用户名: 密码: 验证码:
基于REMAP和IRAP分子标记的梅(Prunus mume Sieb. et Zucc.)遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梅(Prunus mume Sieb. et Zucc.)原产中国,是我国著名观赏和加工保健食用的特产树种。其栽培历史悠久,种质资源丰富。逆转座子通过RNA为中介进行转座,在植物基因组中分布广,拷贝数多,异质高,在种内和种间表现出较高的序列差异性和丰富的插入多态性,引起稳定突变,基于这些特点开发出的几种分子标记与常规分子标记比较,显示出基因组覆盖面广、多态性丰富的优点。本研究通过表型数量性状分类与DNA分子标记的梅遗传多样性特征分析,探讨梅种质资源的遗传多样性和亲缘关系,为今后有效开展种质资源的开发及创新利用提供理论依据。主要研究结果如下:
     1.基于重要表型性状数量分类的梅遗传多样性分析
     以南京农业大学国家梅种质资源圃保存的84个梅品种为试材,运用SPSS 11.5对叶花果等31个重要表型性状进行Q聚类和主成分及因子分析,84个梅品种分为5组,其中‘长农17’等13个果梅品种为第一组;‘红梅’等30个果梅品种为第二组;‘重叶梅’等15个花梅品种为第三组;‘银红朱砂’等9个花梅品种为第四组;‘小绿萼’等17个花梅品种为第五组。果梅品种与花梅品种分别聚类。果梅中的‘透骨红’介于花梅和果梅之间。31个表型性状中果实光亮度、果实黄蓝偏差、果实横径、单果重、果实侧径、单核重、花瓣数、花瓣层数、a果、果实纵径共10个性状在梅品种数量分类中起重要作用。2.基于REMAP标记技术的梅遗传多样性分析
     通过DNA纯化方法、5因素4水平L16(45)的完全随机正交试验、不同浓度PAGE胶、引物3’的碱基等的研究,建立了适合梅REMAP标记的技术体系。体系总体积25μl:基因组DNA40 ng、2.5 mmol/L MgCl2 1.5μL、2.5 mmol/L dNTPs 2.0μL、10×Buffer 2.5μL、TaqDNA聚合酶1.5 U、10μmol/LLTR引物1.0μL、10μmol/L SSR引物1.0 gL,加ddH2O至25μL。以一次裂解,抽提后加RNase获取的DNA质量好;REMAP体系的SSR引物的3’端加碱基明显提高REMAP的扩增效果,但碱基数量无明显影响。浓度为5%的PAGE胶电泳条带数量多、清晰地反映品种间的多态性,且制胶方便,不易碎胶。
     筛选出5对LTR-SSR引物组合,用于84个梅品种的REMAP遗传多样性分析,共产生122个多态性位点。5对引物组合的香浓信息指数I在0.3897-0.6364之间,Nei's遗传多样性指数He在0.2395-0.4455之间;对REMAP扩增结果进行UPGMA聚类,在相似系数0.766处,84个梅品种可分为18组,果梅与花梅分别聚类;‘小叶猪肝’与‘大叶猪肝’呈现出明显的多态性,‘小叶猪肝’在198 bp和600 bp出现多态性位点。用PopGen32分析梅遗传多样性,推测日本果梅可能引自中国浙江,日本花梅引自中国江苏;花瓣3层是梅花瓣数量引起遗传变异的起点,3-5层间遗传基本稳定,果梅花瓣1层、花梅花瓣5层具有较明显的遗传多样性。品种间的遗传距离,84个梅品种中,最近的是‘双粉垂枝’与‘粉皮宫粉’为0.059,最远的是‘云南红梅’与‘大粒’为0.630;果梅品种中,最近的是‘黄小大’与‘福建白粉’为0.104,最远的是‘四月梅’与‘信侬小梅’为0.487;花梅品种中,最近的是‘双粉垂枝’与‘粉皮宫粉’为0.059,最远的是‘中玉宫粉’与‘云南丰后’为0.556。基因流强度的群体每代迁移数梅品种群最大。3.基于IRAP标记技术的梅遗传多样性分析
     通过5因素4水平L16(45)的完全随机正交试验、不同浓度PAGE胶等的研究,建立了适合梅IRAP标记的技术体系。体系总体积25μ1:基因组DNA30ng,2.5 mmol/L MgCl2 2.0μL,2.5 mmol/L dNTPs 2.5μL,10×Buffer 2.5μL, Taq DNA聚合酶1.0 U,10μmol/L LTR引物1.0μL,加ddH20至25μL。6%和8%浓度的非变性PAGE胶适于IRAP多态性检测。
     筛选出6条LTR引物,用于84个梅品种的IRAP遗传多样性分析,共产生99个多态性位点。6条引物的香浓信息指数I在0.3359-0.5807,Nei's遗传多样性指数He在0.1967-0.3976之间;对IRAP扩增结果进行UPGMA聚类,在相似系数0.766处,84个梅品种聚为41组,果梅的‘长农17’与花梅宫粉型的‘粉皮宫粉’、‘香雪宫粉’、‘云南红梅’、‘小玉宫粉’聚一起,花梅的‘美人梅’与果梅的‘信侬小梅’聚一起,其余都是果梅与花梅分别聚类。日本果梅品种的‘玉英’、‘白加贺’、‘月世界’、‘古城’、‘节田梅’、‘花香实’聚在一起。‘大叶猪肝’与‘小叶猪肝’不聚在一组。应用PopGen32分析了梅遗传多样性,日本、江苏、浙江品种群亲缘关系最近,推测日本果梅引自中国浙江,日本花梅引自中国江苏;花瓣3层是梅花瓣数量变异引起遗传变异的起点,3-5层间遗传基本稳定。84个梅品种的遗传距离,最近的是‘白加贺’和‘月世界’为0.107,也是果梅中最近的,最远的是‘甲州小梅’和‘骨红垂枝’为0.683;果梅品种中最远的是‘东山李梅’和‘横核’为0.588;花梅品种中,最近的是‘香雪宫粉’和‘云南红梅’为0.118,最远的是‘云南丰后’与‘骨红垂枝’为0.663。
     4.基于REMAP-IRAP分子标记的梅遗传多样性分析
     综合REMAP和IRAP进行梅遗传多样性分析,梅群体的观测等位基因数1.9955,有效等位基因数为1.4887,Nei's遗传多样性为0.2910,Shannon信息指数为0.4465。UPGMA聚类,84个梅品种在相似系数0.766处被分为30组;在相似系数0.752处,被分成20组。果梅与花梅分别聚类,说明果梅与花梅间基因渗透较少。日本果梅亲缘关系较近的有‘白加贺’、‘月世界’与‘古城’;‘养老3号’与‘莺宿’;‘甲州最小’、‘玉英’与‘花香实’;青梅分组聚一起,但有部分红梅聚在青梅一起,白梅与青梅接近;‘大叶猪肝’与‘小叶猪肝’较远。花梅品种聚类中,朱砂型紧密在一组,垂枝型梅松散聚一组,玉碟型(除‘龙泉玉蝶’)在一组;春后、绿萼类型的品种群分散聚在一起,宫粉型分为3组,表明遗传背景复杂,进化程度不一。PopGen32分析,推测日本果梅品种群引自中国浙江,日本花梅品种群引自中国江苏。梅花瓣数3层为多层明显变化的层数,1、2层的遗传基因与3-5层有明显的不同,3-5层基本稳定。各品种间的遗传距离,梅品种中最近的是‘白加贺’与‘月世界’为0.136,最远的为‘丰后’与‘横核’为0.602;果梅品种中,最近的是‘白加贺’与‘月世界’为0.136,最远的是‘横核’与‘东山李梅’为0.464;花梅品种中,最近的是‘粉皮宫粉’与‘香雪宫粉’及‘银红朱砂’与‘南京红须’为0.141,最远的是‘骨红垂枝’与‘云南丰后’为0.508。
Mei(Prunus mume Sieb. et Zucc.), native to China, is famous for viewing and processing of special healthy food species. The cultivation has a long history and rich germplasm resource. Retrotransposons transpose through an RNA intermediate by a'copy and paste'mechanism and widely distribute and copy in the genome with high heterogeneous populations. It shows high sequence difference and rich insert polymorphism in one or multiple different species which exhibits stable mutation. Compared with normal molecular marker technique, retrotransposons polymorphism molecular marker developed according to above-mentioned characteristics shows the benefits of genome-wide coverage and rich polymorphism. This study aims to explore the genetic diversity, kinship and to provide theoretical basis for effective development and innovation of germplasm resources from the DNA molecule level of germplasm. The results are as follows:
