用户名: 密码: 验证码:
杂交稻亲本SSR指纹图谱构建及两系杂交稻和大青棵鉴定的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子的真实性和纯度是种子质量检验的最主要的质量指标之一。植物新品种特异性(Distinctness)、一致性(Uniformity)和稳定性(Stability)的测试(简称DUS测试)是农业部植物新品种保护办公室对申请品种授予新品种权进行实质审查最重要的工作内容。水稻是我国主要的粮食作物,杂交稻具有杂种优势,产量高,抗性好,其种植面积已占我国水稻面积的一半。我国是世界上最大杂交水稻种子生产国和消费国,申请水稻新品种保护的品种数量在逐年增加,是我国目前品种权申请保护的主要对象之一。然而,目前种子的真实性和纯度检测和植物新品种DUS测试均是田间种植方法鉴定。该方法周期长,费工占地,用于测试的标记性状有限,不能满足种子市场销售,新品种及时授权的需要,研究快速、简便、准确的DNA分子标记技术鉴定水稻品种对于杂交水稻种子质量检测和新品种授权具有重要意义。为运用SSR分子标记快速、准确鉴定江苏省地区范围内生产上的杂交水稻种子的真实性和纯度,需要考虑以下几个重点问题:快速、高效的DNA提取方法是分子标记鉴定品种的颈瓶技术,传统的DNA提取方法技术难度大、操作步骤繁琐,是分子标记品种鉴定技术不能普及的主要问题之一;两系杂交稻母本的不育性易受光照时间和温度的影响,两系杂交稻会因不同年份或地区光、温条件的变化导致母本自交结实而严重影响种子纯度,但在海南的种植鉴定中,不育系有时表现可育,给形态鉴定带来一定的困难;长江中下游地区是籼、粳杂交稻和常规稻均有种植的地区,在该地区的杂交稻制种田中经常出现籼稻不育系与粳稻父本或粳稻不育系与籼稻父本杂交的一种籼粳亚种杂交组合“大青棵”,这种杂株植株高大,抽穗期晚,杂交稻中大青棵是严重影响企业形象和产量的杂株类型,但海南种植鉴定时,大青棵受光温影响不一定表现植株高大、抽穗期晚等特征,因此难以准确鉴别。为此,本论文拟从以下4个方面开展研究:一是改进DNA提取方法和步骤,研究快速、高效,并获得高质量的DNA提取方法。二是对生产上推广的4个两系杂交稻和1杂交粳稻的7亲本进行多态性分析,并应用SSR多态性标记鉴定两系杂交组合。三是建立近几年来生产上常用的33份籼粳杂交稻亲本DNA指纹数据库,并对这些亲本进行遗传相似性分析,为杂交稻种子纯度鉴定提供依据。四是选用了该地区的常用籼粳不育系与粳籼父本配制了55个籼粳亚种间杂交组合,考察了F1代株高、抽穗期和结实率等主要农艺性状,筛选用于鉴定本试验所配制的籼粳杂交大青棵组合类型杂株的SSR分子标记,为该地区杂交稻中可能出现的大青棵的鉴定提供了依据。获得的主要结果如下:
     1.改进了DNA提取方法。本研究应用了常规方法的DNA提取方法,同时也研究应用了改进了DNA提取方法。在改进的DNA提取方法中,无需使用液氮,而将幼苗叶片放在真空冷冻干燥仪冷冻干燥2-3天,每个试管里盛放一小钢珠球,使用研磨仪粉碎叶片组织。由于样品分别在单独的试管里进行研磨,避免了交叉污染。在试验过程中,使用96孔联体试管板,而不是单个离心试管,使用排枪代替单枪操作,CTAB方法提取DNA。通过多次试验比较,这种方法是一种快速、高效并获得高质量的DNA的提取方法。按照该方法操作,每人每天可提取上千个DNA样品。
     2.通过4对SSR引物组合可以鉴定两优培九、两优108、培矮64S/E32和两优1224个生产上常用两系杂交稻。
     选用52对SSR引物对以培矮64S为母本的4个两系杂交稻组合的5个亲本DNA多态性进行了分析,并以1个杂交粳稻86优8号作为对照。结果表明:46对引物能在7个亲本间扩增出多态性条带。8对引物能将4个两系杂交稻与对照杂交粳稻区分开且在86优8号的亲本中具有多态性,可区分两优培九、两优108、培矮64S/E32、两优122和86优8号F1及其亲本的SSR引物分别为34、32、31、30和14对,有16对SSR引物均可用于区分4个两系杂交组合Fl和亲本,RM206和RM286引物可区分本试验的5个组合和各自的亲本。应用其中一对引物RM505对两优培九进行鉴定验证,结果表明该引物能准确区分两优培九及其亲本。根据本试验中引物的多态性和特异性的结果,有多种途径可鉴别这4个两系杂交组合。可通过RM13(或RM206、RM286等)、RM224(或RM337)、RM234(或RM252、RM505和RM565)和RM25(或RM217、RM248和RM585)等4对引物将两优培九、两优108、培矮64S/E32和两优122分别加以鉴别。
     3.建立了33个籼、粳杂交稻亲本的SSR指纹图谱数据库,发现了6对可以用于鉴定籼、粳类型的SSR特征标记。
     选用分布在12条染色体上的84对SSR引物对5个粳型核质互作雄性不育系、4个籼型核质互作雄性不育系和1个温敏雄性不育系、14个籼型父本和9个粳型父本共33份材料进行遗传相似性分析,并建立SSR指纹图谱数据库。结果表明:在33份亲本中能够扩增出多态性的引物为54对,占所用引物的64.3%。33份亲本间的遗传相似系数变异范围为0.40~0.99。在遗传相似系数0.66处,33份亲本被聚为3个类群,培矮64S和冈46A为第1类群,17个籼稻亲本为第Ⅱ类群,14个粳稻亲本为第Ⅲ类群。在籼、粳亚种内,不育系和可育品种又分为不同的亚群,基于SSR分子标记的聚类分析结果与与育种家提供的籼粳分类信息基本一致,进一步表明SSR指纹图谱可以用于鉴定品种。利用18对引物能将33份亲本区分开,RM264能将Ⅱ-32A、协青早A、冈46A和K17A4个籼型不育系与籼型可育品种区别开,RM432能将5个粳型不育系与粳型可育品种区别开。6对引物RM6、RM13、RM16、RM240、RM247和RM248均为鉴别籼、粳亚种类型的特异引物,利用这6个标记可以鉴别籼型不育系串入粳稻花粉或粳型不育系串入籼稻花粉所产生的籼粳杂株类型。
     4.发现了可以用于本研究大青棵鉴定的SSR分子标记。有6对引物均可用于以六千辛A为母本的大青棵的鉴定,RM9或RM218可用于以Ⅱ-32A为母本的大青棵的鉴定,RM50和RM11等2个引物组合可用于以9522A为母本的大青棵的鉴定。
     研究了55个籼稻不育系与粳稻父本、粳稻不育系与籼稻父本杂交组合的主要农艺性状及其SSR分子标记特征,以具备株高135cm以上、抽穗期121天以上特征的组合作为大青棵类型。结果表明:38个粳型不育系与籼稻父本的杂交后代中,以9522A为母本的杂交组合中只有9522A/紫尖籼-1是大青棵组合,以六千辛A为母本的8个组合均为大青棵组合;17个籼型不育系和粳稻父本的杂交后代中,以Ⅱ-32A为母本的杂交组合中,仅有Ⅱ-32A/C57,其余籼稻不育系为母本与粳稻父本的杂交组合均不是大青棵。与杂交F1代株高显著相关的标记的引物有RM9、RM283、RM429、RM515和RM483,其中RM9、RM283、RM429和RM515的标记与株高极显著相关;与抽穗期显著相关的标记的引物有RM9、RM44、RM206、RM152、RM276、RM228、RM515. RM211、RM432、RM454,其中RM9、RM44、RM206、RM152、RM515、RM211、RM432、RM454的标记与抽穗期极显著相关。根据是否同时具备籼型和粳型特异性标记来鉴定是否是籼粳亚种间杂交组合。在以9522A为母本的杂交组合中,大青棵可以通过RM50和RM11(或RM25、RM152、RM228、RM251、RM252、RM286、RM302、RM415)2个引物组合加以鉴定。以Ⅱ-32A为母本的4个组合中,Ⅱ-32A/C57大青棵可以通过RM9或RM218加以鉴定。因本研究中以六千辛A为母本所配制的组合均是大青棵,可以通过RM9、RM152、RM279、RM413、RM415和RM4296对引物中的任一个与其他粳稻不育系为母本的组合加以鉴别。
     本研究通过配制55个籼稻不育系与粳稻父本、粳稻不育系与籼稻父本杂交组合和F1代农艺性状的调查,偶然发现3726A/明恢63新组合结实率较高,达87.1%以上,株高适中(122 cm),抽穗期(109天)适宜,是否合适生产上用种有待进一步验证。
