茶叶,2000,(5):3-5.
    段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨.植物学报,1995,37(1):14-24.
    杜连彩.铅污染上壤植物修复中鳌合诱导技术的应用现状与前景.潍坊学院学报,2006,6(4): 88-89.
    杜连彩.铅胁迫对小白菜幼苗叶绿素含量和抗氧化酶系统的影响.中国蔬菜,2008,(5):17-19.
    房江育,宛晓春.茶树叶中铅的初级化学形态.茶业通报,2007,29(4):167-168.
    房江育,宛晓春.茶树叶片中铅的化学形态与分布规律.第四届海峡两岸茶业学术研讨会.2006,中国四川蒲江.
    甘宗祁,王林云,卢国伟,等.茶叶铅污染及控制措施研究.中国食品卫生杂志,2001,(2):37-38.
    郝再彬.植物生理实验.哈尔滨:哈尔滨工业大学出版社,2004.
    韩文炎.西湖龙井茶铅污染成因及治理技术研究(硕士论文).杭州:浙江大学,2006.
    韩文炎,韩国柱,蔡雪雄.茶叶铅含量现状及其控制技术研究进展.中国茶叶,2008a,(3):16-17.
    韩文炎,韩国柱,蔡雪雄.茶叶铅量现状及控制技术研究进展(续).中国茶叶,2008b,(4):8-10.
    韩文炎,梁月荣,杨亚军,等.加工过程对茶叶铅和铜污染的影响.茶叶科学,2006,26(2):95-101.
    韩文炎,阮建云,林智,等.茶园土壤主要营养障碍因子及系列茶树专用肥的研制.茶叶科学,2002,22(1):70-74.
    韩文炎,杨亚军,梁月荣,等.茶树体内铅的吸收累积特性研究.茶叶科学,2009,29(3):200-206.
    何冰,叶海波,杨肖峨.铅胁迫下不同生态型东南景天叶片抗氧化酶活性及叶绿素含量比较.农业环境科学学报,2003,22(3):274-278.
    胡维军,连之新,刘学才,等.崂山风景区公路边林茶间作对茶鲜叶铅含量的影响.山东林业科技,2006,(5):30-31.
    黄长干,付凌,梁英,等.紫鸭跖草细胞中铜的分配和化学形态特征研究.安徽农业科学,2008,36(33):14499-14502.
    黄冬芬,王志琴,刘立军,等.铅胁迫下不同品种水稻对铅与微量元素的吸收分配差异.热带作物学报,2009,30(12):1752-1758.
    黄昀,刘光德,李其林,等.重庆茶叶污染途径研究.中国农学通报,2005,21(5):90-92,111.
    贾俊辉,沈生荣.茶水放置过程中铅、铜、铁元素浸出的动态变化.茶叶,2005,31(1):39-41.
    蒋德安.植物生理实验指导.成都:成都科技大学出版社,1999.
    江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白.植物生理与分子生物学学报,2002,28(3):169-174.
    康孟利.铅在茶树体内累积分布及其对茶树生育、生理影响的研究(硕士论文).杭州:浙江大学,2004a
    康孟利,骆耀平,石元值,等.茶树对铅的吸收及积累特性.茶叶,2004b,30(2):88-90.
    康孟利,薛旭初,骆耀平,等.茶树与土壤中铅的存在形态与分布.浙江农业科学,2006(3):280-282.
    兰海霞,夏建国.川西蒙山茶树中铅、镉元素的吸收累积特性.农业环境科学学报,2008,27(3):1077-1083.
    李波,林玉锁.公路两侧农田土壤铅污染及对农产品质量安全的影响.环境监测管理与技术,2005,17(1):11-14.
    李大辉.铅污染对菱幼苗SOD、POD及叶细胞亚显微结构的影响.中国环境科学,2009,29(2):136-141.
    李刚,唐剑锋,林咸永,等.小麦根尖细胞壁对铝的吸附/解吸特性及其与耐铝性的关系.植物营养与肥料学报,2007,13(2):192-199.