     1. The genetic diversity of mei analysis based on the mathematic classification of important morphologic characters
     84 mei varieties (including 43 fruiting mei and 41 flowering mei) located in National mei germplasm pool of Nanjing Agricultural University were taken as test materials. Q clustering, principal component and factor analysis to 31 important morphologic characters such as leaves, flower and fruit with SPSS 11.5,84 mei varieties were divided into 5 groups, including 13 fruiting mei for the first group such as'Changnong17' ,30 fruiting mei for the second group such as'Hongmei' ,15 flowering mei for the third group such as 'Chongyemei',9 flowering mei for the fourth group such as'Yinhongzhusha',17 flowering mei for the fifth group such as'Xiaolve'. Fruiting mei and flowering mei clustered respectively. The'Touguhong'of fruiting mei gaultheria preference flowering mei.10 morphologic characters among 31 morphologic characters, like L-fruit, b-fruit, fruit across diameter, weight of per fruit, fruit side diameter, stone weight, petal numbers, petal layers, a-fruit and fruit high play an important role to mei mathematic classification.
     2. The genetic diversity analysis of mei based on REMAP marker
     Through studying on DNA purification methods, five factors L16 (45) 4 levels completely random orthogonal test, the various PAGE concentrations, base of primer 3', and so on, the final optimal system of REMAP marker technique was established. REMAP system was totally in 25μl, composed of template DNA 40 ng,2.5 mmol/L MgCl2 1.5μL, 2.5 mmol/L dNTPs 2.0μL,10×Buffer 2.5μL, Taq DNA polymerase 1.5 U,10μmol/L LTR primer 1.0μL,10μmol/L SSR primer 1.0μL. Once cleavage was the best of the four treatments in quality of template DNA. The selective base at 3'-end of SSR primer influenced on REMAP notably. The best was one base on 3'-end of SSR primer.5% PAGE was the best concentration of non-denaturing polyacrylamide gel, showing the most and clearest electrophoresis line and could present genetic diversity and had the characteristic of convenience and no crash.5 couples of LTR-SSR primers are screened out for REMAP genetic diversity analysis to 84 mei varieties and produced a total of 122 polymorphisms. For 5 couples of primers, the Shannon's information index was from 0.3897 to 0.6364, Nei's gene diversity from 0.2395 to 0.4455. UPGMA clustering to REMAP amplification results,84 mei varieties can be divided into 18 groups at the similarity coefficient of 0.766, fruiting mei and flowering mei were clustered in different group. 'Xiaoyezhugan' was not in the same cluster with 'Dayezhugan' because of distinct genetic differentiation. 'Xiaoyezhugan' had spesical bands of 198bp and 600bp bands under REMAP, which may related to the fact that retrotransposon insertion causing the differentiation. It was proved by PopGen32 that Japanese fruiting mei ware introduced from Zhejiang province and Japanese flowering mei from Jiangsu province of China. Three layers of petal was the jumping-off point for genetic variation,3-5 layers genetic stability. One layer of petal in fruiting mei and 5 layers in flowering mei had obvious genetic diversity. Among 84 mei varieties, the least of genetic distance was 0.059 between'Shuangfencuizhi'and 'Fenpigongfen'and the farmost one was 0.63 between'Yunnanhongmei'and'Dali'. Among fruiting mei, the least one was 0.104 between'Huangxiaoda'and'Fujianbaifen'and the farmost one was 0.487 between'Siyuemei'and'Koumeshinano'. Among flowering mei, the least one was 0.059 between'Shuangfencuizhi'and'Fenpigongfen'and the farmost one was 0.556 between'Zhongyugongfen'and'Yunnanfenghou'. The genetic flower strength group transfer number for varieties group of mei was the largest, which illustrated varieties group of mei had genetic diversity in abundance.