The authenticity and genetic purity of seed is the most major indicator of seed quality testing. Testing of distinctness, uniformity and stability of new varieties of plants is the important content for examining the factors of application varieties and deciding if they can be granted the right of new varities in the office for the protection of new varities of plants, MOA. Rice is the major crop in our country. Hybrid rice has heterosis, high product, good resistance. There is almost half of rice area for planting hybrid rice. Our country is the biggest country for producing and consuming the seed of hybrid rice in the world. The number of rice to be applied variety protection is increasing every year. But the method for testing authenticity and genetic purity of seed and DUS testing for new varieties of plants is still the method of identification relying on planting in fields. It is long time for one growth cycle period and it costs much labor and occupies much area of field. The marker characters for testing are limit. This method can not meet the demand for seed market and new varieties authorization in time. Thus, there is important significance to study rapid, simple, accurate method of DNA molecular marker to identify rice varieties for testing hybrid seed quality and granting the new variety authorization. In order to rapidly, accurately identify the authenticity and genetic purity of hybrid rice seed in the area scope of Jiangsu Province by using SSR molecular marker, severl key problems need to be considered as the follows:rapid, high effective DNA extraction method is an bottleneck technology for identifying varieties by using molecular marker. Traditional DNA extraction method has much difficulty of technology, tedious operating procedure. These disadvantages are one of main problems which prevent it from popularization; The sterile character of female parent of two-line hybrid rice is influenced easiliy by illumination time and temperature. The genetic purity is seriously influenced by selfing of female parent because of different conditions of illumination and temperature in different years and different regions. But sterile line is fertile sometime during planting identification in Hainan. It brings difficulties to identification according morphological characters; It is the area where there are both Indica and Japonica hybrid and conventional rice in the area of middle and lower Yangtze river. There contantly are one kind of subspecies hybrid combination between Indica and Japonica named "Daqingke"which is generated by Indica sterile lines and Japonica male parents or Japonica sterile lines and Indica male parents in the producing seed of hybrid in this area. This kind of offtype has high height of plant and late heading date. The corporate image and production were seriously influenced if there was Daqingke in hybrid rice. But it is difficult to identify Daqingke because Daqingke may not have the characters of high height plant and late heading date while planting in Hainan for identification. Thus, it was suggested to be studied as the following four aspects:the first is to improve the method and procedure of DNA extraction and do research for the rapid, high effective and high quality DNA extraction method. The second was to analyze the polymorphism of 7 parents of 4 common two-line hybrid and one Japonica hybrid and use the polymorphic SSR markers to identify two-line hybrid. The third is to establish DNA fingerprint data of 33 Indica and Japonica parents of hybrid common used during recent years in production and analyze the genetic similarity coefficients in order to offer the basis for identifying hybrid seed. The fourth is to screen SSR markers for identifying Daqingke offtype among 55 hybrid combination of Indica and Japonica which were made by common Indica, Japonica sterile line and janponica and Indica male parents in this study after the major characters of plant height, heading date and seed setting rate were investigated. It offered the basis for identifying Daqingke which might generate in hybrid rice in this area. The major results are obstained as follows:
     1. A rapid, high effective and high quality DNA extraction improved method was applied in this study. Conventional DNA extraction method and improved DNA extraction method were both used in this study. In the procedure of improved DNA extraction method, the tissue of seedling leave were frozen and dried for 2-3 days in the vacuum freezing machine, then, was ground instead of using liquid nitrogen. There is one small steel ball in each tube. The tissue was ground by grinding meachine. Because each sample was ground in separate tube, it prevented the cross contamination from each other. The plates of 96 connected tubes were used instead of seperated tubes, multiple-pipettes instead of single pipette during the whole procedure and CTAB method were used to extract DNA for the method. It was verified to be a rapid, high effective and high quality DNA extraction method through many times testing and comparing. According to this method, one person can extract about 1000 DNA samples per day.
     2. Four two-lines hybrids could be identified by one group of four SSR primers. DNA polymorphism of five parents of four two-line hybrid rice with Peiai64S as female parent were analyzed by 52 pairs of SSR primers with one Japonica hybrid rice named 86you8 as the control. The results are as follows:46 SSR primers could amplify polymorphism among 7 parents.8 pairs of SSR primers which could amplify polymorphism among the parents of 86you8 could distinguish the 4 two-line combinations from the control. There were 34,32,31,30 and 14 pairs of SSR primers which could be used to distinguish the combinations (F1) and the parents of Liangyoupeijiu, Liangyou108, Peiai64S/E32, Liangyou122 and 86you8, respectively.16 SSR primers could distinguish all of the 4 two-line hybrid rice and their parents. RM206 and RM286 could distinguish the five combinations and their parents in this study. RM505 was tested to identify Liangyoupeijiu and it's parents. The result showed that it could distinguish Liangyoupeijiu and it's parents accurately. There were several kinds of methods to distinguish the 4 two-line combinations according to SSR polymorphism and specificity in this study. The four two-line combinations of Liangyoupeijiu, Liangyou108, Peiai64S/E32 and Liangyou122 could be distinguished by the group of four pairs of primers including RM13 (or RM206, RM286 and so on), RM224 (or RM337), RM234 (or RM252, RM505 and RM565) and RM25 (or RM217, RM248 and RM585).
     3. The fingerprint of 33 parents based on SSR markers was established in this study.6 primers could be used to identify Indica and Japonica. Genetic similarity and SSR fingerprint was studied by 84 pairs of primers distributed on 12 chromosomes in rice using 33 parents including 5 CMS lines of Japonica,4 CMS lines and 1TGMS line of Indica,14 Indica male parents,9 Japonica male parents in rice. Fifty four of the 84 SSR primers showed polymorphism among the 33 parents, accounting for 64.3% of the primers used. Genetic similarity coefficients among 33 parents ranged from 0.40-0.99. The 33 parents were classified three groups at the genetic similarity coefficient of 0.66. The first group included Peiai 64S and Gang 46A. The second group included 17 Indica parents and the third group included 14 Japonica parents. The sterile lines and fertile varieties could be classified into subgroups among Indica or Japonica, which was coincident with the groups and subgroups determined by their pedigree analysis. It futher suggested that SSR fingerprint could be used to identify varieties. All of the 33 parents could be distinguished each other by 18 pairs of the primers. RM264 could distinguish the 4 CMS lines (II-32A, XieqingzaoA, Gang46A and K17A) and the fertile varieties in Indica varieties used. RM432 could distinguish the 5 CMS lines and the fertile varieties in Japonica varieties used. The primers of RM6, RM13, RM16,RM240, RM247 and RM248 could distinguish Indica varieties and Japonica varieties. These 6 pairs of primers could be used to identify the off-type plants produced by CMS pollinated by Japonica in Indica rice seed producing field, or by CMS pollinated by Indica in Japonica rice seed producing field.