    励建荣,陆海霞,季静冰.浙江省部分地区绿茶中重金属含量的调查和研究.中国食品学报,2004,4(1):87-92.
    李金柱,吴礼树,杨玉华.硼在植物细胞壁上营养机理的研究进展.中国油料作物学报,2004,26(4):96-100.
    李荣春.Cd,Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响.植物生态学报,2000,24(2):238-242.
    李晓林.铅、铬对茶树生长的影响及其在茶树体内的吸收累积特性研究(硕士论文).雅安:四川农业大学,2008.
    李铉,郝守进,刘颖,等.金属硫蛋白的α、β结构域与铅结合形式及稳定性的研究.卫生研究,2001,30(4):198-200.
    郦逸根,路远发.西湖茶园茶叶铅污染铅同位素示踪.物探与化探,2008,32(2):180-185.
    黎章矩,樊兴土,楼灿信,等.山茱英种子抑制物质的提取分离和鉴定.浙江林学院学报,1987,4(2):23-28.
    梁冰,李晓兵,张伟,等.铅的污染危害及天然产物防治铅中毒.四川环境,2000,19(2):17-19.
    梁月荣,赵启泉,陆建良,等.茶树修剪叶和不同氮肥对土壤pH和活性铝含量的影响.茶叶,2000,26(4):205-208.
    柳丹,潘凡,杨肖娥.铅富集植物对铅的吸收及其耐性生理机制进展研究.池州学院学报,2007,21(5):88-91.
    刘光崧.土壤理化分析与剖面描述.北京:中国标准出版社,1996.
    刘军,李先恩,王涛,等.药用植物中铅的形态和分布研究.农业环境保护,2002,21(2): 143-145
    刘霞,刘树庆,唐兆宏.河北主要土壤中镉、铅形态与油菜有效性的关系.生态学报,2002,22(10):1688-1694.
    刘霞,刘树庆,王胜爱.河北主要土壤中Cd和Pb的形态分布及其影响因素.土壤学报,2003,40(3):393--400.
    刘秀梅,聂俊华,王庆仁.6种植物对Pb的吸收与耐性研究.植物生态学报,2002,26(5):533-537.
    刘延盛,鲁家米,周晓阳.Pb在豌豆幼苗细胞中的超微结构分布与毒性研究.应用与环境生物学报,2007,13(5):647-651.
    娄玉霞,张元勋,俞鹰浩,等.基于同步辐射光源的X射线荧光分析技术研究匐枝青藓对铅污染的生物响应.环境科学学报,2011 31(1):193-198.
    陆建良,梁月荣.茶树根系特性与茶园管理.茶叶科学技术,1994,14:1-5.
    鲁先文,宋小龙,王三应,等.重金属铅对小麦叶绿素合成的影响.潍坊教育学院学报,2008,21(2):47-48.
    路远发,马丽艳,陈希清,等.检验在杭州市不同环境介质中铅同位素组成及其来源判别中的应用.华南地质与矿产,2010,(1):1-6.
    罗苹,刘亚铭,傅绍清.西南地区绿茶产品质量及其污染状况评价.西南农业学报,2000,13(2):110-114.
    骆耀平,康孟利,任明兴.铅污染对茶树生育及相关保护酶活性的影响.茶叶,2004,30(4):213-216.
    马文丽,金小弟,王转花.铅胁迫对乌麦种子萌发及幼苗生长的影响.山西大学学报,2004,27(2):202-204.
    马新明,李春明,袁祖丽,等.铅污染对烤烟光合特性、产量及其品质的影响.植物生态学报,2006,30(3):472-478.
    毛学文,王弋博.氯化铅对豌豆根尖细胞微核和异常分裂的作用(简报).植物生理学通讯,2001,37(5):406-408.
    孟玲,王焕校,谭得勇.重金属铅、镉、锌对小麦DNA构象的影响.云南环境科学,1998,17(4):9-10.
    明华,曹莹,胡春胜,等.铅胁迫对玉米光合特性及产量的影响.玉米科学,2008,16(1):74-78.
