用户名: 密码: 验证码:
气候变暖对中国水稻生产的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业生产与气候变化密切相关,在目前全球变暖趋势愈发显著的背景下,气候变化对作物生产的影响已不容忽视。水稻是世界主要粮食作物,占据世界人口一半以上的亚洲、非洲及拉丁美洲国家人民多以水稻作为主要食物来源。中国是世界上最大的水稻生产国,水稻种植面积和总产量分别占据世界的第二和第一位。水稻在中国的产量超过了谷物类总产的40%。
     由于气候变化本身的区域性和季节性,以及中国水稻生产的地域性,气候变化给水稻生产带来的影响并不完全一致,具有很大的不确定性。中国以不到全球10%的农田,承载了全球近20%的人口,气候变化对其水稻生产的影响将直接关乎世界近1/5人口的粮食安全问题。毫无疑问,粮食安全将成为中国当前以及未来可预期的相当长一段时间内无法忽视的问题;如何保证粮食安全是亟待研究的重大课题。因此,本研究将采用定量化分析方法,分析气候变暖给中国地区水稻生长发育及水稻生产带来的影响,以求为确定水稻的种植区域、合理安排农作制度提供科学依据。
     本研究通过气候变化、水稻物候等观测及模拟数据,采用时间序列分析等统计方法及模型模拟方法,基于地理信息系统(GIS)技术,从时间、空间上阐明了水稻安全生长季变化及生长季内关键生育期极端温度胁迫的变化情况,同时在此基础上修正水稻光温生产潜力模型,评估中国历史及未来水稻光温生产潜力和产量的变化。主要研究结果为:
     (1)1961-2008年间,水稻安全生长季长度阶段性变化明显,延长趋势主要出现在1985以后。水稻安全生长季在东北单季稻区,长江中下游单季稻区,长江中下游双季稻区及华南双季稻区都有显著的延长趋势,分别为9d/10a、6d/10a、7d/10a和7d/10a。东北稻区安全生长季长度的增加是由安全播种期和安全成熟期的变化同时引起的,而长江中下游地区和华南地区多是由于安全播种期的提早引起的。安全播种期的提前比安全成熟期的推迟更为显著,对生长季延长的贡献也大于安全成熟期。空间上,水稻安全生长季最长出现在云贵高原地区,最短出现在东北地区北部。东北和长江中下游地区安全生长季长度的变化最为明显,增加均超过10d。
     (2)1961-2008年间,不同种植区水稻关键生育期低温冷害和高温热害的变化趋势具有明显的时空分布特征。总体而言,气候变暖背景下低温冷害逐渐减少,而高温热害并无增加。其中,低温冷害减少主要表现在育秧期和抽穗开花期,孕穗期无明显变化特征。水稻各种植区中,只有东北单季稻区,长江中下游双季稻区和华南双季稻区三个地区的低温冷害出现减少趋势,低温冷害指数在育秧期的减少幅度分别为0.6/10a、1.2/10a和1.6/10a,在抽穗开花期的减幅分别为0.2/10a、0.3/10a和0.4/10a。冷害减缓趋势开始显著的时间呈现出从北向南逐渐推迟的格局,育秧期东北单季稻区和长江中下游双季稻区起始于80年代中期,而华南双季稻区从90年代中期才开始显著;抽穗开花期起始时间在东北单季稻区、长江中下游双季稻区和华南双季稻区分别为70年代初期、80年代中期和90年代初期。水稻种植区高温热害并未出现增加趋势,仅有长江双季早稻区的高温热害在2000s出现的次数较为频繁,但近两年又有所缓和,因此无法断定该区的高温热害的变化趋势。通过在县级和省级尺度上对低温冷害和高温热害与水稻单产的相关关系进行分析发现,抽穗开花期极端温度胁迫指数(△TSI)升高1则会造成水稻减产291kg ha-1,而在育秧期极端温度胁迫指数(△TSI)同样升高1会水稻仅减产165kg ha-1。
     (3)1961-2050年间,水稻各种植区光温生产潜力的变化有所不同。东北单季稻区、长江中下游稻区和华南双季稻区1961-2008年光温生产潜力明显增长,其中长江中下游双季稻区的增幅较大,每年约增加150kg ha-1;与此相反的是,四川盆地光温生产潜力每年减少75kg ha-1,减少趋势显著。未来40年间,东北、四川盆地和云贵高原三个单季稻区以及长江中下游双季稻区均表现出极其显著的上升趋势,在A2和B2情景下的增长趋势分别为每年136kg ha-1、79kg ha-1、116kg ha-1、85kg ha-1和每年91kg ha-1、67kg ha-1、118kg ha-1、89kg ha-1。空间上看,1981-2050年间光温生产潜力在东北稻区由北向南呈阶梯状增加,在南方稻区从沿海向内陆呈环状逐渐递减。最高的值出现在云贵高原西南地区及华南的部分地区,最低值则出现在东北稻区的北部。水稻单产总体表现为增加趋势,在1961-2008年间增加趋势极其显著,但在2011-2050年间增幅则较小。空间上,水稻单产在不同阶段的分布特征不同。1981-2008年,在东北稻区由周边向中部呈环状逐渐增加,在南方稻区从东南沿海向西北内陆逐渐递增,最高的单产出现在四川盆地。未来40年水稻单产在东北地区呈现由东北向西南阶梯状递增,在南方地区则呈高低相间的带状分布。最高的单产出现在东北稻区西南部和四川盆地东部,最低的则出现在两个双季稻区。
     本研究主要结论:1961-2008年间,水稻安全生长季总体变长,延长趋势具有明显的时空特征,其中安全播种期的提前比安全成熟期的推迟更为显著,对生长季延长的贡献也大于安全成熟期;关键生育期低温冷害有所减少而高温热害并未增加,冷害减少主要出现在育秧期和抽穗开花期;光温生产潜力的变化在各个种植区各有不同,主要表现为1961-2008年间东北单季稻区、长江中下游稻区和华南双季稻区光温生产潜力增加而四川盆地降低,2011-2050年间所有稻区的光温生产潜力都表现出升高趋势。2011-2050年间水稻单产总体趋势增加,但增幅较小。
Agricultural production is closely related to climate change. Under background of global warming, increasing political, economic and scientific attention has been drawn to the impacts of climate change on crop production. Rice is world's major food crop, and serves as basic staple for more than half of the world's population in Asia, Africa and Latin America. China is one of the world's largest rice-producing countries, has the second largest area of rice cultivation and the highest rice production, and rice occupies more than 40% of the national cereals yields of China.