     4. Several SSR markers were discovered to identify Daqingke in this study. The major agronomy characters and the characters of SSR molecular marker of 55 hybrid combination of Indica and Japonica were analyzed. Daqingke was defined as the hybrids whose plant height was over 135 cm and heading date was over 121d in this study. The results were as follows:There is one Daqingke named 9522A/Zijianxian-1 among 7 hybrids which were based on 9522A as female parent and there are 8 Daqingke which included all 8 hybrids based on LiuqianxinA as female parent among 38 hybrids which were based on Japonica sterile lines as female parents and Indica as male parents.There were one Daqingke namedⅡ-32A/C57 among 4 hybrids which were based onⅡ-32A as female parent among 17 hybrids which were based on Indica sterile lines as female parents and Japonica as male parents. Others of 17 hybrids were non-Daqingke. Five SSR markers including RM9, RM283, RM429, RM515 and RM483 had significant positive correlation with plant height. RM9, RM283, RM429 and RM515 had extramarked positive correlation with plant height. Ten SSR markers including RM9, RM44, RM206, RM152, RM276, RM228, RM515, RM211, RM432 and RM454 had significant positive correlation with heading date.8 primers including RM9, RM44, RM206, RM152, RM515, RM211, RM432 and RM454 had extramarked positive correlation with heading date. Hybrids between subspecies of Indica and Japonica could be identified according to existence of both Indica special marker and Japonica special markers. Daqingke among subspecies hybrids based on 9522A as female parent could be identified by two primers of RM50 and RMll(or RM25、RM152、RM228、RM251、RM252、RM286,RM302、RM415). Daqingke among subspecies hybrids based onⅡ-32A as female parent could be identified by RM9 or RM218. All of subspecies hybrids based on LiuqianxinA were Daqingke. They could be identified by one of six primers such as RM9、RM152、RM279、RM413、RM415 and RM429 in order to distinguish LiuqianxinA and other Japonica sterile lines.
     New hybrid combination 3726A/Minghui 63 which had high seed setting rate (87.1%), moderate plant height (122 cm) and suitable heading date (109 d) was discovered by investigating three major agronomic traits of 55 subspecies hybrid rice in this study. It might be used in production after further verification.
引文
Akagi H, Yokozeki K, Inagaki A, et al. Highly polymorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these microsatellite loci [J]. Theoretical and Applied Genetics,1997,94:61-67
    Akagi H, Yokozeki Y., Inagaki A.,et al. Microsatellite DNA markers for rice chromosomes [J]. Theoretical and Applied Genetics,1996,93:1071-1077
    Araki H, Toy a K, Ikehashi H. Role of Wide compatibility Genes in Hybrid Rice Breeding [A]. Hybrid Rice[C].Manila,Philippines:IRRI,1988,79-83
    Bashalkhanov S,Rajora O P. A high-throughput DNA extraction system suitable for conifers [J]. Plant Methods,2008,4(20):1-6
    Bassam B J., Gaetano-Anolles G., and Gresshoff P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels[J]. Analytical biochemistry,1991,196(1):80-83
    Caskey C. T. Deletion screening of the duchenne muscular dystrophy locus via multiplex DNA amplification[J]. Nucleic Acids Research,1988,16(23):11141-11156
    Chakravarthi B.K., Naravaneni R. SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa L.) [J]. African Journal of Biotechnology,2006,5(9):684-688
    Chamberlain J S, Gibbs R A, Ranier J E, at el. Deletion screening of the duchenne muscular dystrophy locus via multiplex DNA amplification[J]. Nucleic Acids Research,1988,16(23):11141-11156
    Cooke R J, Bredemeijer G M M, Ganal M W, et al. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci [J]. Euphytica,2003,132:331-341
    Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochem Bull,1987,19:11-15.
    Huang J, Ge X, Sun M. Modified CTAB protocol using a silica matrix for isolation of plant genomic DNA[J]. Biotechniques,2000,28:432-434
    Huang N, Courtois B, Khush G S, et al. Association of quantitative trait loci for plant height with major dwarfing genes in rice[J]. Heredity,1996,77:130-137
    LiC, Zhang Y, Ying K, Liang XL, Han B. Sequence variations of simple sequence repeats on chromosome-4 in two subspecies of the Asian cultivated rice[J]. Theoretical and Applied Genetics, 2004,108:392-400
    Li Z, Pinson S R M, Stansel J W, et al. Identification of two major genes and quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L) [J]. Theoretical and Applied Genetics,1995,91:374-381
    Liu K D, Zhou Z Q. An analysis of hybrid sterility in rice using a diallel cross of 21 parents involving indica, Japonica and wide compatibility varieties[J]. Euphytica,1996,90(3):275-280.