    潘文毅.乌龙茶初制加工对茶叶铅污染的研究.福建茶叶,2002,3:9-10.
    潘燕飞.傅立叶红外光谱法用于茶叶品质的鉴定.烟台大学学报(自然科学与工程版),2008,21(4):266-272.
    彭鸣,王焕校,吴玉树.镉、铅在玉米幼苗中的积累和迁移-X射线显微分析.环境科学学报, 1989,9(1):61-67.
    任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响.应用与环境生物学报,2000,6(2):112-116.
    任安芝,高玉葆,刘爽.青菜幼苗体内几种保护酶的活性对Pb、Cd、Cr胁迫的反应研究.应用生态学报,2002,13(4):510-512.
    阮建云,马立锋,石元值.茶树根际土壤性质及氮肥的影响.茶叶科学,2003,23(2):167-170.
    沙济琴,郑达贤.黄旦品种茶树不同器官中矿质元素的分布.茶叶科学,1996,16(2):141-146.
    沈显生,孙立广,张莉,等.南极菲尔德斯半岛六种藻类和地衣植物的X荧光分析.极地研究,2001,13(3):187-194.
    沈显生,孙立广,尹雪斌,等.菲尔德斯半岛3种金发藓植株的同步辐射X射线荧光分析.极地研究,2002,14(2):105-112.
    施积炎,陈英旭,田光明,等.海州香薷和鸭跖草铜吸收机理.植物营养与肥料学报,2004,10(6):642-646.
    石元值.我国茶叶中铅含量研究及思考.中国茶叶,2001,23(4):18-19.
    石元值,韩文炎,马立峰,等.龙井茶中重金属元素Pb含量的影响因子探究.农业环境科学学报,2004,23(5):899-903.
    石元值,韩文炎,马立峰,等.不同茶园土壤中外源铅的形态转化及其生物有效性.农业环境科学学报,2010,29(6):1117-1124.
    石元值,马立峰.汽车尾气对茶园土壤和茶叶中铅、铜、镉元素含量的影响.茶叶,2001,27(4):21-24.
    石元值,马立峰,韩文炎,等.浙江省茶园中铅元素含量现状研究.茶叶科学,2003a,23(2):163-166.
    石元值,马立峰,韩文炎,等.铅在茶树中的吸收累积特性.中国农业科学,2003b,36(11):1272-1278
    石元值,吴洵.当前我国茶叶中铅含量现状及几点建议.茶叶,2000,26(3):128-129.
    司江英,赵海涛,汪晓丽,等.不同铜水平下玉米细胞内铜的分布和化学形态的研究.农业环境科学学报,2008,27(2):452-456.
    宋福南,杨传平,刘雪梅,等.盐胁迫对柽柳超氧化物歧化酶活性的影响.东北林业大学学报,2006,34(3):54-56.
    宋勤飞,樊卫国.铅胁迫对番茄生长及叶片生理指标的影响.山地农业生物学报,2004,23(2):134-138.
    宋文东,王冰,辛宏伟,等.茶叶中铅污染现象的调查与预防.职业与健康,2002,16(8):32-33.
    孙灏,李树美,康士秀,等.安徽琅琊山铜矿植物和土壤重元素同步辐射X射线荧光分析.光谱实验室,2004,21(2):224-228.
    孙文越,王辉,黄久常.外来甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响.西北植物学报,2001,21(3):487-491.
    孙贤斌,李玉成,王宁.铅在小麦和玉米中活性形态和分布的比较研究.农业环境科学学报,2005,24(4):666-669.
    孙兆海,郑春荣,周东美,等.土壤铅污染对青菜和蕹菜生长及脲酶活性的影响.农村生态环境,2005,21(1);38-43.
    汤茶琴,曾晓维,陆建良,等.茶叶中的铅及其安全性检测.茶叶,2003,29(1):20-22.
    唐茜,李晓林,朱新钰,等.铅、铬胁迫对茶树生育的影响研究.西南农业学报,2008,21(1):156-162.