     Due to the spatial and temporal heterogeneity of climate, and the regionality and seasonality of rice planting, the climate change impacts on rice production is highly uncertainty. Agricultural land in China comprises less than 10% of world's arable land area but feeds nearly 20% of the world population. The effects of climate change on rice production will be directly related to 1/5 of the world population's food security. There is no doubt that food security will become a major problem in China at present and in the foreseeable future of next several decades. Food security is a major issue to be studied. In this study, by using quantitative method to analyze the influence of global warming on rice growth and production in China, we tried to provide scientific basis for determining the rice growing areas and arranging reasonable farming systems.
     Through observed and simulated climate and rice phenology data, using methods of statistical analysis like time series analysis, mathematical modeling and GIS technology, this study clarified spatial-temporal changes of rice growing season length and extreme temperature stress during different key growth stages of irrigated rice across mainland China. And by modifying the model of photosynthetic thermal productivity and adopting modified model, we estimated the historical and future rice yield and photosynthetic thermal productivity. Results of this study are presented as follows:
     (1) From 1961 to 2008, the change of safe growing season behaved periodically, with extending tendency after 1985. Rice safe growing season length in single rice region of Northeast and the mid-lower Yangtze River Valley, and double rice region of the mid-lower Yangtze River Valley and South China, had significantly increased with 9d/10a,6d/10a, 7d/10a and 7d/10a, respectively. Extending of growing season length in Northeast is because of the earlier safe sowing time and later mature time, and in the mid-lower Yangtze River Valley and South China is only due to the earlier of safe sowing time. Shifting of safe sowing time is more significant than that of mature time, and contributed greater to the change of growing season. Spatially, the longest safe growing season of rice appeared in Yunnan-Guizhou Plateau, and the shortest in the northern area of the Northeast China. Northeast and the mid-lower Yangtze River Valley had the most significant change trend in growing season length, with an increase of more than 10d.
     (2) From 1961 to 2008, low-and high-temperature stress during rice critical growth period in different planting regions distributed temporally and spatially. In general, global warming reduced low-temperature stress but did not increase high-temperature stress. Reduction of low-temperature stress mainly occurred in seedling and heading-flowering stage, no significant variation in booting. Among all planting regions, only single rice region of Northeast, double rice region of the mid-lower Yangtze River Valley and South China showed a decreasing trend of low-temperature stress, with LTSI reduction in seedling stage of 0.6/10a,1.2/10a and 1.6/10a respectively, in heading-flowering stage of 0.2/10a,0.3/10a and 0.4/10a respectively. The year when low-temperature stress starting reducing significantly appeared to be gradually later from the north to the south:during seedling stage low-temperature decreased since the mid-1980s in the Northeast and the mid-lower Yangtze River Valley, and did not drop until the 1990s in South China; during heading-flowering stage low-temperature decreased in the three regions started from the early of 1970s, the mid-1980s and the early of 1990s, respectively. No significant trends in HTSI were observed in all rice planting regions, while relatively high HTSI occurred in the mid-lower Yangtze River Valley during the 2000s. This relatively high HTSI did not suggest an increasing trend because it declined in the last two years. Through the analysis on the relation between extreme temperature stress and rice yield in county and provincial level, we founded a yield reduction of 291 kg ha-1 whenΔTSI increased by one unit in heading-flowering stage, and reduction of 165 kg ha-1 when happened in seedlings stage.
     (3) From 1961 to 2050, the change of photosynthetic thermal productivity behaved differently in time and space. The photosynthetic thermal productivity in single rice region of Northeast, rice region of the mid-lower Yangtze River Valley and double rice region of mid-lower Yangtze River Valley showed a significant increasing trend during 1961 to 2008. Double rice region of mid-lower Yangtze River Valley had the most significant tendency, with an annual increase of 150 kg ha-1; contrarily, the photosynthetic thermal productivity in the Sichuan Basin reduced 75 kg ha-1 each year significantly. From 2011 to 2050, the photosynthetic thermal productivity in all rice planting regions had shown a rising trend. This trend in single rice region of Northeast China, Sichuan Basin and Yunnan-Guizhou Plateau, and double rice region of the mid-lower Yangtze River Valley were significantly; with increasing trend under the A2 and B2 scenarios of 136 kg ha-1,79 kg ha-1,116 kg ha-1, 85 kg ha-1 and 91 kg ha-1,67 kg ha-1,118 kg ha-1,89 kg ha-1 each year, respectively. In space, from 1981 to 2050 the photosynthetic thermal productivity in the Northeast increased gradually from north to south, and in the South from the coastal area to the inland decreasing gradually. The highest productivity appeared in southwest Yunnan-Guizhou Plateau and parts of Southern China, while the lowest value in the northern part of northeast. Rice yield increased significantly from 1961 to 2008, but only had a small rise from 2011 to 2050. Spatially, rice yield had different distribution characteristics during the two periods. From 1981 to 2008, the rice yield in the Northeast increased gradually from surrounding area to middle annularly, and in the south from the coastal area to the inland decreasing gradually. The highest value appeared in Sichuan Basin. During the next 40 years, the rice yield in the Northeast increases from north to south, and in the south distributed zonally. The highest value appeared in southern part of northeast and eastern part of Sichuan Basin, while the lowest value in the two double rice regions.
     In conclusion, from 1961 to 2008, safe growing season extended generally and had obvious temporal and spatial characteristics. The forward shift of safe sowing time is more significant than backward shift of mature time, and contributed greater to the change of growing season length. During all critical growth periods, low-temperature stress reduced but high-temperature stress did not increase. Reduction of low-temperature stress mainly occurred in seedling and heading-flowering stage. The photosynthetic thermal productivity changes in planting regions were significantly different. It increased in single rice region of Northeast, rice region of the mid-lower Yangtze River Valley and double rice region of the mid-lower Yangtze River Valley, but decreased in Sichuan Basin. From 2011-2050 years, the photosynthetic thermal productivity in all planting regions had shown a rising trend. Rice yield increased generally, with an increasing trend from 1961 to 2008, but a smaller rise trend from 2011 to 2050.
引文
1. Abu-Asab, M.S., Peterson, P.M., Shetler, S.G., and Orli, S.S.2001. Earlier Plant flowering in spring as a response to global warming in the Washington, DC, area. Biodiversity and Conservation, 10:597-612.