    Nagato Y, Yoshimura. Report of the committee on gene symbolization nomenclature and linkage groups[J]. Rice Genetics Newsletter,1998,15:13-54
    Nei M. Molecular Evolutionary Genetics. New York:Columbia University Press,1987:190-191
    Oka H I. Analysis of genes controlling F1 sterility in rice by the use of isogenic lines[J]. Genetics,1974, 77:521-534
    Oka, H I. Phylogenetic differentiation of cultivated rice. XXI. The sporophytic pollen sterility:its genetic basis and intervarietal relationships as shown by F2 sterility [J]. Japanese Journal of Genetics.1978, 53:397-410
    Zhang Q F, Liu K D, Yang G P. Molecular marker diversity and hybrid sterility in Indica-japonica rice crosses[J]. Theoretical and Applied Genetics,1997,95:112-118
    Rogers S O, Bendich A J. Extraction of DNA from milligram amounts of fresh, herbarium, and mummified plant tissues[J]. Plant Molecular Biology,1985,5:69-76
    Rongwen J, Akkaya M S, Bhagwat A A, et al. The use of microsatellite DNA markers for soybean genotype identification [J]. Theoretical and Applied Genetics,1995,90(1):43-48
    Savini C,Moens W,Querci M,et al. Report on the Validation of a DNA Extraction Method for Soybean Seeds[J]. CRLVL08/05XP,2007, September 11
    Sharma R, John S J, Damgaard D M, et al. Extraction of PCR-quality plant and microbial DNA from total rumen contents[J]. BioTechniques,2003,34:92-97
    Sundaram R M, Naveenkumar B, Biradar S K, et al. Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment[J]. Euphytica, 2007,163(2):215-224
    Temnykh S, Declerck G, Lukashova A, et al. Microsatellite markers development, mapping and applications in rice genetics and breeding [J]. Plant Mol Rio,1997,35:89-99
    Tommasini L, Batley J, Arnold G.M, et al. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties [J]. Theoretical and Applied Genetics,2003,106:1091-1101
    Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice [J]. Molecular and General Genetics,1993,241:225-235
    Xu P L,Zhao J P,Meng J J,et al. A Rapid DNA Extraction Method for PCR Detection of Arabidopsis thaliana [J]. Agricultural Science & Technology,2010,11(3):41-42
    Yu S B,Li J X, Xu C G,et al. Identification of quantitative trait loci and epistatic interactions for plant height and HD in rice[J]. Theoretical and Applied Genetics,2002,104:619-625
    Zhang J W, Qi F Jin C Q. Features of the expressed sequences revealed by a large—scale analysis of ESTs from a normalized cDNA library of the elite Indica rice cultivar Minghui63[J]. The Plant Journal,2005,42:772-780
    Zhang L S, Clerc V L, Li S, et al. Establishment of an effective set of simple sequence repeat markers for sunflower variety identification and diversity assessment [J]. Canadian Journal of Botany,2005, 83:66-72
    陈洪.杂交水稻汕优63杂种纯度的RAPD鉴定[J].科学通报,1996,41(9):833-836
    陈立云,熊炜,阳菊华,等.亚种间杂交稻结实率稳定性的研究[J].杂交水稻,2003,18(3):49-52
    陈佩度.作物育种生物技术[M].中国农业出版社,2001,126-143
    陈英华,侯昱铭,李宏宇,等.东北地区水稻区试新品种的DNA指纹图谱构建及遗传多样性分析[J].利子,2009,28(3):28-35
    陈忠明,玉秀娥,赵彦,等.两优培九种子纯度的RAPD快速鉴定[J].杂交水稻,2003,18(4)55-56
    程保山,万志兵,洪德林.35个粳稻品种SSR指纹图谱的构建及遗传相似性分析[J].南京农业大学学报,2007,30(3):1-8
    程本义,吴伟,夏俊辉,等.浙江省水稻品种DNA指纹数据库的初步构建及其应用[J].浙江农业学报,2009,21(6):555-560
    程计华,李云昌,梅德圣,等.几种农作物细胞质雄性不育恢复基因的定位和分子标记研究进展[J].植物学通报,2006,23(6):613-624
    戴剑,陈敏,张继红,等.两系法杂交稻两优培九种子纯度幼苗鉴定方法初探[J].杂交水稻,2002,17(4):25-26
    戴剑,李华勇,丁奎敏,等.植物新品种DUS测试技术的现状与展望[J].种子,2007,26(9):44-47
    戴剑,洪德林.试论DNA分子标记技术在植物新品种鉴定中的应用前景[J].金陵科技学院学报,2008,24(4):56-60
    戴剑,洪德林,吴燕,等.4个两系杂交稻亲木的SSR多态性分析[J].南京农业大学学报,2011(a),34(3):1-6
    戴剑,洪德林,张大栋,等.一种快速高效的DNA提取方法研究[J].麦类作物学报,2011(b),31(3):437-442
    代翠红,李杰,朱延明,等.不同DNA提取方法对4种重要作物DNA提取效率的比较[J].东北农业大学学报,2005,36(3):329-332
    邓华凤.中国杂交粳稻[M].北京:中国农业出版社,2008,4
    邓晓娟,常剑渊,肖层林,等.影响两系杂交稻制种纯度的主要原因及对策[J].作物研究,2010,24(1):46-51.
    丁效华,张泽民,曾瑞珍,等.水稻粳型亲籼系S-b座位基因型鉴定[J].中国水稻科学,2003,17(4):297-301
    丁效华.籼粳杂种不育的遗传模式及亲和基因的研究进展[J].江西农业学报,2000,12(2):45-52
    董春林,孙业盈,邓晓建.水稻抽穗期基因研究进展[J].中国农学通报,2005,21(6):75-78
    樊叶杨,庄杰云,吴建利,等.应用微卫星标记鉴别水稻籼粳亚种[J].遗传,2000,22(6):392-394
    方宣钧,刘思衡,江树业.品种纯度和真伪的DNA分子标记及其应用[J].农业生物技术学报,2000,(2):106-110.