     3. The genetic diversity of mei analysis based on IRAP marker
     Through five factors four levels L16 (45) completely random orthogonal test, IRAP molecular marker system was established for mei. IRAP system was total in 25μl, composed of template DNA 30 ng,2.5 mmol/L MgCl2 2.0μL,2.5 mmol/L dNTPs 2.5μL, 10×Buffer 2.5μL, Taq DNA polymerase 1.0 U,10μmol/L LTR primer 1.0μL.6% and 8% PAGE were the better concentration of non-denaturing polyacrylamide gel and could present genetic diversity. Six LTR primers were screened out for IRAP genetic diversity analysis to 84 mei and produced a total of 99 polymorphisms, and the average polymorphism ratio was 83.20%. For 6 primers, the Shannon's information index was in the range from 0.3359 to 0.5807, Nei's gene diversity in the range from 0.1967 to 0.3976. UPGMA clustering to IRAP amplification results,84 mei could be divided into 41 groups at the similarity coefficient of 0.766.'Changnong17'of fruiting mei was clustered together with'Fenpigongfen','Xiangxuegongfen','Yunnanhongmei'and'Xiaoyugongfen', Pink double form of flowering mei and'Meirenmei'of flowering mei was clustered together with'Koumeshinano'. The rest fruiting mei and flowering mei were clustered in different group, respectively. Among Japanese fruiting mei,'Gyokouei','Shirokaga','Gessekai', 'Gojirou','Setsuda'and'Hanakami'were clustered together.'Dayezhugan'was not clustered in the same group with'Xiaoyezhugan'. By PopGen32, Japanese mei was the most similar to Zhejiang mei and Jiangsu mei. It could be confered Japanese fruiting mei was introduced from Zhejiang province in China and Japanese flowering mei was introduced from Jiangsu province in China. Three layers of petal was the jumping-off point for genetic variation,3-5 layers genetic stability. Within 84 mei varieties, the least of genetic distance was 0.107 between'Shirokaga'and'Gessekai'and the farmost one was 0.683 between'Koume'and'Benishidale'. Within fruiting mei, the least one was 0.107 between'Shirokaga'and'Gessekai'and the farmost one was 0.588 between 'Dongshanlimei'and'Henghe'. Within flowering mei, the least one was 0.118 between 'Xiangxuegongfen'and'Yunnanhongmei'and the farmost one was 0.663 between 'Yunnanfenghou'and'Benishidale'.
     4. The genetic diversity of analysis based on the REMAP and IRAP molecular markers
     The genetic diversity analysis combined REMAP with IRAP technique showed that the observed number of alleles was 1.9955 in mei populations, effective number of alleles was 1.4887, Nei's gene diversity was 0.2910, Shannon's information index was 0.4465. UPGMA cluster, at the similarity coefficient of 0.766,84 mei varieties could be divided into 30 groups, and 20 groups at the similarity coefficient of 0.752. Fruiting mei and flowering mei were clustered respectively showed less genes penetration occur between fruiting mei and flowering mei. Among Japanese fruiting mei,'Shirokaga','Gessekai' and'Gojirou','Yourou3' and 'Gyokouei','Koume','Gyokouei' and 'Hanakami' were similar. Green mei gather together as groups, but part of red mei were assembled into green mei, white mei was similar to green mei, but 'Dayezhugan' is not similar to group with 'Xiaoyezhugan' . Within flowering groups, cinnabar purple form was tightly as the same group, pendant form was loosely as one group, albo-Plena Form was (except for 'Longquanyudie' ) one group, after-spring form and green calyx form as one group separately, pink double form assembles as three groups which showed the complexity of inheritance and evolution extent was different. PopGen32 analysis showed Japanese fruiting mei were introduced from Zhejiang province of China and Japanese flowering mei from Jiangsu province of China. Three layers mei club was obvious change for multilayer ones, gene of 1 layer and 2 layer had big different from 3-5 layer ones. Within 84 mei varieties, the least of genetic distance was 0.136 between 'Shirokaga' and 'Gessekai' and the farmost one was 0.602 between 'Fenghou' and 'Henghe' . Within fruiting mei, the least one was 0.136 between 'Shirokaga' and 'Gessekai' and the farmost one was 0.464 between 'Dongshanlimei' and 'Henghe' . Within flowering mei, the least one was 0.141 between 'Xiangxuegongfen' and 'Fenpigongfen' & 'Yinhongzhusha' and 'Nanjinghongxu' and the farmost one was 0.508 between 'Benishidale' and 'Yunnanfenghou' .