    2. Bouman, B.A.M., van Keulen, H., van Lear, H.H, and Rabbinge, R.1996. The'school of de Wit' crop growth simulation models:a pedigree and historical overview. Agricultural Systems,52:171-198.
    3. Bradley, N.L., Leopold, A.C., and Ross, J., and Huffaker, W.1999. Phenological changes reflect climate change in Wisconsin. Proceedings of National Academy of Sciences,96:9701-9704.
    4. Brown, M. E., and Funk, C.C.,2008. Food security under climate change. Science,319:580-581.
    5. Brown, S. J., Caesar, J., and Ferro, C.A.T.2008. Global changes in extreme daily temperature since 1950. Journal of Geophysical Research,113(D05115):1-11.
    6. Chmielewsky, F.M., and Roetzer, T.2001. Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology,108:101-112.
    7. CMDSSS.2009. China Meteorological Data Sharing Service System.http://cdc.cma.gov.cn/.
    8. Cutforch, H.W., and Shaykewich, C.F.1990. A temperature response function for corn development. Agricultural and Forest Meteorology,50:159-171.
    9. Ding, Y.H., Ren, G.Y., Zhao, Z.C., Xu, Y., Luo, Y., Li, Q.P., and Zhang, J.2007. Detection, causes and projection of climate change over China:an overview of recent progress. Advances in Atmospheric Science,24(6):954-971.
    10. FAO.2010. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/.
    11. Farooq, M., Basra, S.M.A., Hafeez, K., and Warriach, E.A.2004. Influence of high-and low-temperature treatments on seed germination and seedling vigor of coarse and fine rice. IRRN Best Article Awards,29(2):75-77.
    12. Farrell, T.C., Williams, R.L., and Fukai, S.2001. The cost of low temperature to the NSW rice industry. In:Proceeding of the 10th Australian Agronomy Conference. Hobart, Australia,28 January-1 February 2001. http://www.regional.org.au/au/asa/2001/1/d/farrell.htm/.
    13. Foolad, M.R., and Lin, G.Y.2001. Genetic analysis of cold tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. Euphytica,122:105-111.
    14. Frich, P., Alexander, L.V., Della-Marta, P., Gleason, B., Haylock, M., Tank, A.M.G., K., and Peterson, T.2002. Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research,19:193-212.
    15. Frolking, S., Qiu. J.J., Boles, S., Xiao, X.M., Liu. J.Y., Zhuang, Y.H., Li. C.S., and Qin, X.G.2002. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Global Biogeochemical Cycles,16(4):38-1-38-10.
    16. Gao, L.Z., Jin, Z.Q., and Li, L.1986. A climatic classification for rice production in China. In:M. LaRue Pollard, Emerita P. Cervantes (Eds.), Weather and Rice. Proceedings of the international workshop on the Impact of Weather Parameters on Growth and Yield of Rice. In pages 69-77. Manila, Philippines,7-10 Apr 1986. Los Banos, Laguna, Philippines and P.O. Box 933, Manila, Philippines.
    17. Gunawardena, T.A., Fukai, S., and Blarney, F.P.C.2003. Low temperature induced spikelet sterility in rice. II. Effects of panicle and root temperatures. Australian Journal of Agricultural Research,54: 947-956.
    18. Gunther, F., and van Velthuizen H.2002. Global Agro-ecological Assessment for Agriculture in the 21st Century:Methodology and Results, IIASA, FAO. RR-02-02.
    19. Iglesias, A., and Rosenzweig, C.2009. Effects of Climate Change on Global Food Production under Special Report on Emissions Scenarios (SRES) Emissions and Socioeconomic Scenarios: Data from a Crop Modeling Study. Palisades, NY:Socioeconomic Data and Applications Center (SEDAC), Columbia University. Available at http://sedac.ciesin.columbia.edu/mva/cropclimate/.
    20. Hola, D., Langrova, K., Kocova, M., and Rothova, O.2003. Photosynthetic parameters of maize (Zea mays L.) inbred lines and F1 hybrids:their different response to, and recovery from rapid or gradual onset of low-temperature stress. Photosynthetica,41(3):429-442.
    21. Imai, R., Wen, J.Q., Sasaki, K., and Oono, K.2005. Diverse mechanisms of low-temperature stress response in rice. In:Toriyama K., Heong K. L., Hardy B. (Eds.), Rice is life:scientific perspectives for the 21 st century. Proceedings of the World Rice Research Conference held in Tokyo and Tsukuba, Japan,4-7 November 2004. In pages 54-56. International Rice Research Institute, Los Banos, Philippines and Japan International Research Center for Agricultural Sciences, Tsukuba, Japan.
    22. Inoue, Y., Susan, M.M., and Horde, T.1998. Analysis of spectral measurements in paddy field for predicting rice growth and yield based on a simple crop simulation model. Remote Sensing and Modeling,1(4):269-279.
    23. IPCC.2007. IPCC Fourth Assessment Report (AR4). Cambridge:Cambridge University Press.
    24. IRRI.2010. International Rice Research Institute. http://irri.org/world-rice-statistics/.
    25. Jagadish, S.V.K., Craufurd, P.Q., and Wheeler, T.R.2007. High temperature stress and spikelet fertility in rice. Journal of Experimental Botany,58(7):1632-1635.
    26. Jagadish, S.V.K., Sumfleth, K., Howell, G., Redona, E., Wassmann, R.. and Heuer, S.2009. Temperature effects on rice:significance and possible adaptation. Environments:Coping with Adverse Conditions and Creating Opportunities:19-25.
    27. James, W.H., James, W.J.2000. Scaling-up Crop Models for Climate Prediction Applications. In: Sivakumar MVK (Eds.), Climate Prediction and Agriculture. In pages 77-117. International START Secretariat. Washington DC, USA.
    28. Janda, T., Szalai, G., and Paldi, E.2000. Thermoluminescence investigation of low temperature stress in maize. Photosynthetica,38(4):635-639.
    29. Ke, D., Sun, G., and Jiang, Y.2004. Dural role of superoxide radicals in the chilling-induced photoinhibition in maize seedlings. Photosynthetica,42(1):147-152.