    高方远,陆贤军,周良强,等.香优1号DNA指纹分析及种子纯度鉴定[J].西南农业学报,2002,15(14):22-25
    谷福林,苏自强,王水方.优质杂交粳稻新组合86优8号[J].杂交水稻,2001,16(2):59-60
    郭军.DNA分子标记技术在品种鉴定和纯度分析上的应用[J].种子科技,2000(4):217-219
    盖钧镒.试验统计方法[M].北京:中国农业出版社,2000:35-125(a)
    盖钧镒.试验统计方法[M].北京:中国农业出版社,2000:199(b)
    顾铭洪.对亚种间杂交水稻广亲和系选育中的一些问题的讨论[J].杂交水稻,1994,(3-4):34-36
    管晓春,刘康.浅淡种子纯度及真实性室内鉴定[J].种子,1998,(3):74
    洪德林,H SATIOH, T KUMAMARU,等.BT型杂交粳稻育性及其三系的若干蛋白标记研究[J].中国水稻科学,2001,15,(3):165-168
    韩玉杰,贾炜珑,王自霞,等.几种提取植物DNA方法的比较[J].山西农业科学,2008,36(7):17-19
    何光华,裴炎,杨光伟,等.野败型杂交水稻恢复基因的AFLP标记研究[J].遗传学报,2000,27,304-310
    胡一鸿,姜孝成,肖辉海,等.水稻籼粳杂交F1植株育性与花粉育性的关系[J].吉首大学学报,2003,.24(1):80-82
    黄萱,高丽美,张永彦,等.一种优化的植物总DNA提取方法[J].西北植物学报,2004,24(6):1103-1106
    蒋佩琪,淳泽,邓晓建,等.水稻早熟基因显性抑制基因的遗传分析和分子标记定位[J].四川大学学报,2003,40(2):377-381
    金伟栋,洪德林.杂交水稻品种指纹鉴定研究进展[J].上海农业学报,2006,22(1):104-108
    金伟栋,程保山,洪德林.基于SSR标记的太湖流域粳稻地方品种遗传多样性研究[J].中国农业科学,2008,41(11):3822-3830
    赖相红,李静,李冰.蛋白质电泳技术在品种鉴定和纯度检验上的应用[J].新疆农垦科技,2003(4): 31-33
    李小林,邓安凤,徐雨然,等.农业生物技术在水稻种子纯度鉴定中的应用[J].中国农学通报,2007,23(4):54-58
    梁明山,曾宇,周翔,等.遗传标记及其在作物品种鉴定中的应用[J].植物学通报,2001,18(3):257-265.
    刘敏轩,王赞文,韩建国,等.种子真实性及品种纯度蛋白质电泳鉴定技术研究进展[J].种子,2006,25(7):54-57
    刘文俊,王令强,何予卿.利用2个相关群体定位和比较水稻株高和抽穗期QTL[J].华中农业大学学报,2007,26(2):161-166
    刘永胜,周开达.水稻籼粳杂种不育性的多基因遗传不平衡[J].四川农业大学学报,1993,11(1):1-5
    陆作楣,王华,沈又佳.杂交稻胚乳贮藏蛋白多态性及其应用研究[J].南京农业大学学报,2001,24,(2):6-11
    陆士伟,赖天斌.同工酶在农业生产上的应用[M].广州:广东科学技术出版社,1987
    陆士伟.黄柄权,邝章标,等.应用酯酶同工酶测定水稻杂交纯度的研究[J].中国农业科学,1982,10-16
    李和标,李传国,陈忠明,等.籼粳杂种F1结实率稳定性研究[J].江苏农业科学,1995,11(3):7-11
    李仕贵,马玉清,何平,等.不同环境条件下水稻生育期和株高的QTL分析[J].作物学报,2002,24(4):546-550
    李任华,徐才国,孙传清,等.栽培稻的基因型差异程度和分类[J].作物学报.1999,25(4):518-526
    李小林,邓安凤,徐雨然,等.农业生物技术在水稻种子纯度鉴定中的应用[J].中国农学通报,2007,23(4):54-58
    李晶炤,何平,李仕贵,等.利用微卫星标记鉴定杂交水稻冈优22种子纯度的研究[J].生物工程学报,2000,16(2):211-214
    李进波,方宣钧,杨国才,等.两系杂交稻亲本SSR指纹图谱的建立及其在种子纯度鉴定中的应用[J].杂交水稻,2005,20(2):50-53
    李进波,牟同敏,夏建武,等.利用微卫星标记鉴定两系杂交稻两优培胜的种子纯度[J].中国农学通报,2002,18(6):10-13
    李晓玲.水稻籼粳亚种间杂种不育性的研究进展[J].中国农学通报,2004,20(5):45-49.