引文
Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep,2008,27(4):617-631
    Andrew JF, Maggie RK, Stephen RP, Ellis THN. Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. The Plant Journal,1998,16(5):643-650
    Asins MJ, Monforte AJ, Mestre PF, Carbonel EA. Citrus and Prunuscopia-like retrotransposons. Theor Appl Genet,1999,99(3-4):503-510
    Baumel A, Ainouche M, Kalendar R, Schulman AH. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C. E. Hubbard (Poaceae). Molecular Biology and Evolution,2002,19(8):1218-1227
    Berenyi M, Gichuki S, Schmidt J, Burg K. Ty1-copia retrotransposon-based S-SSAP (sequence-specific amplified polymorphism) for genetic analysis of Sweetpotato. Theor Appl Genet, 2002,105(6-7):862-869
    Bhattacharyya MK, Gonzales RA, Kraft M, Buzzell RI. A copia-like retrotransposon Tgmr closely linked to the Rpsl-k allele that confers race-specific resistance of soybean to Phytophthora sojae. Plant Mol Biol,1997,34(2):255-264
    Bousios A, Saldana-Oyarzabal I, Valenzuela-Zapata AG, Wood C, Pearce SR. Isolation and characterization of Ty1-copia retrotransposon sequences in the blue agave (Agave tequilana Weber var. azul) and their development as SSAP markers for phylogenetic analysis. Plant Science,2007, 172(2):291-298
    Boyko E, Kalendar R, Korzun V, Korol A, Schulman AH, Gill B S. A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defence related genes:insights into cereal chromosome structure and function. Plant. Mol Biol,2002,48(5-6):767-790
    Branco CJS, Vieira EA, Malone G, Kopp MM, Malone E, Bernardes A, Mistura CC, Carvalho FIF, Oliveira CA. IRAP and REMAP assessments of genetic similarity in rice. J Appl Genet,2007,48(2): 107-113
    Breto MP, Ruiz C, Pina JA,Asins MJ. The diversification of Citrus clementina Hort.ex Tan.,a vegetatively propagated crop species. Mol Phylogenet Evol,2001,21(2):285-293
    Chadha S, Gopalakrishna T. Comparative assessment of REMAP and ISSR marker assays for genetic polymorphism studies in Magnaporthe grisea. Current Science,2007,93(5):688-692
    Chuda Y, Ono H, Ohnishi-Kameyama M, Matsumoto K, Nagata T, Kikuchi Y. Mumefural, citric acid derivative improving blood fluidity from fruit-juice concentrate of Japanese apricot (Prunus mume Sieb. et Zucc.). Journal of Agricultural and Food Chemistry,1999,47(3):828-831
    Ellis THN, Poyser SJ, Knox MR, Vershinin AV, Ambrose MJ. Polymrphism of insertion sites of Tyl-copia class retrotransposons and its use for linkage and diversity analysis in pea. Mol Gen Genet,1998,260(1):9-19
    Fang JG, Devanand RS, Chao CT. Practical strategy for identification of Single Nucleotide Polymorphisms in fruiting mei (Prunus mume Sieb. et Zucc.) from Amplified Fragment Length Polymorphism fragments. Plant Molecular Biology Reporter,2005,23(3):227-239
    Fang JG, Twito T, Zhang Z, Chao CCT. Genetic diversity of fruiting-Mei (Prunus mume Sieb.et Zucc.) accessions revealed by AFLP and SNP markers [J]. Genome,2006,49(10):1256-1264
    Flavell AJ, Dunbar E, Anderson R, Pearce SR, Hartley R, Kumar A. Tyl-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. Nucleic Acids Res.,1992,20(14):3639-3644
    Fukuchi A, Nakamura A, Hirano H, Kikuchi F. Linkage analysis for a semi-dwarfing gene sd-1 on chromosomel rice. Genetic Newsletter,1992,9(3):50-52
    Gao ZH, Shen ZJ. Microsatellite marker and genetic diversity in Japanese Apricot(Prunus mume). Hortscience,2004,39(7):1571-1574
    Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumarand A, Flavell AJ. Phylogeny and transpositional activity of Tyl-copia group retrotransposons in cereal genomes. Mol Gen Genet,1999,261:883-891
    Guo DL, Zhang HQ, Luo ZR. Genetic relationships of Diospyros kaki Thunb. and related species revealed by IRAP and REMAP analysis. Plant Science,2006,170(3):528-533
    Hagen L, Khadari B, Lambert P, Audergon JM. Genetic diversity in apricot revealed by AFLP markers:species and cultivar comparisons. Theor Appl Genet,2002,406(2-3):298-305
    Hamrick J, Loveless M. The genetic structure of tropical tree populations:associations with reproductive biology. The evolutionary ecology of plants,1989,33(3):129-146