    30. Keeling, C.D., Chin, J.F.S., and Whorf, T.P.1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature,382:146-149.
    31. Kutik, J., Hola, D., Kocova, M., Rothova, O., Haisel, D., Wilhelmova, N., and Ticha, I.2004. Ultrastructure and dimensions of chloroplasts in leaves of three maize(Zea may L.) inbred lines and their F1 hybrids grown under moderate chilling stress. Photosynthetica,42(3):447-455.
    32. Li, T., and Wassmann, R.2009. Modeling approaches for assessing adaptation strategies in rice germplasm development to cope with climate change. Environments:Coping with Adverse Conditions and Creating Opportunities:55-61.
    33. Liebig, J.1841. Organic Chemistry in Its Applications to Agriculture and Physiology. London: Cambridge press.
    34. Lin, C.J., Li, C.Y., Lin, S.K., Yang, F.H., Huang, J.J., Liu, Y.H., and Lur, H.S.2010. Influence of high temperature during grain filling on the accumulation of storage proteins and grain quality in rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry,58:10545-10552.
    35. Lin, E.D., Xiong, W., Ju, H., Xu, Y.L., Li, Y., Bai, L.P., and Xie, L.Y.2005. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of The Royal Society B,360 (1463):2149-2154.
    36. Linderholm, H.W.2006. Growing season changes in the last century. Agricultural and Forest Meteorology,137:11-14.
    37. Linderholm, H.W., Walther, A., Chen, D., and Moberg, A.2008. Twentieth-century trends in the thermal Growing-season in the Greater Baltic Area. Climatic Change,87:405-419.
    38. Liu, B.H., Xu, M., Henderson, M., and Gong, W.2004. A spatial analysis of pan evaporation trends in China,1955-2000. Journal of Geophysical Research,109,D15102, doi:10.1029/2004JD004511.
    39. Lobell, D.B.2007. Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology.145:229-238.
    40. Lobell, D.B., Burke, M.B., Tebaldi, C, Mastrandrea, M.D., Falcon, W.P., and Naylor, R.L.2008. Prioritizing climate change adaptation needs for food security in 2030. Science,319:607-610.
    41. Loomis, R.S., and Williams, W.A.1963. Maximum crop productivity:An estimate. Crop Science, 3(1):67-72.
    42. Lukatkin, A.S.2002. Contribution of oxidative stress to the development of cold-induced damage on leaves of chilling-sensitive plants:1. Reactive oxygen species formation during plant during plant chilling. Russian Journal of Plant Physiology,49(5):622-627.
    43. Mamun, E.A., Alfred, S., Cantrill, L.C., Overall, R.L., and Sutton, B.G.2006. Effects of chilling on male gametophyte development in rice. Cell Biology International,30:583-591.
    44. Matsui, T., Kobayasi, K., Mayumi, Y., and Hasegawa, T.2007. Stability of Rice Pollination in the Field under Hot and Dry Conditions in the Riverina Region of New South Wales, Australia. Plant Production Science,10(1):57-63.
    45. Matsui, T., Omasa, K., and Horie, T.1997. High temperature-induced spikelet sterility of japonica rice at flowering in relation to air humidity and wind velocity conditions. Japanese Journal of Crop Science,66(3):449-455.
    46. Matsui, T., Omasa, K., and Horie, T.2001. The difference in sterility due to high temperatures during the flowering period among Janonica-rice varieties. Plant Production Science,4(2):90-93.
    47. Menzel, A., and Fabian, P.1999. Growing season extended in Europe. Nature,397:659.
    48. Monfreda, C., Ramankutty, N., and Foley, J.A.2008. Farming the planet:2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles,22(GB1022):1-19.
    49. Myneni, R.B., Keeling, C.D., Tucker, C.J., Asrar, G., and Nemani, R.R.1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature,386:698-702.
    50. Nicholls, N.1997. Increased Australian wheat yield due to recent climate trends. Nature,387:484-485.
    51. Nishiyama, I.1976. Effects of temperature on the vegetative growth of rice plants. In:International Rice Research Institute (Eds.), Climate and Rice. In pages 159-186. International Rice Research Institute, Los Banos, Philippines.
    52. Ohta, S.J., and Kimura, A.2007. Impacts of climate changes on the temperature of paddy waters and suitable land for rice cultivation in Japan. Agricultural and Forest Meteorology,147:186-198.
    53. Olesen, J.E., Bocher, P.K., and Jensen, T.2000. Comparis on of scales of climate and soil data for aggregating simulated yields of winter wheat in Denmark. Agriculture, Ecosystems and Environment,82:213-228.
    54. Parmesan, C., and Yohe, G.2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature,421:37-42.
    55. Parry, M.L., Rosenzweig, C, Iglesias, A., Livermore, M., and Fischere, G.2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environmental Change,14:53-67.
    56. Peng, S.B., Ingram, K.T., Neue, H.-U., and Ziska, L.H.1995. Climate Change and Rice. International Rice Research Institute. Springer-Verlag Berlin Heldelberg, Germany.
    57. Penuelas, J., and Filella, I.2001. Herbaria century record of increasing eutrophication in Spanish terrestrial ecosystems. Global Change Biology,7:427-433.
    58. Piao, S.L., Ciais, P., Huang, Y., Shen, Z.H., Peng, S.H., Li, J.S., Zhou, L.P., Liu, H.Y., Ma, Y.C., Ding, Y.H., Friedlingstein, P., Liu, C.Z., Tan, K., Yu, Y.Q., Zhang, T.Y., and Fang, J.Y.2010. The impacts of climate change on water resources and agriculture in China. Nature,467:43-51.
    59. Piao, S.L., Fang, J.Y., Zhou, L.M., Ciais, P., and Zhu, B.2006. Variations in satellite-derived phenology in China's temperate vegetation. Global Change Biology,12:672-685.
    60. Porter, J.R.2005. Rising temperatures are likely to reduce crop yields. Nature,436:174.
    61. Sacks, W.J., Deryng, D., Foley, J.A., and Ramankutty, N.2010. Crop planting dates:an analysis of global patterns. Global Ecology and Biogeography,19:607-620.
    62. Rosenzweig, C, Lglesias, A., Yang, X.B., Epstein, P., and Chivian, E.2001. Climate change and extreme weather events:Implications for food production, plant diseases, and pests. Global Change & Human Health,2(2):90-104.
    63. Shi, K.Y., Cui, Y.W., and Hu, R.F.2009. Impact of high temperature at flowering on midseason rice yield. Journal of Agricultural Science and Technology,11(2):78-83.