    李卓杰,傅家瑞.等电聚焦电泳对杂交水稻种子纯度鉴定的技术[J].种子,1991,(3):68
    李召华,朱克永,陈祖武,等.SSR分子标记技术在杂交水稻种子纯度鉴定中的应用[J].杂交水稻,2006,21(4):11-14
    粱永书,李艳萍,孙海波,等.籼粳交组合培矮64S/日本晴F2、F3及F6代主要农艺性状分析[J].植物学通报,2008,25(1):59-66
    龙雯虹,许明辉.籼稻和粳稻品种在RAPD上的遗传差异[J].云南农业大学学报,2002,17(3):245-247
    卢振宇,李明顺,谢传晓,等.玉米叶片DNA快速提取方法改进研究[J].玉米科学,2008,16(2):50-53.
    吕川根,邹江石.水稻亚种间亲和性的研究进展[J].江苏农业学报,2000,16(1)50-56.
    吕川根,高艳红,宗寿余,等.水稻籼粳杂种IR36/Kamairazu花粉育性的遗传[J].作物学报,2006,3(32):469-471.
    吕川根.江苏省两系法杂交稻研究与生产[J].江苏农业学报,2010,26(3):649-657
    马红勃,许旭明,韦新宇,等.基于SSR标记的福建省若干水稻品种DNA指纹图谱构建及遗传多样性分析[J].福建农业学报,2010,25(1):33-38
    毛龙.高杆野生稻与栽培稻杂交后代的RFLP分析[J].植物学报,1994,36(1):11
    莫惠栋.农业试验统计[M].上海:上海科学技术出版社,1984:500-501
    欧志英,彭长连,林桂珠.田间条件下超高产水稻培矮64S/E32及其亲本旗叶的光合特性[J].作物学报,2005,31(2):209-213
    彭锁堂,庄杰云,颜启佳,等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定[J].中国水稻科学,2003,17(1):1-5
    钱前.真假水稻Ⅱ优63的RAPD鉴定[J].中国水稻科学,1996,10(4):241-242
    沙爱华,张端品.一种从干种子提取DNA用于RAPD和SSR分析的简便方法[J].华中农业大学学报,2005,24(6):561-563
    盛焕银.杂交水稻制种面临的新形势[J].种子科技,2010(8):12
    时宽玉,洪德林.6个水稻杂交组合与其亲本的SSR标记多态性及其应用[J].南京农业大学学报,2005,28(4):1-5
    施勇烽,应杰政,王磊,等.鉴定水稻品种的微卫星标记筛选[J].中国水稻科学,2005,19(3):195-201
    思彬彬,张超,徐如宏,等.小麦基因组DNA改良提取方法的探讨[J].山地农业生物学报,2005,24(02):142-145
    苏顺宗,黄玉碧,杨俊品,等.利用SSR鉴定水稻杂交种子纯度的研究[J].种子,2003(1):23-25
    孙志栋,王学德,倪西源,等.棉花DNA提取方法的探讨[J].浙江农业学报,2004,16(4):177-181
    孙林静,马忠友,苏京平,等.一种简单快速的DNA提取方法在水稻上的应用[J].天津农学院学报,2007,14(3):1-4
    谭君,杨俊品.玉米种子DNA快速提取及杂交种纯度的快速鉴定[J].分子植物育种,2009,7(4):811-816
    谭孟君,肖层林.分子标记在杂交水稻种子纯度鉴定中的应用[J].作物研究,2006,5:409-412
    汤文开,谭新,张辉,等.一种快速简单高效提取植物DNA的方法[J].华中师范大学学报,2007, 41(3):447-449
    陶芳,李旭,陈龙英,等.酯酶同工酶谱分析鉴定杂交水稻种子纯度技术初探[J].种子,1997,2:55-57
    陶芳,陈龙英,夏承东,等.杂交组合特优559室内纯度检测研究[J].江苏农业科学,2001,5:11-12
    滕开琼,戴钢,徐立新,等.电泳技术在种子纯度鉴定中的几个关键问题[J].河南农业科学,2004,10:23-24
    田再民,龚学臣,季伟.小麦DNA提取方法的比较[J].河北北方学院学报,2009,4:22-25
    万宜珍.浅谈杂交水稻品种权保护现状及对策杂交水稻[J].杂交水稻,2006,21(5):8-11
    汪爱顺,李进波,刘汉珍.DNA指纹用于杂交水稻种子纯度和真伪鉴定的研究进展[J].分子植物育种,2005,3(3),393-400
    王才林,吕川根,邹江石,等.优质高产抗病两系杂交稻两优108的选育与应用[J].中国稻米,2006(6):19-20
    王才林.江苏省杂交水稻育种的现状与展望[J].江苏农业科学,2006,1:1-7
    王风格,赵久然,佘花娣,等.中国玉米新品种DNA指纹库建立系列研究Ⅲ.多重PCR技术在玉米SSR引物扩增中的应用[J].玉米科学,2003,11(4):3-6
    王辉,王安东,胡振大,等.安徽省籼型两系不育系育性不稳的原因及对策[J].安徽农业科学,2003,31(4):520-522
    王静,张成军,陈国祥,等.低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响[J].中国水稻科学,2006,20(2):177-182
    王松文,刘霞,王勇,等.RFLP揭示的籼粳基因组多态性[J].中国农业科学,2006,39(5):1038-1043
    王松文.36个水稻骨干系的分子聚类及其遗传育种学意义Ⅰ.分子标记多态性与杂交亲和性关系的研究[J].华北农学报,1997,12(4):1-6