    Harborn JB. Introduction to ecological biochemistry. Academic Press, London, New York,1982
    Hasan S, Shafie M, Shah R. Efficient method for the extraction of genomic DNA from wormwood (Artemisia capillaris). African Journal of Biotechnology,2008,7(18):3211-3216
    Hayashi K, Shimazu K, Yaegaki H, Yamaguchi M, Iketani H, Yamamoto T. Genetic diversity in fruiting and flower-ornamental Japanese apricort (Prunus mume)germplasms assessed by SSR markers. Breeding Science,2008,58(4):401-410
    Hysing SC, Sall T, Nybom H, Liljeroth E, Merker A, Orford S, Koebner RMD. Temporal diversity changes among 198 Nordic bread wheat landraces and cultivars detected by retrotransposon-based SSAP analysis. Plant Genetic Resources,2008,6:113-125
    Jenog JT, Moon JH, Park KH, Shin CS. Isolation and characterization of a new compound from Prunus mume fruit that inhibit cancer cells. Journal of Agricultural and Food Chemistry,2006,54(6):2123-2128
    Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell AJ. Gene-based sequence diversity analysis of field pea (Pisum). Genetics,2007,177(2):2263-2275
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulnan AH. IRAP and REMAP:two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet,1999,98(5):704-711
    Kalendar R, Schulman AH. Retrotransposons and their use as molecular markers in Brachypodium. Plant & Animal Genomes XIV Conference, San Diego, CA, USA,2006,19
    Kalendar R., Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols,2006,1(5):2478-2484
    Kenward KD, Bai D, Ban MR, Brandle J. Isolation and characterization of Tnd-1, a retrotransposon marker linked to black root rot resistance in tobacco. Theor Appl Genet,1999,98(3-4):387-395
    Klemola KA, Kalendar R, Schulman AH. TRIM retrotransposons occurin apple and are polymorphic between varieties but not sports. Thero Appl Genet,2006,112(6):999-1008
    Kristiina AK, Kalendar R, Schulman AH. TRIM retrotransposons occur in apple and are polymorphic between varieties but not sports. Theor Appl Genet,2006,112(6):999-1008
    Kumar A, Pearce SR, Mclean K, Harrison G, Heslop-Harrison JS, Waugh R, Flavell AJ. The Tyl-copia group of retrotransposons in plants:genomic organisation, evolution, and use as molecular markers. Genetics,1997,100(1-3):205-217
    Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet,1999,33:479-532
    Kumar A, Hirochika H. Applications of retrotransposons as genetic tools in plant biology. Trends in Plant Science,2001,6(3):127-134
    Leigh F, Kalendar R, Lea V, Lee D, Domini P, Schulman AH. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Gen Gent,2003, 269(4):464-474
    Li B, Wang B, Tang K, Liang Y, Wang J, Wei J. A simple and convenient approach for isolating RNA from highly viscous plant tissue rich in polysaccharides. Colloids and Surfaces B:Biointerfaces, 2006,49(2):101-105
    Luytjel W, Krystal M, Enaml M. Reverse genetic technique and its application in FMDV. research.Cell, 1989,59(2):1107-1113
    Manninen O, Kalendar R, Robinson J, Schulman AH. Application of BARE-1 retrotransposon markers to map a major resistance gene for net blotch in barley. Molecular and General Genetics,2000,264(3): 325-334
    Mehlenbacher SA, Cocin V, Hough LF. Apricots (Prunus) In:Moore J N, Ballington JR. (eds.). Genetic resources of temperate fruit and nut crops. Acta Horticulturae,1991,290:65-107
    Nair AS, Teo CH, Schwarzacher T. Genome classification of banana cultivars from South India using IRAP markers. Euphytica,2005,144(3):285-290
    Natali L, Giordani T, Buti M, Cavallini A. Isolation of Tyl-copia putative LTR sequences and their use as a tool to analyse genetic diversity in Olea europaea. Mol Breeding,2007,19(3):255-265
    Nei M. Estimation of average heterozygosity and genetics distance from a small number of individuals. Genetics,1978,89(3):583-590
    Ng CC, Lin CY, Tzeng WS, Chang CC,Shyu YT. Establishment of an internal transcribed spacer (ITS) sequence-based differentiation identification procedure for mei (Prunus mume) and plum (Prunus salicina) and its use to detect adulteration in preserved fruits. Food Research International,2005, 38(1):95-101
    Ozaki T, Shimada T, Tetsu N, Yamamoto J, Yoshida M. RAPD analysis for parentage determination in Prunus mume Sieb. et Zucc J Japan Soc Hort Sci,1995,64(2):235-242