    童建华,梁艳萍,丁君辉,等.铅对水稻植物激素含量的影响.现代生物医学进展,2009,9(11):2102-2104,2134
    王果,李建超,杨佩玉,等.有机物料影响下土壤溶液中镉形态及其有效性研究.环境科学学报,2000,20(5):621-626.
    王浩,章明奎.天然矿物对茶园土壤中铅的固定作用.茶叶科学,2008,28(2):129-134
    王红旗,李华,陆泗进.羽叶鬼针草对Pb的吸收特性及修复潜力.环境科学,2005,26(6):143-147.
    王慧忠.植物根系内活性氧清除酶对铅胁迫的反应.重庆环境科学,2003,25(10):23-25.
    王孝堂.土壤酸度对重金属形态分配的影响.土壤学报,1991,28(1):103-107.
    王英辉,伍乃东.铅污染土壤的植物修复技术研究.中国土壤与肥料,2007,(5):6-10.
    温晓菊,鲁成银,林荣溪,等.茶叶企业实施茶叶良好操作规范的效果验证.热带作物学报,2008,29(3):299-303.
    武贝.海州香薷Cu耐性与积累机制研究(博士论文).杭州:浙江大学,2009.
    伍钧,孟晓霞.铅污染土壤的植物修复研究进展.土壤,2005,37(3):258-264.
    吴永刚,姜志林,罗强.公路边茶园土壤与茶树中重金属的积累与分布.南京林业大学学报(自然科学版),2002,26(4):39-42.
    夏建国,兰海霞,吴德勇.铅胁迫对茶树生长及叶片生理指标的影响.农业环境科学学报,2010,29(1):43-48.
    肖祥希,刘星辉,张学武,等.铝胁迫对龙眼幼苗生长的影响.福建农业学报,2002,17(3):182-185.
    徐劫,于明革,陈英旭,等.铅在茶树体内的分布及化学形态特征.应用生态学报,2011,22(4):891-896.
    徐进,魏嵬,韩璐,等.重金属对油菜种子萌发和胚根生长的影响(英文).西北植物学 报,2007,27(11):2263-2268.
    徐勤松,施国新,王学,等.铅(Pb)在凤眼莲(EichhomiaCrassipesSolms)体细胞中分布的电镜观察.南京师大学报,2006,29(3):81-85.
    徐奕鼎,王宏树.茶叶铅残留限量标准的分析与思考.福建茶叶,2004,(3):36-37.
    薛建辉,费颖新.间作杉木对茶园土壤及茶树叶片重金属含量与分布的影响.生态与农村环境学报,2006,22(4):71-73,78.
    薛艳,王超,王沛芳,等.镉和铅对芦蒿和黄花水龙根系可溶性糖含量和叶片中叶绿素含量的影响.安徽农业科学,2009,37(25):11933-11934.
    阎永建,赵秀兰,刘正亮,等.“解毒茶饮”驱铅实验研究.化工劳动保护.2001,22(12):435-437.
    杨德,吕金印,程永安,等.铬在南瓜中的亚细胞分布及对某些酶活性的影响.农业环境科学学报,2007,26(4):1352-1355.
    杨方,李耀平.茶叶不同浸泡方式下的铅溶出.中国卫生检验杂志,2001,11(3):349.
    杨居荣,贺建群,张国祥,等.农作物对Cd毒害的耐性机理探讨.应用生态学报,1995,6(1):87-91.
    杨居荣,查燕,刘虹.污染稻、麦籽实中Cd、Cu、Pb的分布及其存在形态初探.中国环境科学,1999,19(6):500-504.
    杨敏文,柯世省.土壤铅污染对苋菜生长和矿质元素含量的影响.北方园艺,2009,(1):10-13.
    杨仁斌,曾清如.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护,2000,19(3):152-155.
    杨卫东,陈益泰,屈明华.镉在旱柳中亚细胞分布及存在的化学形态.西北植物学报,2009,29(7):1394-1399.