    王晓峰,黄惠玲,超薄,等,电聚焦电泳技术在水稻品种鉴定上的应用[J].种子,2000,11(4):6-8
    汪秀峰,李莉,皮桃花,等.PCR反应混合液的冻干处理及其应刖[J].遗传,2002,24(2):171-173
    吴建梅,吴明霞,卢勤,等.酯酶同工酶电泳法鉴定特有组合种子纯度效果研究[J].福建稻麦科技,2003,21(2):18-20
    萧层林.水稻籼型温敏不育系培矮64S异交特性研究[J].湖南农学院学报,1993,19(6):515-521
    肖小余,王玉平,张建勇,等.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用[J].中国水稻科学,2006,20(1):1-7
    辛景树,郭景伦,张软斌,等.几种常用分子标记技术在种子纯度和品种真实性鉴定方面的比较与分析[J].种子,2005,24(1):58-60
    辛良杰,李秀彬.近年来我国南方双季稻区复种的变化及其政策启示[J].自然资源学报,2009,24(1):58-65
    辛业芸,张展,熊易平,等.应用SSR分子标记鉴定超级杂交水稻组合及其纯度[J].中国水稻科学,2005,19(2):95-100
    徐春奎,朱汉清,刘洪进,等.两系中籼稻两优培九的特征特性及其栽培要点[J].中国种业,2002(4):45-46
    徐俊锋.中国籼稻品种抽穗期基因型分析及隐性感光抑制基因dth-8的精细定位[D].南京农业大学,2007
    严敏,王晓峰.杂交玉米、水稻和辣椒种子品种真实性和纯度的室内快速鉴定[J].华南农业大学学报(自然科学版),2003,24(2):6-8
    颜启传.作物品种纯度检验的进展[J].种子,1984,(2):61-63
    颜启传.杂交水稻种子及其三系的真实性与纯度鉴定[J].种子,1984,(3):15-18
    颜启传.种子学[M].中国农业出版社,2001,440-462
    杨存义,陈芳远,刘耀光.几个水稻株系的亲和性测定及微卫星标记分析[J].西北植物学报,2003,23(11):1916-1921
    杨守仁,沈锡英,顾慰莲,等.籼粳稻杂交育种研究[J].遗传学通讯,1973,2:34-38
    杨杰.水稻亚种间杂种低温花粉不育的遗传分析[D].南京:南京农业大学,2003
    杨杰,仲维功,王才林,等.SSR标记及其在水稻分子生物学研究中的应用[J].金陵科技学院学报,2005,12(4):34-38
    杨江义,淘大云,胡凤益,等.籼粳水陆稻杂交的株高和结实率的遗传[J].云南农业学报,2002,15(1):15-19
    杨蜀岚,伏健民,杨仁崔,等.培矮64S为不育系的两系杂交稻杂种纯度的RAPD鉴定[J].福建农业大学学报,1998,27(1):6-9
    余四斌,徐才国.用RAPD技术鉴定水稻种子纯度初探[J].种子,1996,(5):56-57
    袁爱平,曹立勇,庄杰云,等.水稻株高、抽穗期和有效穗数的QTL与环境的互作分析[J].遗传学报,2003,30(10):899-906
    袁隆平.发展杂交水稻保障粮食安全[J].杂交水稻,2010,25(第1届中国杂交水稻大会论文集):1-2
    袁隆平.杂交水稻学[M].北京:中国农业出版社,2002
    袁隆平.杂交水稻育种战略构想[J].杂交水稻,1987,(1):1-3
    詹庆才.利用微卫星DNA标记进行杂交水稻种子纯度鉴定的研究[J].杂交水稻,2002,17(5):46-50
    张凤,陈伟.杂交水稻种子纯度鉴定方法概述[J].种子,2004,23(9):55-58
    张凤,陈伟.DNA指纹技术在杂交水稻种子纯度鉴定中的应用[J].种子科技,2006(4):37-39
    张桂权.栽培稻杂种不育性的遗传研究[D].广州:华南农业大学.1991
    张辉,姜勇.杂交水稻品种鉴定和纯度分析技术研究进展[J].安徽农业科学,2009,37(20):9416-9419
    张建勇,袁佐清,李仕贵.微卫星标记分析籼粳亚种间的遗传多样性[J].山东理工大学学报,2005,19(2):22-27
    张亚兵.用不同浓度盐酸溶液和光照条件处理杂交水稻种子的实验[J].种子世界,1995(12):15-17
    张彦,郭士伟,何冰,等.利用SSR标记建立杂交水稻分子指纹图谱数据库[J].江苏农业学报,2006,22(2):181-183
    中国农业科学院.中国稻作学[M].北京:农业出版社,1986
    邹江石,姚克敏,邓芳萍.培矮64S的育性特征及其安全使用技术[J].作物学报,2003,29(1):87-92
    周钧.合理利用栽培技术提高两系制种纯度[J].种子科技,2008,(3):39--41
    周伟,陈云,牟同敏.自然条件下水稻光温敏核不育系M113S、华201S和培矮64S的育性转换特性研究[J].华中农业大学学报,2008,27(6):709-714
    朱宏波,杨仁崔.利用水稻基因组序列数据开发SSR标记的方法[J].分子植物育种,2003,1(2):273-276
    庄杰云,施勇烽,应杰政,等.中国主栽水稻品种微卫星标记数据库的初步构建[J].中国水稻科学,2006,20(5):460-468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700