    Pearce SR, Knox M, Ellis THN, Flavell AJ, Kumar A. Pea Tyl-copia group retrotransposons:transpositional activity and use as markers to study genetic diversity in Pisum. Molecular and General Genetics,2000,263(6):898-907
    Provan J, Thomas WTB, Forster BP, Powell W. Copia-SSR:a simple marker technique which can be used on total genomic DNA. Genome,1999,42(2):363-366
    Qian Y, Ma K. Principles and methodologies of biodiversity studies. Beijing:Chinese Science and Technology Press,1994
    Robbins MD, Staub JE. Comparative analysis of marker-assisted and phenotypic selection for yield components in cucumber. Theor Appl Genet,2009,119(4):621-634
    Rosenthel GA, Janzen,DH. Herbivores their interaction with secondary plant metabolites. Academic Press,London, New York,1979
    Sanz A, Gonzalez S, Syed N, Suso M, Saldana C, Flavell A. Genetic diversity analysis in Vicia species using retrotransposon-based SSAP markers. Molecular Genetics and Genomics,2007,278(4):433-441
    Schulman AH, Flavell AJ, Ellis TH. The application of LTR retrotransposon molecular markers in plants. Methods in Mol Biol,2004,260(2):145-173
    Shimada T, Haji T, Yamaguchi M. Classification of P. mume by RAPD assay. J Japan Soc Hort Sci,1994, 63(3):543-551
    Sofia PH, Augusta B, Margarida D, Leonor MC, Wanda V. Genomic analysis of grapevine retrotransposon 1 [Gretl] in vitis vinifera. Theor Appl Genet,2005,111(5):871-878
    Swain T. Phenolics in the environment.in:biochemistry of plant phenolics.Plenum Press,New York, London,1978,617-640
    Syed NH, Sureshsundar S, Wilkinson MJ, Bhau BS, Cavalcanti JJV, Flavell AJ. Tyl-copia retrotransposon-based SSAP marker development in cashew (Anacardium occidentale L.). Theoretical and Applied Genetics,2005,110(7):1195-1202
    Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theoretical and Applied Genetics,2005,110(5):819-831
    Tanhuanpaa P, Kalendar R, Laurila J, Schulman AH, Manninen O, Kiviharju E. Generation of SNP markers for short straw in oat (Avena sativa L.). Genome,2006,49(3):282-287
    Teo CH, Tan SH, Ho CL, Faridah QZ, Othman YR, Heslop-Harrison JS, Kalendar R, Schulman AH. Genome constitution and classification using retrotransposon-based markers in the orphan crop banana. Journal of Plant Biology,2005,48(1):96-105
    Tignon M, Watillon B, Kettmann R. Identification of copia-like retrotransposable element by apple. Acta Hort,2001,546:515-520
    Treuren RV, Hintum TJLV. Comparison of anonymous and targeted molecular markers for the estimation of genetic diversity in ex situ conserved Lactuca. Theor Appl Genet,2009,119(7): 1265-1279
    Venturi S, Dondini L, Donini P, Sansavini S. Retrotransposon characterisation and fingerprinting of apple clones by SSAP markers. Theoretical and Applied Genetics,2006,112(3):440-444
    Vershinin AV, Ellis THN. Heterogeneity of the internal structure of PDR1,a family of Tyl coopia-like retrotransposons in pea. Molecular and General Genetics,1999,262(45):703-713
    Wang XC, Tian WM,Li YX. Development of an efficient protocol of RNA isolation from recalcitrant tree tissues. Molecular Biotechnology,2008,38(1):57-64
    Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W. Genetic distribution of BARE-l-like retrotransposable elements in the barely genome revealed by sequence-specific amplification polymorphisms(SSAP). Mol Gen Genet.,1997,253(6):687-694
    Yang CD, Zhang JW, Yan XL, Bao MZ. Genetic relatedness and genetic diversity of ornamental mei (Prunus mume Sieb. et Zucc.) as analysed by AFLP markers. Tree Genetics & Genomes,2007,4(2): 255-262
    Yoshida M, Yamanishi H. Apricot cultivars in Japan.Acta Horticulturae,1988,209:69-81
    Yu GX, Wise RP. An anchored AFLP-and retrotransposon-based map of diploid Avena. Genome,2000,43(5):736-749
    包满珠,陈俊愉.不同类型梅花粉形态及其与桃、李、杏的比较研究.北京林业大学学报,1992,14(增刊4),69-72
    包满珠,陈俊愉.梅及相关种的数量分类研究.园艺学报,1995,22(1):67-72
    包满珠,陈俊愉.梅野生种与栽培品种的同工酶研究.园艺学报,1993,20(4):375-378
    卞贵建,周庆阳,张庆霞.树莓经济性状主成分分析及优种选择.安徽农业科学,2005,33(4):610-611
    柴玉荣,张俊卫,包满珠.梅花朱砂型品种RAPD指纹图谱研究.北京林业大学学报,2003,25(特刊):54-56
    陈昆松,李方,徐昌杰,张上隆,傅承新.改良CTAB法用于多年生植物组织基因组DNA的大量提取.遗传,2004,26(4):529-531
    陈俊愉.中国梅花品种主要类型检索表.园艺学报,1962,1(3-4):337-350
    陈俊愉.中国梅花品种图志.北京:中国林业出版社,1989