    64. Shimono, H., Hasegawa, T., and Iwama, K.2002. Response of growth and grain yield in paddy rice to cool water at different growth stages. Field Crop Research,73:67-79.
    65. Shimono, H., Hasegawa, T., Moriyama, M., Fujimura, S., and Nagata, T.2005. Modeling spikelet sterility induced by low temperature in rice. Agronomy Journal,97:1524-1536.
    66. Shimono, H., Okada, M., Kanda, E., and Arakawa, I.2007. Low temperature-induced sterility in rice:Evidence for the effects of temperature before panicle initiation. Field Crops Research,101: 221-231.
    67. Singh, S., Aggarwal, P.K., and Yadav, R.N.2010. Growth and yield response of rice under heat stress during vegetative, reproductive, and ripening growth phases. International Rice Research Notes,35:1-4.
    68. Song, Y.L., Linderholm, H.W., Chen, D.L., and Walther,A.2010. Trends of the thermal growing season in China,1951-2007. International Journal of Climatology,30:33-43.
    69. Tao, F.L., Yokozawa, M., Liu, J.Y., and Zhang, Z.2008b. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research,38:83-94.
    70. Tao, F.L., Yokozawa, M., Xu, Y.L., Hayashi, Y.,and Zhang, Z.2006. Climate changes and trends in phenology and yields of field crops in China,1981-2000. Agricultural and Forest Meteorology, 138:82-92.
    71. The World Bank.2011. The World Bank Open Data.http://data.worldbank.org/.
    72. Tubiello, F., Soussana, J., and Howden, M.2007. Crop and pasture response to climate change. Proceedings of the National Academy of Sciences,104(50):19686-19690.
    73. UNCTAD.2010. United Nations Conference on Trade and Developoment. http://www.unctad.org/.
    74. Wang, S.P., Wang, Z.H., Piao, S.L., and Fang, J.Y.2010. Regional differences in the timing of recent air warming during the past four decades in China. Chinese Science Bulletin,55(19):1968-1973.
    75. Welch, J.R., Vincent, J.R., Auffhammer, M., Moya, P.F., Dobermann, A., and Dawe, D.2010. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences,107(33):14562-14567.
    76. Xiong, W., Holman, I., Lin, E.D., Conway, D., Jiang, J.H., Xu, Y.L., and Li, Y.2010. Climate change, water availability and future cereal production in China. Agriculture, Ecosystems and Environment,135:58-69.
    77. Yan, Z., Jones, P.D., Davies, T.D., Moberg, A., Bergstrom, H., Camuffo, D., Cocheo, C., Maugeri, M., Demaree, G.R., and Verhoeve, T.2002. Trends of extreme temperatures in Europe and China based on daily observations. Climatic Change,53(1-3):355-392.
    78. Yao, F.M., Xu, Y.L., Lin, E.D., Yokazama, M., and Zhang, J.H.2007. Assessing the impacts of climate change on rice yields in the main rice areas of China. Climatic Change,80:395-409.
    79. Yoshida, S.,1981. Fundamentals of Rice Crop Science. International Rice Research Institute, Los Banos, Philippines.
    80. Zhai, P.M., and Pan, X.H.2003. Trends in temperature extremes during 1951-1999 in China. Geophysical Research Letters,30(17):CLM 9-1-9-4.
    81. Zhang, T.Y., Zhu, J., and Wassmann, R.2010. Responses of rice yields to recent climate change in China:An empirical assessment based on long-term observations at different spatial scales (1981-2005). Agricultural and Forest Meteorology,150:1128-1137.
    82. Zhang, T.Y., Zhu, J., Yang, X.G., and Zhang, X.Y.2008. Correlation changes between rice yields in North and Northwest China and ENSO from 1960 to 2004. Agricultural and Forest Meteorology, 148:1021-1033.
    83. Zhou, L.M., Tucker, C.J., Kaufmann, R.K., Slayback, D., Shabanov, N.V., and Myneni, R.B.2001. Variations in northern vegetation in activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research,106(D17):20069-20083.
    84. Zhou, T.J., and Yu, R.C.2006. Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. Journal of Climate,19:5843-5858.
    85.北京农业大学农业气象专业农业气候教学组.1987.农业气候学.北京:农业出版社.72-75.
    86. Blackman, G. E., and Nblack, J.1965.植物环境分析中生理生态研究.见:作物产量交异的生物基础译文集.北京:科学出版社.
    87.蔡昆争,骆世明.1999.不同生育期遮光对水稻生长发育和产量形成的影响.应用生态学报,10(2):193-196.
    88.曹云英,段骅,杨立年,王志琴,刘立军,杨建昌.2009.抽穗和灌浆早期高温对耐热性不同籼稻品种产量的影响及其生理原因.作物学报,35(3):512-521.
    89.陈善娜,李松,王文.1989.水稻耐寒性苗期生理生化指标测定.西南农业学报,2(4):20-22.
    90.陈友订,万邦惠,张旭.2005.华南双季超高产水稻抽穗期理想株型结构研究.中国水稻科学,19(1):52-58.
    91.程林,江胜国,韩正英,查旭光.2009.安徽省桐城市一季水稻抽穗开花期叶片温度分析.中国农业气象,30(增2):218-220.
    92.崔读昌.1995.气候变暖对水稻生育期影响的情景分析.应用气象学报,6(3):361-365.
    93.村田吉男.1966.光合作用与水稻最高产量上限.农业技术,25:30-36.
    94.党安荣,阎守邕,吴宏歧,刘亚岚.2000.基于GIS的中国土地生产潜力研究.生态学报,20(6):910-915.
    95.邓根云,冯雪华.1980.我国光温资源与气候生产潜力.自然资源,4:11-16.
    96.刁操铨.1994.作物栽培学各论:南方本.北京:中国农业出版社.
    97.丁丽佳,谢松元.2009.气候变暖对潮州水稻主要生育期的影响和对策.中国农业气象,30(增1):97-102.
    98.丁士晟.1980.东北低温冷害和粮食产量.气象,6(5):1-3.
    99.丁士晟.1980.东北地区夏季低温的气候分析及其对农业生产的影响.气象学报,38(3):234-242.
    100.丁一汇,戴晓苏.1994.中国近百年来的温度变化.气象,20(12):19-26.