    杨欣,陈江华,张艳玲,等.铅、镉在典型植烟土壤中的形态分布及转化趋势研究.2010,16(5):44-49.
    杨卓亚,张福锁.土壤-植物体系中的铅.土壤学进展,1993,21(5):1-10.
    杨亚军.中国茶树栽培学.上海:上海科学技术出版社,2005,39-40.
    叶春和.花苜蓿对铅污染土壤修复能力及其机理的研究.土壤与环境,2002,11(4):331-334.
    殷宗慧,刘虹,陈燕丰.铅在灰钙土土壤-植物系统与环境中的迁移和环境容量.地理研究,1993,12(3):100-106.
    于辉,杨中艺,杨知建,等.不同类型镉积累水稻细胞镉化学形态及亚细胞和分子分布.应用生态学报,2008,19(10):2221-2226.
    宛晓春.茶叶生物化学.北京:中国农业出版社,2003.
    袁祖丽,李春明,熊淑萍,等Cd,Pb污染对烟草叶片叶绿素含量、保护酶活性及膜脂过氧化的影响.河南农业大学学报,2005,39(1):15-19.
    张方舟,林郑和,邬龄盛,等.茶叶加工过程中铅变化的研究.福建茶叶,2008,3:23-24.
    张红萍.铅对植物的毒害及植物对铅的抗性机制.农业装备技术,2007,33(3):21-22.
    张凯,付晓陆,陈余平,等.非土壤因素对茶叶铅污染的影响.广东微量元素科学,2007,14(,4):20-23.
    章明奎,黄昌勇.公路附近茶园土壤中铅和镉的化学形态.茶叶科学,2004,24(2):109-114.
    张乃明.大气沉降对土壤重金属累积的影响.土壤与环境,2001,10(2):91-93.
    张寿宝,包文权.汽车尾气中的铅对茶园污染的研究.江苏环境科技,2000,13(3):1-2.
    张晓斌,刘鹏,李丹婷,等.铬诱导植物根细胞壁化学成分变化的FTIR表征.光谱学与光谱分析,2008,28(5):1067-1070.
    张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17(2):199-205.
    张元勋,曹同,IidaA,等.同步辐射X荧光微探针用于苔藓植物监视大气污染的研究.核技术,2007,30(9):730-734.
    张元勋,曹同,IidaA,等.同步辐射技术在大气环境生物监视器中的应用研究.科学通报,2009,54(2):157-160.
    张泽岑,邓仕槐,方倡友.土壤对茶叶铅污染的影响及植物修复研究.福建茶叶,2006,3:18-20.
    张祖光,吴云,谢德体.重庆茶园土壤酸化特征研究.西南农业大学学报,2004,26(1):15-17.
    曾清如,周细红.不同来源重金属在土壤中的形态分布差异.农村生态环境(学报),1994,10(3):48-51.
    郑世英.铅胁迫对油菜种子萌发及生理特征的影响.种子,2007,26(12):88-90.
    宗会,刘娥娥,郭振飞,等Ca~(2+)·CaM信使系统与水稻幼苗抗逆性研究初报.华南农业大学学报,2000,21(1):64-65,67.
    宗良纲,周俊,李嫦玲,等.不同生长期茶树对土壤中铅的吸收及体内运移特性研究.植物研究,2007,27(5):596-600.
    宗良纲,周俊,罗敏,等.模拟酸雨对茶园土壤中铅的溶出及形态转化的影响.土壤通报,2005,36(5):695-699.
    周亶,蒋东云,崔林影.茶叶水中重金属铅、铜、锌、锰的浸出率试验研究.食品科技,2010,35(1):285-288.
    朱建华,耿明建,曹享云,等.硼对棉花不同品种根系吸收活力、根系分泌物和伤流液组分的影响.棉花学报,2001,13(3):142-145.
    朱江,周俊,徐宗学,等.茶园土壤中铅形态分布与茶叶中铅质量分数关系的研究.北京师范大学学报(自然科学版),2009,45(5):559-563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700