    陈俊愉,陈耀华.关于梅花品种形成与演化趋向探讨.中国园林,1990,4
    陈俊愉,包满珠.中国梅(Prunus mume Sieb. et Zucc.)变种(变型)与品种的分类学研究.北京林业大学学报,1992,14(4):1-6
    陈俊愉,包满珠.中国梅(Prunus mume)的植物学分类与园艺学分类.浙江林学院学报,1992,9(2):119-132
    陈俊愉.中国梅花分类新系统.北京林业大学学报,1999,21(2):1-6
    陈俊愉.中国梅花品种之种系、类、型分类检索表.北京林业大学学报,1999,15(1):64-65
    陈俊愉.中国梅花研究的几个方面.北京林业大学学报,1995,17(增刊):1-7
    陈俊愉.中国梅花品种分类最新修正体系.北京林业大学学报,1999,21(2):1-6
    陈俊愉.南京梅谱.南京:南京出版社,2001
    陈俊愉.关于梅花Prunus mume的品种分类体系.园艺学报,2007,34(4):1055-1058
    陈俊愉,陈瑞丹.中国梅花品种群分类新方案并论种间杂交起源品种群之发展优势.园艺学报,2009,36(5):693-700
    陈俊愉.中国梅花品种图志.北京:中国林业出版社,2010
    陈瑞阳,宋文芹,李秀兰,蒲富慎,刘杆中,林盛华.中国苹果属植物染色体数目报告.武汉植物学研究,1986,4(4):337-342
    陈巍.基于生物学性状和SSR标记进行桃种质遗传多样性的研究.南京农业大学硕士学位论文,2007
    程家胜,牛健哲,邸淑艳.苹果品种间杂交后代过氧化物酶同工酶分析.园艺学报,1984,11 (12):73-78
    程家胜,刘捍中,韩礼星,邸淑艳.关于苹果属果树亲缘关系的初步探索过氧化物酶同工酶分析.园艺学报,1986,13(1):1-7
    程家胜.苹果的过氧化物酶同工酶研究.甘肃农业大学学报,1996,9(1):19-23
    程晓建.梅植物基因组分子生物学鉴定及分类研究.浙江大学硕士学位论文,2002
    楚爱香.河南观赏海棠品种分类研究.南京林业大学博士学位论文,2009,6
    褚孟嫄.中国果树志·梅卷.北京:中国林业出版社,1991,22-23
    褚孟嫄,班俊,雷道荣.果梅品种过氧化酶同工酶分类初探.果树科学,1988,5(3):62-64
    褚孟嫄,班俊.梅、杏、李同工酶比较.果树科学,1988,5(4):155-157
    褚孟嫄,陈翔高,班俊.果梅花粉形态的观察.落叶果树,1988,3:9-10
    褚孟嫄,章镇,房经贵.果梅种质资源性状的记载项目及描述标准.北京林业大学学报,1999,21(2):16-21
    董绍珍,俞宏.湖北海棠过氧化物同工酶分析.果树科学,1989,6(2):103-105
    杜晓云,罗正荣.部分柿属植物IRAP反应体系的建立和指纹图谱构建.农业生物技术学报,2006,14(6):931-936
    方从兵,盛炳成,章镇.梅品种花粉壁超微结构比较研究.南京农业大学学报,2002,25(1):114-116
    房经贵,章镇,刘大钧,马正强.一种从贮藏较久番茄叶中提取适于PCR扩增的DNA的方法.植物生理学通讯,2000,36(1):47-50
    高志红,韩振海,章镇,张玉明.梅单瓣复瓣花的相关分子标记初探.园艺学报,2003,30(5):612-614
    高志红,章镇,盛炳成,张玉明.果梅品种数量分类研究.北京林业大学学报,1999,21(2):12-15
    高志红,章镇,韩振海,沈志军.果梅SSR反应体系的优化.南京农业大学学报,2002,25(4):19-22
    高志红,章镇,盛炳成.桃、梅、李、杏四种主要核果类果树RAPD指纹图谱初探.果树学报,2001,18(2):120-121
    桂腾琴,乔爱民,孙敏,王心燕,孙雪梅.果梅ISSR-PCR反应体系的建立和优化.西南大学学报(自然科学版),2007,29(10):124-128
    桂腾琴,乔爱民,孙敏.果梅基因组DNA提取方法的比较及ISSR分析.北方园艺,2008,4:212-215
    过国南,王力荣,阎振立,朱更瑞,方伟超.利用花粉粒形态分析法研究桃种质资源的进化关系.果树学报,2006,23(5):664-669
    贺超兴,徐炳声.苹果属花粉形态特征及其分类学和进化意义.植物分类学报,1991,29(5):445-451
    黄燕文,包满珠,沈清宇,钟林爱,左卫东,王芳.野生种与栽培梅染色体数目及形态研究.北京林业大学学报,1995,17(增刊1):37-41
    黄哲.梅花品种染色体初探.北京:北京林业大学硕士学位论文,1989
    胡梅,肖培根.杜鹃属植物的化学分类学研究.植物分类学报,1992,30(3):226-238
    季春峰,向其柏.木犀属新资料.南京林业大学学报,2004,28(2):45-48
    贾怀志.三种基于逆转座子分子标记技术体系的建立及其在苹果芽变鉴定中的应用.南京农业大学硕士学位论文,2008
    贾怀志,刘艳红,渠慎春,高志红,王昆.章镇苹果IRAP技术体系的建立及优化.果树学报,2009,26(2):254-257
    贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996,29(4):1-10
    姜帆,高慧颖,陈秀萍,李韬,杨凌,郑少泉.龙眼ISSR-PCR反应体系的优化及指纹图谱初探.福建农业学报,2007,22(3):256-260
    康素红,包满珠,黄燕文,刘晓祥.梅花品种花粉形态初步研究.北京林业大学学报.1995,17(增刊1):143-145
    康素红,刘晓祥.梅花品种分类的花粉形态学研究.园艺学报,1997,24(2):170-174
    柯冠武,王长春,唐自法.龙眼栽培起源的抱粉学研究.园艺学报,1994,21(4):323-328
    孔卫青,朱勇,杨金宏.逆转座子及其在真核生物基因组进化中的作用.蚕学通讯,2004,24(4):27-31
    堀内昭作.日本の梅口世界の梅.东京:日本养贤堂株式会社,1996
    雷红灵,张光华.同工酶在园艺植物中的应用研究.湖北民族学院学报(自然科学版),1999,17(4):19-23
    雷莹,张红艳,宋文化,徐娟.利用多元统计法简化夏橙果实质的评价指标.果树学报,2008,25(5):640-645
    李润唐,魏文娜.湖南三种野生葡萄的生物学特性及花粉形态研究.湖南农业大学学报,2000,26(2):102-104
    李晓林,成明昊,金强,刘杨青,谢晓黎,欧平贵.四川阿坝州苹果属植物两种同工酶分析.西南农业大学学报,1995,17(1):12-17
    李扬汉.植物学(中、下).北京:高等教育出版社,1988
    李育农,李晓林.苹果属植物过氧化物酶同工酶酶谱的研究.西南农业大学学报,1995,17(5):371-377
    梁国鲁.苹果属五个二倍体种的染色体行为观察.中国果树,1987,3:236-251
    梁国鲁,任振川,阎勇.四川8个枇杷品种染色体变异研究.园艺学报,1999,26(2):71-76
    林盛华,陈瑞阳.我国苹果品种(系)染色体数目观察(1).中国果树,1985,3:33-34
    林盛华,褚孟嫄.梅染色体研究.北京林业大学学报,1999,21(2):91-93
    刘连森,贺善文,林美红.湖南果品种资源种质杂化状况的初步研究.园艺学报,1993,20(3):225-230
    刘青林.梅花起源与品种演化问题初探.北京林业大学学报,1996,18(2):78-82
    刘青林,陈俊愉.梅花亲缘关系的RAPD研究初报.北京林业大学学报,1999,21(2):81-85
    刘绍钦,黄上志,梁张慧,陈芸芸.ISSR分子标记技术在香蕉分类上的应用.西南大学学报(自然科学版),2007,29(2):70-74
    柳晓磊,汤华,李东栋,王茜,林艳青,周蓉.海南椰子栽培品种的SSR标记分析.园艺学报,2008,35(8):1199-1204
    刘春迎,王莲英.菊花品种的数量分类研究.北京林业大学学报,1995A,17(2):79-87
    刘艳玲,徐立铭,程中平.基于ITS序列探讨核果类果树桃、李、杏、梅、樱的系统发育关系.园艺学报,2007,34(1):23-28
    刘月学,杨向晖,林顺权,胡桂兵,刘成明.枇杷属植物基因组DNA提取方法的改进及其应用.果树学报,2005,22(2):182-185
    卢华琼,苏智先.部分柚类品种的数量分类和主成分分析.安徽农业科学,2006,34(21):5510-5511,5526
    陆苏璃,俞明亮,马瑞娟,沈志军.硬肉桃品种群SSR标记的遗传多样性分析.植物遗传资源学报,2010,11(3):374-379
    吕英民,殷婧,杨果,张启翔.梅花品种AFLP分析鉴定研究.分子植物育种,2006,4(6):12-22
    吕英民,殷婧,杨果,张启翔.梅花品种资源叶绿体基因组SSR研究.北京林业大学学报.2007,29(1):48-53
    罗新书,陈学森,郭延奎.杏品种孢粉学研究.园艺学报,1992,19(4):319-325
    罗志勇,周刚,陈湘晖.高质量植物基因组DNA的分离.湖南医科大学学报,2001,26(2):178-180
    毛汉书,马燕,王忠芝.中国梅花品种数量分类研究.北京林业大学学报,1992,14(4):59-65
    毛汉书,陈俊愉,王忠芝.中国梅花品种的数量分支分析研究.北京林业大学学报,1995,17(增刊1):88-93
    马燕,毛汉书,陈俊愉.部分月季花品种的数量分类研究.西北植物学报,1993,13(3):225-231
    明军,张启翔.亲缘关系相近的梅花品种AFLP DNA指纹分析.北京林业大学学报,2004,20(9):31-35