    101.丁一汇,任国玉,石广玉,宫鹏,郑循华,翟盘茂,张德二,赵宗慈,王绍武,王会军,罗勇,陈德亮, 高学杰,戴晓苏.2006.气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势.气候变化研究进展,2(1):3-8.
    102.丁颖,1961.中国水稻栽培学.北京:农业出版社.
    103.陈华,金之庆,葛道阔,石春林,高亮之,魏秀芳.2004.一种用于评价全球气候变化对中国南方水稻生产影响的效应模型——RCCMOD.江苏农业学报,20(3):129-134.
    104.高亮之,金之庆,黄耀.1992.水稻栽培计算机模拟优化决策系统.北京:中国农业科学技术出版社,21-48.高亮之,金之庆,黄耀.1992.水稻栽培计算机模拟优化决策系统.北京:中国农业科学技术出版社,21-48.
    105.高亮之,金之庆,黄耀,张立中.1989.水稻计算机模拟模型及其应用之一:水稻钟模型——水稻发育动态的计算机模型.中国农业气象,10(3):3-10.
    106.高亮之,李林.1992.水稻气象生态.北京:农业出版社.
    107.高素华,王培娟.2009.长江中下游高温热害及对水稻的影响.北京:气象出版社.
    108.葛道阔,金之庆.2009.气候及其变率变化对长江中下游稻区水稻生产的影响.中国水稻科学,23(1):57-64.
    109.葛道阔,金之庆,石春林,高亮之.2002.气候变化对中国南方水稻生产的阶段性影响及适应性对策.江苏农业学报,18(1):1-8.
    110.耿立清,张凤鸣,许显滨,尹桂花,叶胜利,田英权,孟庆祥.2004.低温冷害对黑龙江水稻生产的影响及防御对策.中国稻米,5:33-34.
    111.古书琴,张玉书.1998.辽宁地区作物低温冷害的遥感监测和气象预报.沈阳农业大学学报,29(1):16-20.
    112.国家统计局.2009.中国统计年鉴2009.http://www.stats.gov.cn/tisi/ndsj/2009/indexeh.htm/.
    113.郭建平,高素华,潘亚茹.1995.东北地区农业气候生产潜力及其开发利用对策.气象,21(2):3-9.
    114.韩荣青,陈丽娟,李维京,张培群.2009.2-5月我国低温连阴雨和南方冷害时空特征.应用气象学报,20(3):312-320.
    115.何燕,李政,徐世宏,欧钊荣,谭宗琨,丁美花.2009.GIS支持下的广西早稻春季冷害区划研究.自然灾害学报,18(5):178-182.
    116.何英彬,陈佑启,唐华俊.2008.水稻冷害研究进展.中国农业资源与区划,29(2):33-38.
    117.侯光良.1986.关于我国作物气候生产力估算问题的讨论.见:中国农业气候资源和农业气候区划集.北京:气象出版社.
    118.侯光良,刘允芬.1985.我国气候生产潜力及其分区.自然资源,19(3):52-59.
    119.黄秉维.1985.中国农业生产潜力——光合潜力.地理集刊(17).北京:科学出版社,1-522.
    120.霍治国,王石立.2009.农业和生物气象灾害.北京:气象出版社.
    121.姬兴杰.2010.气候变化对河南省冬小麦产量的影响及其应对策略的模拟研究.北京:中国科学 院.
    122.姜丽霞,李帅,闫平,纪仰慧,王铭,宫丽娟,王秋京,朱海霞,王连敏.2009.黑龙江水稻冷害V冷害的空间分布规律.黑龙江农业科学,6:12-15.
    123.姜丽霞,李帅,闫平,纪仰慧,朱海霞,王萍,郭建平.2009.黑龙江水稻孕穗期障碍型冷害及其对产量的影响.中国农业气象,30(3):463-468.
    124.姜丽霞,王萍,南瑞,孙守军,闫平.2005.黑龙江省水稻区划细划的初步研究.东北农业大学学报,36(4):523-528.
    125.姜丽霞,阎平,王萍,石剑,杨晓强,董杰,韩俊杰,南瑞.2006.黑龙江省影响水稻安全生产的气象要素.自然灾害学报,15(3):46-51.
    126.江敏,金之庆,石春林,葛道阔,朱大威.2010.长江中下游地区水稻孕穗开花期高温发生规律及其对产量的影响.生态学杂志,29(4):649-656.
    127.矫江,许显滨,孟英.2004.黑龙江省水稻低温冷害及对策研究.中国农业气象,25(2):26-28.
    128.居辉,许吟隆,熊伟.2007.气候变化对我国农业的影响.环境保护,圆桌论坛(6A):71-73.
    129.况雪源,刘健,王红丽,提汝媛.2011.近千年来中国气温模拟与重建资料的对比分析.第四纪研究,31(1):48-56.
    130.隗溟,范玉亮,朱自均.2004.不同移栽秧龄对杂交水稻亲本抽穗期的影响.杂交水稻,19(2):24-27.
    131.李汉彬,于平,钟伟雄,巫燕辉.2007.河源市秋季寒露风害变化特征及其防御对策.气象研究与应用,28(增2):56-58.
    132.李三爱,居辉,池宝亮.2005.作物生产潜力研究进展.中国农业气象,26(2):106-111.
    133.李绅崇,曾亚文,申时全,李本逊,张忠省,戚六花,普晓英.2004.云南地方稻核心种质孕穗期耐冷性及其地理分布.中国水稻科学,18(5):401-406.
    134.李世奎.1988.中国农业气候资源和农业气候区划.北京:科学出版社.124-144.
    135.李守华,田小海,黄永平,刘爱英.2007.江汉平原近50年中稻花期危害高温发生的初步分析.中国农业气象,28(1):5-7.
    136.李秀彬.1999.中国近20年来耕地面积的变化及其政策启示.自然资源学报,14(4):329-333.
    137.李艳兰,苏志,涂方旭.2000.广西秋季寒露风的气候变化分析.广西气象,21(增刊):54-57.
    138.李祎君,王春乙.2010.气候变化对我国农作物种植结构的影响.气候变化研究进展,6(2):123-129.
    139.李忠辉,胡培成,黄晚华.2010.江西省中稻动态气候生产潜力研究.安徽农业科学,38(12):6388-6390.
    140.李忠武,蔡强国,Mitchell, S.,唐政洪,Csillage, F.2002.基于GIS的黄土丘陵沟壑区作物生产力模拟研究.生态学报,22(3):311-317.