    明军,张启翔,毛庆山.美人梅与其近缘种亲缘关系研究.园艺学报,2002,29(6):588-589
    明军,张启翔,晏晓兰.梅花基因组AFLP银染反应体系的建立和优化.北京林业大学学报,2003,25(3):17-21
    明军,张启翔.亲缘关系相近的梅花品种AFLP DNA指纹分析.北京林业大学学报,2004,26(5):31-35
    明军,张启翔,兰彦平.梅花品种资源核心种质构建.北京林业大学学报,2005,27(2):65-69
    裴鑫德.多元统计分析及其应用.北京:北京农业大学出版社,1991,196-247
    彭建营,束怀瑞,彭士琪.一种适合枣基因组DNA的提取方法.河北农业大学学报,2000,23(4):46-48
    钱剑林,俞文生.江浙地区杨梅主要品种的ISSR分析.植物资源与环境学报,2006,15(3):17-20
    乔玉山,章镇,房经贵,陶建敏.中国果树.2002,3:55-56
    曲泽洲,孙云蔚.果树种类论.北京:农业出版社,1990
    沈德绪.果树育种学.上海:上海科学技术出版社,1980,321
    沈玉英,孙新政,吕家龙.越橘稔性与花粉超微结构相关性研究.果树学报,2006,23(3):392-396
    沈玉英.不同品种兔眼越橘花粉超微结构与营养成分的观察分析.果树学报,2008,25(4):510-515
    唐东芹.桂花品种数量分类研究.南京林业大学学报,1998,22(1):37-42
    唐前瑞,魏文娜.桃李梅杏四种核果类植物亲缘关系的研究Ⅲ.过氧化物酶同工酶酶谱比较.湖南农业大学学报,1996,22(4):337-340
    唐守正.多元统计分析方法.北京:中国林业出版社,1986,11-36
    佟兆国,王富荣,章镇,赵剑波,张开春,闫国华,周宇,姜立杰.一种从果树成熟叶片提取DNA的方法.果树学报,2008,25(1):122-125
    汪劲武.种子植物分类学.北京:高等教育出版社,1985
    汪祖华,周建涛.桃种质的亲缘演化关系研究-花粉形态分析.园艺学报,1990,17(3):101-108
    汪祖华,陈振翔,郭洪.李、杏、梅亲缘关系及分类地位的同工酶研究.园艺学报,1991,18(2):97-110
    汪诗珊,孙海宝,刘雪兰.用过氧化物同工酶区分梅品种研究初探.北京林业大学学报,1995,17(增刊1):176
    王富荣,赵剑波,章镇,佟兆国,姜立杰,姜全,张开春.适于AFLP分析用的桃成熟叶片DNA提取方法.果树学报,2006,23(4):638-641
    王化坤,陶建敏,薛华柏.一种简便的果实夏秋稍硅胶干燥DNA提取方法.江苏农业学报, 2006,25(5):75-77
    王嘉祥.山东观赏木瓜种质资源调查及分类.林业科技开发,2005,19(5):34-35
    王利英,杜永臣,张斌,石瑶,王秋锦,赵福宽.茄子IRAP和REMAP分子标记的开发.园艺学报,2008,35(9):1363-1367
    王磊,张学英,葛会波.适合山杏AFLP分析的DNA提取方法研究.农业生物技术科学,2008,24(6):62-64
    王旺田,马静芳,张金林,曹孜义.一种测量葡萄叶片的新方法.果树学报,2007,24(5):709-713
    王小蓉,汤浩茹,段娟,李玲.中国悬钩子属空心莓组与木莓组28种和变种的核型比较研究.植物分类学报,2008,46(4):505-515
    王业遴,凌志奋,吴邦良.核果类主要果树花粉形态的鉴定观察.园艺学报,1992,19(1):29-33
    韦杰.柑橘反转录转座子基因的特征分析及其相关分子标记的开发.华中农业大学博士学位论文,2007,6
    魏文娜,唐前瑞,杨国顺.桃李梅杏四种核果类植物亲缘关系的研究Ⅰ.形态特征的异同点.湖南农业大学学报,1996,22(2):125-130
    魏文娜,唐前瑞.桃李梅杏四种核果类植物亲缘关系的研究Ⅱ.染色体核型及Giemsa显带的异同点.湖南农业大学学报,1996,22(3):256-260
    吴国盛,陈发棣,陈素梅,赵宏波,房伟民.部分菊属与亚菊属植物的形态学聚类及亲缘关系分析.南京农业大学学报,2009,32(1):155-159
    吴万春主编.植物学.北京:高等教育出版社,1991
    肖炳光,徐照丽.反转录转座子标记及在作物遗传育种中的应用.生物技术通报,2006,4:61-66
    徐炳声.近二十年来植物分类学的进展.武汉植物学研究,1987,5(1):77-92
    肖炳光,杨本超.利用IRAP标记分析烤烟品种间遗传差异.西北植物学报,2006,26(6):1119-1124
    肖尊安,成明昊,李晓林.中国苹果属植物居群间的亲缘关系及其演化初探.西南农业大学学报,1986,8(2):108-111
    肖尊安,成明昊,李晓林.苹果属植物两种同工酶的模糊聚类分析.西南农业大学学报,1989,11(5):485-490
    徐喜楼,徐惠瑛,盛炳成.苹果属植物花粉观察研究.南京农业大学学报,1985,7(1):98-101
    许方,许列平,张长胜.4种栽培樱桃花粉形态及其壁层次结构的观察.莱阳农学院学报,1993,10(1):32-37
    阎国荣,张元明.哈密大枣与敦煌大枣花粉形态的研究.北方果树,2000,(5):7-8
    杨朝东,张俊卫,熊彩凤,包满珠AFLP技术对梅花杂交种的快速鉴定.北京林业大学学报, 2004,26(12):45-47
    杨朝东,王健,张俊卫,张波,包满珠.梅花不同样本间亲缘关系的AFLP初步分析.中国农业科学,2005,38(10):2084-2089
    杨晖.基于反转录转座子的REMAP和IRAP指纹图谱技术.安徽农业科学,2005,33(4):708-709
    杨继主编.植物生物学.北京:高等教育出版社,1999
    杨晓红.苹果属植物花粉观察研究.西南农业大学学报,1986,8(2):121-129
    杨晓红,林培军.新疆野苹果Malus sieversii (Ldb.) Roem花粉形态研究及其演化研究.西南农业大学学报,1992,14(1):45-50
    杨晓红,李育农.塞威士苹果花粉形态研究及其演化的探索.西南农业大学学报,1995A,17(2):107-114
    杨晓红,李育农.苹果属植物苹果组及三荆子组花粉形态及其演化研究.西南农业大学学报,1995B,7(4):279-285
    杨晓红,李育农.苹果属植物中花揪苹果组和多胜海棠组花粉形态和系统学研究.西南农业大学学报,1995C,17(4):348-354
    杨晓红,李育农.北美绿苹果组植物的花粉形态和系统学研究.西南农业大学学报,1995D,17(1):18-23
    杨俊霞,郭宝林,张卫红,古芹霞.核桃主要经济性状的主成分分析及优良品种选择的研究.河北农业大学学报,2001,24(4):39-42
    叶创兴主编.植物学.广州:中山大学出版社,2000
    俞德浚主编.中国植物志(第38卷).北京:科学出版社,1986
    俞德浚.中国果树分类学.北京:农业出版社,1979
    俞宏,董绍珍,齐茉陵.苹果属植物染色体观察研究.果树科学,1985,2(1):20-22
    余家林.农业多元实验统计.北京:北京农业大学出版社,1993
    赵冰,雒新艳,张启翔.蜡梅品种的数量分类研究.园艺学报,2007,34(4):947-954
    赵凯歌,陈龙清.蜡梅品种数量分类及主成分分析.北京林业大学学报,2004,26:60-66
    赵小兰,陈振锋.武汉地区桂花品种的数量分类研究.湖北民族学院学报(自然科学版),1998,16(6):11-15
    周兰英,王永清,张丽,胡泽明.46种杜鹃花属植物表型性状的的数量分类研究.林业科学,2009,45(8):67-75
    周延清.DNA分子标记技术在植物研究中的应用.北京:化学工业出版社,2005
    张春英,戴思兰.我国观赏植物亲缘关系的研究现状.北京林业大学学报,1998,20(2):79-84
    张慧蓉,乔玉山,曹尚银,张传来,扈惠灵,薛华柏.几个杏李品种成熟叶片基因组DNA提取.江 西农业学报,2008,20(10):4-6
    张水明.基于AFLP和SSR分子标记的中国杨梅遗传多样性分析.浙江大学博士学位论文,2009
    张东,舒群,滕元文,仇明华,鲍露,胡红菊.中国红皮砂梨品种的SSR标记分析.园艺学报,2007,34(1):47-52
    张俊卫,包满珠,陈龙清.梅、桃、李、杏、樱桃的RAPD分析.北京林业大学学报,1998,20(2):12-15
    张俊卫,包满珠.分子标记在观赏植物分类中的应用.北京林业大学学报,1998,20(2):85-89
    张俊卫,柴玉荣,包满珠.利用RAPD标记鉴定和区分梅花42个宫粉型品种.园艺学报,2004,31(4):487-490
    张秀华,王文峰.微卫星DNA聚丙烯酰胺凝胶电泳和银染技术的探讨.山东农业科学,2009,6:13-14,17
    张秀英,王雁,王桂萍.桃花种质资源花粉形态的观察与比较.北京林业大学学报,1997,19(2):57-62
    张永春,包满珠,陈龙清.梅花品种资源同工酶多态性分析.北京林业大学学报,1999,21(2):94-99
    张玉龙,陈艺林.中国鼠李族花粉形态的研究.植物分类学报,1992,30(1):73-81
    章镇,蔡斌华,张聪.果梅品种形态学分类.落叶果树,1996,3:13-14
    朱晓琴,贺善安,姚青菊,马建霞,於虹.鹅掌楸居群遗传结构及其保护对策.植物资源与环境,1997,6(4):7-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700