    141. Lieth, H., and Whittaker, R.H.1985.见:生物圈的第一性生产力.北京:科学出版社.
    142.林世成,闵绍楷.1991.中国水稻品种及其系谱.上海:上海科学技术出版社.
    143.林迢,简根梅,裘鹏霄,汤昌本.2001.浙江早稻播种育秧期连阴雨发生规律分析.中国农业气象,22(3):10-14.
    144.林忠辉,莫兴国,李宏轩,李海滨.2002.中国陆地区域气象要素的空间插值.地理学报,57(1):47-56.
    145.刘传凤,高波.2001.我国南方春季低温冷害气候及其大气环流特征.热带气象学报,17(2):179-187.
    146.刘纪远,徐新良,庄大方,高志强.2005.20世纪90年代LUCC过程对中国农田光温省钱潜力的影响——基于气候观测与遥感土地利用动态观测数据.中国科学D辑,地球科学,35(6):483-492.
    147.刘伟昌,张雪芬,余卫东,杜子璇,刘忠阳.2009.长江中下游水稻高温热害时空分布规律研究.安徽农业科学,37(14):6454-6457.
    148.陆魁东,申建斌,黄晚华,宋忠华.2005.湖南一季晚稻抽穗扬花期间高温分析及对种植布局的建议.湖南农业科学,4:28-30.
    149.马宝,李茂松,宋吉青,王春艳.2009.水稻热害研究综述.中国农业气象,30(增1):172-176.
    150.马树庆,王琪,沈享文,许英子,李哲.2003.水稻障碍型冷害损失评估及预测动态模型研究.气象学报,61(4):507-512.
    151.内岛立郎.1977.低温条件与水稻空壳.气象科技资料,4:29-31.
    152.潘敖大,高苹,刘梅,王春乙.2010.基于海温的江苏省水稻高温热害预测.应用生态学报,21(1):136-144.
    153.潘铁夫,方展森,赵洪凯,卢庆善.1983.农作物低温冷害及其防御.北京:农业出版社.
    154.任国玉,徐铭志,初子莹,郭军,李庆祥,刘小宁,王颖.2005.近54年中国地面气温变化.气候与环境研究,10(4):717-727.
    155.任美锷.1950.四川省作物生产力的地理分布.地理学报,16:1-22.
    156.上海植物生理所.1976.高温对早稻开花结实的影响及其防治:Ⅰ高温对早稻灌浆—成熟期的影响.植物学报,18(3):250-257.
    157.上海植物生理所.1977.高温对早稻开花结实的影响及其防治:Ⅲ早稻开花结实对高温伤害的敏感期.植物学报,19(2):126-130.
    158.石春林,金之庆,葛道阔,苏高利.2001.气候变化对长江中下游平原粮食生产的阶段性影响和适应性对策.江苏农业学报,17(1):1-5.
    159.石冢喜明.1979.冷害与水稻.金人一,陈启官等译.北京:农业出版社.
    160.孙芳.2008.农业适应气候变化能力研究——种植结构与技术方向.北京:中国农业科学院.
    161.孙永霞,马平,尚新利.2004.2003年气象因素对信阳水稻产量的影响分析.信阳农业高等专科学校学报,14(4):12-14.
    162.孙玉亭,王书裕,杨永岐.1983.东北地区作物冷害的研究.气象学报,41(3):313-32.
    163.汤佩松,阎龙飞.1976.光合作用研究进展.北京:科学出版社.22-70.
    164.汤日圣,郑建初,张大栋,金之庆,陈留根,黄益洪,石春林,葛道阔.2006.高温对不同水稻品种花粉活力及籽粒结实的影响.江苏农业学报,22(4):369-373.
    165.陶毓汾,王立祥.1993.中国北方旱农地区水分潜力及开发.北京:气象出版社.
    166.田小海,罗海伟,周恒多,吴晨阳.2009.中国水稻热害研究历史、进展与展望.中国农学通报,25(22):166-168.
    167.田小海,松井勤,李守华,林俊城.2007.水稻花期高温胁迫研究进展与展望.应用生态学报,18(11):2632-2636.
    168.童志婷,李守华,段维新,邓运,田小海.2008.中稻花期致害高温主导的田间气象特征及其对不同杂交组合水稻结实的影响.中国生态农业学报,16(5):1163-1166.
    169.王才林,仲维功.2004.高温对水稻结实率的影响及防御对策.江苏农业科学,1:15-18.
    170.王春乙,郭建平,杨宝珠.2000.日本水稻冷害防御技术的适应性.气象科技,1:55-59.
    171.汪朝辉,王克林,李仁东,熊艳,许联芳.2004.水陆交错生态脆弱带景观格局时空变化分析——以洞庭湖区为例.自然资源学报,19(2):240-247.
    172.王宏,李晓兵,韩瑞波,盖永芹.2006.利用NOAA NDVI和MSAVI遥感监测中国北方不同纬度带植被生长季变化.应用生态学报,17(12):2236-2240.
    173.王怀义,张思竹,熊建华.1988.水稻花药长度与耐寒性的关系.西南农业学报,1(2):65-68.
    174.王立志.1999.日本北海道利用人工气候室进行水稻障碍型冷害的研究现状及方法.黑龙江农业科学,6(14):47-49.
    175.王立志,王春艳,李忠杰,王连敏,矫江,许显滨.2004.寒地水稻抽穗期长短与温度关系研究.中国农业气象,25(2):43-46.
    176.王连敏,曾宪国,王立志,姜丽霞,王春艳,李忠杰,李锐.2009.黑龙江省水稻冷害Ⅰ冷害发生的时间规律.黑龙江农业科学,1:12-14.
    177.王连喜.1996.利用卫星遥感资料对宁夏水稻低温冷害的初步分析.宁夏气象,4:67-70.
    178.王绍武,马树庆,陈莉,王琪,黄建斌.2009.低温冷害.北京:气象出版社.
    179.王雅婕.2008.中国地表太阳辐射变化与模型研究.北京:中国科学院.
    180.王雅婕,黄耀,张稳.2009.1961-2003年中国大陆地表太阳总辐射变化趋势.气候与环境研究,14(4):405-413.
    181.肖风劲,张海东,王春乙,王邦中,刘海波,王长科.2006.气候变化对我国农业的可能影响及适应性对策.自然灾害学报,15(6):327-331.
    182.肖国举,张强,王静.2007.全球气候变化对农业生态系统的影响研究进展.应用生态学报,18(8):1877-1885.
    183.谢晓金,李秉柏,李映雪,申双和.2009.长江流域近55年水稻花期高温热害初探.江苏农业学报,25(1):28-32.
    184.谢云,王晓岚,林燕.2003.近40年中国东部地区夏秋粮作物农业气候生产潜力时空变化.资源科学,25(2):7-13.
    185.熊伟.2004.用GIS和作物模型对作物生产进行区域模拟方法.中国农业气象,25(2):28-32.
    186.熊伟,陶福禄,许吟隆,林而达.2001.气候变化情景下我国水稻产量变化模拟.中国农业气象,22(3):1-5.
    187.熊伟,许吟隆,林而达.2005.气候变化导致的冬小麦产量波动及应对措施模拟.中国农学通报,21(5):380-385.
    188.熊伟,杨婕.2008.作物模型与气候模型的连接研究进展.中国生态农业学报,16(2):511-514.
    189.徐斌,辛晓平,唐华俊,周清波,陈佑启.1999.气候变化对我国农业地理分布的影响及对策.地理科学进展,18(4):316-321.
    190.徐铭志.2003.二十世纪后半叶中国气温和温度生长期的变化.北京:中国气象科学研究院.
    191.徐铭志,任国玉.2004.近40年中国气候生长期的变化.应用气象学报,15(3):306-312.
    192.许吟隆,张勇,林一骅,林而达,林万涛,董文杰,Jones, R., Hassell, D., Wilson, S.2006.利用PRECIS分析SRES B2情景下中国区域的气候变化相应.科学通报,51(17):2068-2074.
    193.薛桂莉,唐文俊,刘治权,王亚苹.2004.低温冷害对农作物的危害及防御措施.农业与技术,24(1):85-86.
    194.杨重一,庞十力,孙彦坤.2010.黑龙江省作物气候生产潜力估算.东北农业大学学报,41(3):75-78.
    195.杨仕华,余常水,程本义.2003.孕穗期自然低温对籼型杂交水稻的影响分析.杂交水稻,18(6):51-54.
    196.杨树明,曾亚文,杜娟,普晓英,杨涛,邰丽梅,崔虹,易加洪,朱广彬.2008.云南稻核心种质苗期与孕穗期耐冷性特点及关系分析.生态环境,17(6):2352-2357.
    197.杨晓光,刘志娟,陈阜.2010.全球气候变暖对中国种植制度可能影响:Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析.中国农业科学,43(2):329-336.
    198.姚凤梅,张佳华.2009.1981-2000年水稻生长季相对极端高温事件及其气候风险的变化.自然灾害学报,18(4):37-42.
    199.殷剑敏,辜晓青,林春.2006.寒露风灾害评估的空间分析模型研究.气象与减灾研究,29(3):30-33.
    200.刈屋国男.1994.冷害与稻作技术.全国农业改良普及协会,108-123.
    201.余松烈.2003.作物栽培学.北京:农业出版社.
    202.于振文.2003.作物栽培学各论:北方本.北京:中国农业出版社.
    203.于沪宁,赵丰收.1982.光热资源和农作物的光热生产潜力.气象学报,40(3):327-334.
    204.于淑秋.2005.近50年我国日平均气温的气候变化.应用气象学报,16(6):787-793.
    205.云雅如,方修琦,王丽岩,田青.2007.我国作物种植界线对气候变暖的适应性响应.作物杂志,3:20-23.
    206.曾亚文,李绅崇,普晓英,杜娟,杨树明,刘昆.2006.云南稻核心种质苗期耐冷性及其地理生态差异.生态环境,15(2):345-349.
    207.张方方,刘安国,刘志雄.2009.湖北省水稻高温热害发生规律的初步研究.现代农业科学,16(5):217-221.
    208.张福春,1987.农业物候图集.北京:科学出版社.
    209.张国平,刘纪远,张增祥.2003.近10年来中国耕地资源的时空变化分析.地理学报,58(3):323-332.
    210.张厚瑄.2000.中国种植制度对全球气候变化响应的有关问题:Ⅰ.气候变化对我国种植制度的影响.中国农业气象,21(1):9-13.
    211.张桂莲,陈立云,张顺堂,刘国华,唐文邦,贺治洲,王明.2007.抽穗开花期高温对水稻剑叶理化特性的影响.中国农业科学,40(7):1345-1352.
    212.张建平,李永华,高阳华,陈艳英,梅勇,唐云辉,何勇.2007.未来气候变化对重庆地区冬小麦产量的影响.中国农业气象,28(3):268-270.
    213.张莉萍,黄少锋,王丽萍,刘颖,沈巧梅.2004.2002年黑龙江省东部水稻冷害解析.黑龙江农业科学,1:39-41.
    214.张强,杨贤为,黄朝迎.1995.近年气候变化对黄土高原地区玉米生产潜力的影响.中国农业气象,16(6):19-23.
    215.张稳.2004.基于模型和GIS技术的中国稻田甲烷排放估计.南京:南京农业大学.58-80.
    216.张养才,太华杰.1983.双季早稻育秧期低温冷害规律的研究.气象,4:14-17.
    217.张宇,王馥棠.1998.气候变暖对中国水稻生产可能影响的研究.气象学报,56(3):369-376.
    218.张宇,王石立,王馥棠.2000.气候变化对我国小麦发育及产量可能影响的模拟研究.应用气象学报,11(3):264-270.
    219.郑海霞,封志明.2003.中国耕地总量动态平衡的数量和质量分析.资源科学,25(5):33-39.
    220.郑建初,盛婧,汤日圣,石春林,陈留根.2007.南京和安庆地区高温发生规律及高温对水稻结实率的影响.江苏农业学报,23(1):1-4.
    221.郑景云,葛全胜,郝志新.2002.气候增暖对我国近40年植物物候变化的影响.科学通报,47(20):1582-1587.
    222.中国水稻研究所.1989.中国水稻种植区划.杭州:浙江科学技术出版社.
    223.中华人民共和国农业部.2009.新中国60年统计资料.北京:中国农业出版社.
    224.竺可桢.1964.论我国气候的几个特点极其粮食作物生产的关系.地理学报,1:1-13.
    225.朱丽华,范广洲,董一平,王炳赞,华维,周定文.2011.青藏高原夏季500 hPa纬向风的时空演变特征及其与我国降水的关系.大气科学,35(1):168-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700